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Abstract

The remarkable progress in control over cold atomic gases has led to a point where
people are no longer satisfied with merely studying these systems, but rather put
them to use to understand complex quantum many-body systems. The basis of this
development is a deep understanding of the interaction between atoms, and how
to exploit those in order to engineer interesting and novel quantum-systems. The
aim of this particular thesis is to contribute to this third quantum revolution [1]
and hence help to understand the inner workings of complex many-body systems.
We present a method to control the shape and character of the interaction between
cold atoms based on dressing the atomic ground-state with a Rydberg-state. The
latter induces a van der Waals interaction between all the atoms in the ensemble,
and allows for control via the coupling light-field. We find that with increasing
atom densities the ensemble shows a direct transition into a collective regime that
preempts the onset of three-body interactions associated with a break-down of
the first Born-approximation. The reason for this intriguing behavior is the strong
interaction between Rydberg atoms that gives rise to the blockade-mechanism, and
prevents the simultaneous excitation to the Rydberg-state for spatially close atoms.
The non-trivial behavior of the interaction-potential within the collective regime
yields a novel tool for shaping the interaction between ground-state atoms beyond
s-wave scattering. We study this collective regime and the resulting interaction-
potential between the atoms within a variational/mean-field approach, and discuss
its effects on a trapped Bose-Einstein condensate.
Artificial atoms show remarkable properties, that are often superior to real atoms.
In particular, since they are built out of many constituents, such systems often ex-
hibit an enhanced coupling to the light-field as well as strong optical non-linearities
even for small light-fields. On the other hand, noise in quantum-mechanical sys-
tems can not only destroy coherence, but rather can be used in order to robustly
drive a system into an interesting state. We study the effect of a controlled de-
phasing onto an artificial atom in the context of an ensemble of atoms coherently
coupled to a Rydberg state and demonstrate that such an enhanced artificial atom
allows for the deterministic absorption of a single photon from an arbitrary incom-
ing probe field. Such behavior yields a unique tool in light-matter interaction, and
opens the path to realise quantum-networks or to fabricate novel quantum-devices.
Here, we discuss the applicability of this single-photon absorber as a single-photon
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transistor, a high fidelity n-photon counter, and a device that allows for the deter-
ministic creation of non-classical states of light via photon-subtraction.
A non-trivial topological order of quantum-states leads to conservation of cer-
tain properties and, hence, increases their robustness against external perturba-
tions. This can even stabilize quantum-states against local fluctuations. The latter
usually corrupts the coherence within a macroscopic object and thereby prevents
quantum-phenomena to occur in our macroscopic world. As an example of such a
topological state, we study the behavior of vortex-excitations in a two-dimensional
superfluid confined to a periodic potential, as can be realised within a cold atomic
gas in an optical lattice. For large superfluid filling factors and strong interactions,
the healing-length and, accordingly, the vortex core is much smaller than the lat-
tice spacing. As a result, vortices are confined to the plaquettes of the lattice, and
can be described in the framework of an effective tight-binding Hamiltonian. Via
a first-principle calculation based on coherent-state path-integrals we derive the
microscopic parameters of this model and provide an analytic expression for the
vortex mass. Moreover, we show that such a quantum vortex is not obliged to
follow the superfluid flow, but rather exhibits Bloch-oscillations perpendicular to
it, which is a telltale sign for quantum interference of this macroscopic many-body
excitation.
Recently, Jonathan Simon et al. [2] performed a major step towards simulating
quantum many-body systems in cold atomic gases by simulating the paramagnet-
antiferro-magnet transition of a one-dimensional Ising-model. Fundamental excita-
tions in the phase with broken translational symmetry are domain-walls carrying
fractional statistics. The question is, whether experimentally accessible single-
particle excitations, which correspond to two closely-bound domain-walls, decay
into fractional excitations or remain closely-bound. By use of perturbation theory,
we derive an analytic model for the time-evolution of these fractional excitations
in the framework of a tilted Bose-Hubbard model, and demonstrate the existence
of a repulsively bound state above a critical center-of-mass momentum. The valid-
ity of the perturbative approach is confirmed by the use of t-DMRG simulations.
Together with the recent demonstration of single-site addressing and readout in
optical lattices, these findings open the path for experimental observation of frac-
tional excitations within cold atomic gases.
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Zusammenfassung

Die Forschung an ultra-kalten Quantengasen ist heute nicht mehr ausschliesslich
reiner Selbstzweck. Vielmehr versucht man kalte Gase als Werkzeug zu verwen-
den, um komplexe Vielteilchen-Systeme besser zu verstehen. Die Grundlage dieser
erstaunlichen Entwicklung ist ein tiefes Verständnis über die Wechselwirkung zwi-
schen den Atomen, sowie die Möglichkeit diese nach Belieben zu verändern, und
dadurch interessante und neuartige Quantensysteme zu kreieren. Ziel dieser Dis-
sertation ist es, einen Beitrag zu dieser dritten Quanten-Revolution [1] zu leisten,
und so komplexe Vielteilchen-Systeme besser zu verstehen.
Wir zeigen eine Methode, um sowohl die Form als auch den Charakter der Wech-
selwirkung zwischen kalten Atomen zu verändern. Unser Ansatz basiert auf der
Möglichkeit dem Grundzustand der Atome etwas von einem angeregten Rydberg-
Zustand beizumischen. Die van der Waals Wechselwirkung zwischen Rydberg-
Atomen überträgt sich so auf jedes einzelne Atom im Ensemble. Erhöht man die
Wechselwirkung, so zeigt das Ensemble einen direkten Übergang in ein kollek-
tives Regime, wobei das Regime mit dominanten Dreiteilchen-Wechselwirkungen
übersprungen wird. Der Grund für dieses faszinierende Verhalten ist der Blockade-
Mechanismus zwischen Rydberg-Atomen, welcher die Anregung räumlich naher
Atome verhindert. Dieses nicht-triviale Verhalten des Wechselwirkungs-Potentials
im kollektiven Regime stellt ein neuartiges Werkzeug dar, um die Wechselwirkun-
gen zwischen Atomen über die s-Wellenstreuung hinaus zu beeinflussen. Wir un-
tersuchen dieses kollektive Regime und das daraus resultierende Wechselwirkungs-
Potential zwischen den Atomen mit Hilfe eines Variations- / Mean-Field-Ansatzes,
und diskutieren dessen Auswirkungen auf ein Bose-Einstein-Kondensat in einer
harmonischen Falle.
Die extremen Eigenschaften künstlicher Atome sind denen realer Atome in vielen
Aspekten überlegen. Da sie aus mehreren Teilchen aufgebaut sind, zeigen der-
artige Systeme oft eine erhöhte Kopplung an das Lichtfeld sowie starke optische
Nicht-Linearitäten, die schon bei kleinen Feldstärken signifikante werden. Auf der
anderen Seite sind Fluktuationen in quantenmechanischen Systemen nicht aus-
schliesslich Quellen von Dekohärenz, sondern können dazu genutzt werden um ein
System zuverlässig in einen interessanten Zustand zu bringen. Wir studieren die
Auswirkungen von kontrolliertem Dephasieren auf ein künstliches Atom, genauer
eines Ensembles von Atomen das kohärent an einen Rydberg-Zustand gekoppelt ist.
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Wir zeigen, dass ein derart verbessertes künstliches Atom deterministische Einzel-
Photonen-Absorption ermöglicht. Dieses Verhalten stellt eine einzigartige Licht-
Materie-Wechselwirkung dar, die den Weg für Quanten-Netzwerke und neuar-
tige Quanten-Geräte ebnet. Insbesondere diskutieren wir die Anwendbarkeit des
Einzel-Photonen-Absorbers als einen Einzel-Photonen-Transistor, einen hochauf-
lösenden n-Photonen-Zähler sowie als Quelle für nicht-klassische Licht-Zustände.

Eine nicht-triviale topologische Ordnung führt zu neuen Erhaltungssätzen und ver-
ringert damit die Empfindlichkeit des Systems gegen äussere Störungen. Insbeson-
dere erlaubt dies die Stabilisierung von Zuständen trotz lokaler Fluktuationen,
welche üblicherweise die Kohärenz innerhalb eines makroskopischen Objekts und
damit das Auftreten von Quanten-Phänomenen in unserer makroskopischen Welt
verhindern. Als ein Beispiel eines solchen topologischen Zustands untersuchen wir
das Verhalten von Vortex-Anregungen in einem zweidimensionalen Superfluid in
einem periodischen Potential. Ein derartiges System kann zum Beispiel über ein
kaltes atomares Gas in einem optischen Gitter realisiert werden. Im Regime mit
vielen superfluiden Teilchen pro Gitterplatz sowie starken Wechselwirkungen ist die
Kohärenz-Länge, welche die Grösse des Vortex-Kerns bestimmt, viel kleiner als die
Gitterkonstante. Die Vortices sind damit auf den Plaquetten des Gitters gefang-
en, und können gut mit einem effektiven tight-binding Hamiltonian beschrieben
werden. Basierend auf einer mikroskopischen Beschreibung des Superfluids leiten
wir mittels Pfad-Integralen die mikroskopischen Parameter dieses Modells her, und
geben einen analytischen Ausdruck für die Vortex-Masse an. Wir zeigen, dass im
Gegensatz zum klassischen Fall ein massiver Quanten-Vortex nicht dem superflu-
iden Strom folgt, sondern Bloch-Oscillationen orthogonal dazu ausführt, und damit
eine klare Signatur für Interferenz einer Vielteilchen-Anregung zeigt.

Jonathan Simon et al. [2] simulierten vor kurzem den Paramagnet-Antiferromagnet-
Übergang in einem eindimensionalen Ising-Modell mittels kalter Atome und leis-
teten damit einen wichtigen Beitrag zum Gebiet der Quanten-Simulation. Die
fundamentalen Anregungen in der Phase mit gebrochener Translations-Symmetrie
sind Domänenwände, welche eine fraktionelle Statistik aufweisen. Die Frage ist
nun, ob die experimentell zugänglichen Einteilchenanregungen, die zwei eng gebun-
denen Domänenwänden entsprechen, in fundamentale Anregungen zerfallen können
oder gebunden bleiben. Mit einem störungstheoretischen Ansatz leiten wir ein
analytisches Modell für die Zeit-Evolution der fraktionellen Anregungen her, und
zeigen die Existenz eines repulsiv-gebundenen Zustands oberhalb eines kritischen
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Schwerpunkts-Impulses. Zusätzlich bestätigen wir unsere analytische Rechnung
durch numerische t-DMRG-Simulationen. Mit der neusten Generation von Ex-
perimenten, die das Adressieren und Auslesen einzelner Plätze in einem optischen
Gitters erlaubet, eröffnet dies die Möglichkeit fraktionelle Anregungen in kalten
atomaren Gasen zu beobachten.
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“If the laws of physics no longer apply in the future ...
God help you.”

—Portal 2
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Chapter 1

Introduction

Imagine you want to understand a very complex system. Rather than try and
account for everything at once, it is the very human nature to simplify and con-
centrate on particular aspects. These simplifications might not give accurate pre-
dictions, and leave some or even most phenomena unexplained. Nevertheless, they
are useful as long as they capture the basic idea of the particular aspect one is in-
terested in. In theoretical physics, this concept of simplification is well established.
In fact, already Isaac Newton reduced whole planets and suns to point-like objects
in his quest to understand gravitation. Needless to say, he was quite successful in
his approach.

Today, cold atomic gases offer the same possibility for experimental physics: They
allow for the creation of a simplified version of a complex quantum many-body
systems as is often found in condensed-matter physics, and thus to perform exper-
iments in an idealized environment.

Yet one might ask: Would it not be simpler to use the version nature gave you?
Well, the answer is sometimes. Cold atomic gases offer the possibility to observe
a particular system in its purest form, that is without undesirable effects such as
dissipation, disorder, and all those minor annoyances which in total might obscure
the effect one actually hopes to observe. In that sense, experiments on cold atoms
have more in common with a simulation rather than an actual experiment: One is
quite sure about the model describing the system, but not about how the system
will behave. Moreover, there are measurements that are incredibly hard or even
impossible to perform in solid materials, yet straightforward in cold atomic gases
(and vice versa). Hence, the different point of view offered by cold atomic gases
might shed light on systems whose inner workings have been elusive for decades.
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1 Introduction

In the beginning years of cold atomic physics the main focus of research was to
reach a Bose-Einstein condensate, and, after its realization by Wieman and Cor-
nell [3] in 1995, to explore the coherent properties of this intriguing macroscopic
quantum-state [4–6]. However, the remarkable success of ultra-cold atomic gases
in recent years is based on the possibility to reach the strongly-correlated regime,
in which interactions rather than the properties of individual particles govern the
behavior of the system [1,7,8]. On the one hand, these strongly-correlated systems
exhibit a rich variety of interesting phenomena, such as superfluidity in liquid he-
lium, fractional quantum-hall excitations and the peculiarity of high-temperature
superconductivity. On the other, they are notoriously hard to understand, as often
standard methods, both analytically and numerically, simply fail. To achieve this
highly interesting regime, the interaction energy of the particular system needs to
exceed its kinetic energy, and basically leaves one with two paths to follow:

The first one is to increase the interaction energy by increasing the interaction
itself, and was explored by Stoof et al. [9] in 1996. They proposed to use Feshbach
resonances in order to fabricate a BCS pairing in a degenerate gas of 6Li. In gen-
eral, a Feshbach resonance appears whenever the energy of two scattering particles
coincides with the energy of a bound state, which in that context are called open
and closed channel, respectively. The scattering particles are then temporarily
captured in this particular bound state, and the resulting delay in emission yields
an effective increase in the scattering-length depending on the relative energetic
distance between open and closed channel. Now, the main reason for Feshbach-
resonances to be so commonly used in cold atomic gases is the possibility to tune
this energy difference and, in consequence, the scattering length via an external
macroscopic parameter: For instance, if the open and closed channel feature differ-
ent magnetic moments, a uniform magnetic field can be applied in order to change
their relative energetic position, and, in turn, the scattering length [10]. It is thus
possible to create a smooth transition from the weakly-interacting to the strongly-
correlated regime, without any change on the experiment itself. Such a setup was
first realised experimentally by Cornish and coworkers [11] in 2000. Unfortunately,
the increase in scattering length led to a decrease in the condensate lifetime due
to three-body losses.

An alternative route was followed by Jaksch et al. [12]: They proposed to use a
so called optical lattice to reduce the kinetic energy by restricting the motion of
the atoms. Exposing an atom to a coherent light-field induces a constant energy

2



shift Eac ∼ I/∆, where I is the intensity of the light field and ∆ = ω − ωa is
the detuning of the laser frequency ω from the nearest atomic transition ωa [1, 8].
This energy shift is due to the dipole-force, and can be understood as the time-
dependent version of the Stark-effect, the so called ac-Stark shift. Interference
between two laser beams creates a spatial modulation of the light-intensity and
yields a periodic potential for the atoms with a length-scale given by half the laser
wave-length. The combination of several lasers then allows for the creation of
near arbitrary lattice geometries, ranging from a simple one-dimensional stack of
atomic pancakes to complicated structures such as a Kagome lattice [13]. Both the
lattice-depth and the lattice-spacing can be tuned by the laser frequency as well
as the overall light-intensity. Typically, the lattice-depth is much larger than the
thermal energy of cold atoms. For a three-dimensional lattice, the atoms are thus
confined to small, quasi-one-dimensional lattice sites. Although their low thermal
energy prevents them from moving over the energy barrier, quantum mechanics
allows them to tunnel, and therefore hop from one site to another. This hopping
then corresponds to the kinetic energy of the atoms and depends exponentially on
the lattice depth. On the other hand, if two atoms occupy the same lattice site,
their interaction gives rise to an energy shift. Again, this can be tuned by the lasers
generating the lattice as well as the aforementioned Feshbach-resonances. Yet, the
strong atomic localization prevents particles to interact if they are on different
lattice sites. The simple picture of particles tunneling from one site to another
and interacting only if they are on the same site can be cast in the famous Bose-
Hubbard model [14], which is an exemplary model for strongly correlated Bosons.
In a beautiful experiment in 2002, Markus Greiner and coworkers [15] realised
such a system within a Bose-Einstein condensate, and observed a quantum phase
transition from a superfluid phase in which particles move freely all over the lattice
to a Mott-insulating phase where the atoms sit put on their respective lattice site.

From these beginning steps of manipulating the properties of cold atomic gases
a whole field of quantum engineering has developed over the last decade. This
remarkable progress is based on both experimental achievements in increasing the
control over atoms as well as theoretical understanding on how to exploit the basic
properties of cold atomic gases. Given the abundance of good review articles about
cold atomic gases, we will name but a few of the most famous publications, and
refer the interested reader to the literature [4, 7, 10,16].

One of the first experiments to demonstrate the capabilities of cold atomic gases
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1 Introduction

in modeling solid-state physics was the fabrication of a Tonks-Giradeau gas [17]
as a first example of a bosonic Luttinger-liquid [18] by Kinoshita et al. [19] and
Paredes et al. [20] following the proposal of Petrov, Shlyapnikov and Walraven [21].
Another beautiful experiment by Juliet Billy and coworkers [22] demonstrated
Anderson-localization [23] of a Bose-Einstein condensate by use of a speckle pattern
of light, and opened the path to study disorder in these systems. In two dimensions,
Hadzibabic [24] observed a crossover between a phase with an exponential decay of
correlations and a phase with quasi-long-range order, in which correlations decay
algebraically, and thus provides evidence for a Berezinskii-Kosterlitz-Thouless-type
transition [25] from a phase of bound vortex pairs to one of free vortices. Another
way to efficiently prepare interesting many-body states is the use of long-range
interactions due to Rydberg excitations. Those might offer the possibility to study
dynamics and disorder for scalable quantum information networks, as was recently
reported by Dudin et al. [26].

In next generation experiments, built in Munich and Harvard by Sherson et al. [2]
and Bakr et al. [27], that allow for single-site addressing and imaging in opti-
cal lattices, one can actually see atom dynamics in an optical lattice. By use of
these techniques Cheneau et al. [28] reported on the observation of correlation
spreading in an optical lattice and Endres et al. [29] studied a Higgs-mode in a
two-dimensional neutral superfluid. Simon et al. [2] made a huge step towards a
dedicated quantum-computer by simulating the antiferromagnet-paramagnet tran-
sition in an Ising-model at the multi-critical point.

Although a fully fledged quantum-computer is still a long way from realization,
the recent advances in control over quantum-matter might lead to systems that are
capable to simulate specific strongly-correlated models. Such dedicated quantum-
simulators can help to understand whether certain analytically unsolvable models
are even applicable in the first place, and carry the effects one hopes to describe.
Following Feynman, this quantum revolution associated with control over macro-
scopic quantum systems and the rise of quantum technologies [1] might give insight
into the inner workings of solid-state systems which eluded our understanding so
far. There is still much work to do in both experimental control over the cold
atomic gases as well as our theoretical understanding of these systems and what
they are actually capable of. Yet, steps to enlightenment brighten the way; but the
steps are steep. Take them one at a time. [30]. In this thesis I try to take one of the
steep steps, and hopefully contribute to the understanding of strongly-correlated
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many-body systems.

In chapter 2 we study the influence of Rydberg dressing on the ground state wave-
function of a Bose-Einstein condensate. Due to their huge spatial extent, Rydberg
atoms are easily polarizable and feature a strong van der Waals interaction. Quan-
tum mechanics then allows one to admix the strongly interacting Rydberg state
to the atomic ground state, and thus induce a long-range interaction-potential be-
tween all atoms in the ensemble. In the weak-dressing limit, the interaction is gov-
erned by two-body processes, and can be treated approximately within an adiabatic
Born-Oppenheimer approach. However, this approximation breaks down if one in-
creases the Rabi-frequency coupling the ground- and Rydberg-state. Although one
would expect three-body and higher-order interactions to become gradually impor-
tant, we show that the system exhibits a direct transition into a collective regime
where all orders of the interaction need to be taken into account. This remarkable
behavior is a result of the blockade-mechanism of Rydberg atoms that prevents
the simultaneous Rydberg excitation of two atoms in close vicinity. We apply a
variational/mean-field approach in order to derive an effective interaction-energy
from the microscopic Hamiltonian. As a result, this allows us to describe the sys-
tem within a generalized Gross-Pitaevskii equation and to derive the condensate
wave-function in the Thomas-Fermi limit.

The weak interaction between light and matter renders photons a promising can-
didate for quantum information transport. Yet, this very property requires an
efficient way to convert an excitation in a light-field into one of a quantum-system,
and usually takes some stringent requirements on the side of the light-field, such
as a π pulse or a Stimulated Raman Adiabatic Passage (STIRAP). In Chapter 3
we demonstrate how to circumvent most of these restrictions and to create a sys-
tem that is capable to deterministically absorb a single photon from a probe-beam
with minimal requirements on the probe-beam itself. The design is based on the
blockade-mechanism, as can be realised in an artificial atom, in combination with
a controlled dephasing of the excited states. The latter breaks the bright- and
dark-space invariance induced by a coherent light-field driving the transition from
ground to the collective excited state. In turn, the modified artificial atom features
enhanced absorption properties, which in the limit of infinite constituents create
a perfect single-photon absorber. This design provides a unique tool in photon-
matter interaction, and opens the path to create novel quantum-devices useful in
several fields of research and technology. We explicitly address its application as

5



1 Introduction

a single-photon transistor, a high fidelity n-photon counter, and for deterministic
creation of non-classical states of light via photon-subtraction.

In chapter 4, we investigate whether macroscopic many-body excitations such as
topological defects can exhibit quantum-phenomena. In particular, we consider a
cold atomic gas in a two-dimensional optical lattice, described within the frame-
work of a Bose-Hubbard model. In the regime of large particle-filling and strong
interactions close to the Mott-insulator transition, the lattice spacing is the defin-
ing length-scale of the system. As a result, the healing-length of the superfluid
associated with the dimension of the vortex core is much smaller than the lattice
spacing, so that the vortices are pinned to the plaquettes of the lattice. By use
of a coherent-state path-integral formalism we obtain an effective action for the
vortices that is similar to the action of charged particles under the influence of
a perpendicular magnetic field. The low-distance cut-off provided by the lattice
leads to dissipationless vortex-tunneling in this particular regime and, thereby, to
a finite tunneling-rate associated with a vortex-mass, and, ultimately, gives rise
to an effective tight-binding Hamiltonian for the vortices. In contrast to a classi-
cal massless vortex, the nearest-neighbor hopping in the tight-binding Hamiltonian
yields a periodic dispersion relation. In the presence of a force we find that a vortex
performs Bloch-oscillations that are a telltale sign for single-particle interference
and, hence, quantum-behavior of a macroscopic many-body excitation.

In the final chapter 5, we study the behavior of excitations in a tilted one-dimen-
sional optical lattice cast in the form of a Bose-Hubbard model. The equivalence
of this model with the one-dimensional Ising-model suggests that fundamental
excitations in a density-wave phase with two atoms on every other lattice site are
domain-walls, which show fractional statistics. Yet, the only excitations accessible
in this broken-symmetry phase correspond to two closely-bound domain-walls. The
important question is then, whether such an experimentally accessible excitation
decays into fundamental domain-wall excitations, or stays in its bound form. By
use of a perturbative approach we derive an analytic model for the time-evolution
of experimentally accessible excitations and show that the system features both
the decay into fractional excitations as well as a stable bound state above a critical
center-of-mass momentum. Furthermore, we confirm our findings via t-DMRG
simulations, and provide parameters for experimental observation. Together with
the recently demonstrated single-site readout in optical lattices, this opens the
path to simulate fractional excitations in a well-controlled cold atomic setup.

6



7





Chapter 2

Collective Many-Body Interaction in
Rydberg-Dressed Atoms

2.1 Motivation

A microscopic understanding of the interaction and the means to control them
via external fields is one of the stepping-stones in the quest of finding novel and
interesting quantum phases within ultra-cold atomic gases.
Nowadays, there are several tools available to alter interactions. Arguably the most
prominent example are Feshbach-resonances [31–34], which allow for a tuning of
the s-wave scattering-length an external magnetic or laser field [10], and can be
efficiently implemented in experimental setups. However, to realise anisotropy or
long-range behavior in particle interactions, one has to rely on different means.
A path to implement the former are atomic gases with large magnetic dipole-
moments. Lahaye [35] studied a Bose-Einstein condensate of 52Cr purely governed
by dipolar interactions. There, the anisotropy leads to a strong dependence of
the stability on the trap-geometry, which results in a collapse of the condensate
followed by a Bose-Nova with d-wave like features in the unstable region. To realise
long-range interactions one can use atoms excited into an high-lying electronic
state, namely a Rydberg-state [36]. The strong van der Waals interaction [37] of
these exited atoms accounts for the famous excitation-blockade [38–42] and opens
the path to explore novel quantum-phases and phase-transitions [43–45].
On the other hand, the concept of dressing ground-state atoms with an excited
state [46] in order to create novel and interesting particle-behavior has been exten-
sively studied in the past in the context of coupling polar molecules with different
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

rotational states to suppress inelastic scattering [47]. Pupillo and coworkers [45]
proposed to tune the interaction between ground state atoms via Rydberg-dressing
in the dipole-dipole regime, and studied the emergent quantum phases via Monte-
Carlo simulations. The same idea was used by Henkel et al. [48] to show that the
dressing with Rydberg s-states yields a roton-maxon excitation spectrum and a
transition to a super-solid state in a Bose-Einstein condensate. Both proposals are
based on an off-resonant coupling between ground- and Rydberg state in order to
limit the losses via spontaneous emission from the excited Rydberg-state.
In this Chapter, we show that near-resonant coupling between ground and Rydberg-
state does not necessarily lead to increased losses. Rather, the breakdown of
the Born-approximation associated with the onset of three-body interactions is
preempted by a transition into a collective regime. As a result, the system ex-
hibits a direct crossover from a regime with dominating two-particle interaction
to a collective many-body regime, in which the fraction of Rydberg-excitations
becomes suppressed by their interaction. Since losses mainly depend on the num-
ber of Rydberg-excitations, this mechanism allows for a resonant coupling between
ground and Rydberg-states. We show that in this regime the system can be de-
scribed within the framework of a generalized Gross-Pitaevskii equation, and derive
an effective interaction-potential via a variational/mean-field approach.

2.2 Rydberg-Dressing of a Single Atom

We start with a system of ultra-cold atoms driven into an excited Rydberg-state
via a two-photon process. The relevant internal structure is well described by
a three-level system: for the i-th atom, the ground-state |g⟩ is coupled to the
Rydberg-state |r⟩ via an intermediate p-state |p⟩, see Fig. 2.1. The Rabi-frequency
and detuning for the transition from ground- to p-level is denoted by Ωp and ∆p,
and for the transition from p-state to Rydberg-state by Ωr and ∆r. In order
to avoid inhomogeneous light-intensities due to absorption [49], it is necessary to
reduce the population of the intermediate state. Such a suppression can either
be achieved by a far off-resonant coupling to the p-state, or, more elegantly, by
tuning the system to the EIT-condition [50], in which the ground- and Rydberg-
state form a dark state. Then, both schemes allow for an adiabatic elimination of
the intermediate p-state, and reduce the internal structure to an effective two-state
system (see ref. [51]). Henceforth, we concentrate on a simple setting in which the
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2.2 Rydberg-Dressing of a Single Atom

Figure 2.1: Setup for the ground-state dressing with the Rydberg-state |r⟩ via the
intermediate p-state with the corresponding Rabi-frequencies Ωr and
Ωp as well as the detunings ∆r and ∆p. The decay-rates from the p-
state and the Rydberg-state are denoted by γp and γr, respectively. (b)
For far off-resonant coupling to the intermediate state, i.e. ∆p ≫ Ωr,
the system reduces to an effective two-state system with two-photon
Rabi-frequency Ω = ΩrΩp/2|∆p| and total detuning ∆ = ∆r + ∆p.

coupling to the intermediate state is off-resonant, and comment on the suppression
via EIT in the appendix 2.A. According to ref. [51], the two-photon Rabi-frequency
takes the approximate form Ω = ΩrΩp/2|∆p|, whereas the total detuning is given
by ∆ = ∆r + ∆p. Although we are interested in the quantum-gas regime, where
typical timescales are on the order of ms, the timescale of the internal degrees of
freedom is on the order of µs, and gives rise to the notion of the frozen Rydberg-
gas [52]. Accordingly, the microscopic single-atom Hamiltonian for the electronic
degree of freedom in the rotating frame of the driving light-field is equivalent to a
spin 1/2 model,

Hmicro =
∑
i

Hi = −ℏ∆
∑
i

Siz + ℏΩ
∑
i

Six. (2.1)

Spin-down corresponds to the atomic ground state, whereas spin-up corresponds to
the excited Rydberg-state. Therefore, the spin operators in the z and x direction
take the form Siz = (|r⟩⟨r| − |g⟩⟨g|)/2 and Six = (|r⟩⟨g| + |g⟩⟨r|)/2, respectively.
Diagonalization of the microscopic Hamiltonian then yields the eigenstates of the
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non-interacting system, namely

|±⟩ = 1√
Ω2 +

(
∆ ∓

√
∆2 + Ω2

)2

(
∆ ∓

√
∆2 + Ω2

−Ω

)
, (2.2)

and correspond to eigenenergies E± = ± 1
2ℏ

√
∆2 + Ω2 of the dressed atomic states.

2.3 Weak Dressing Limit and Two-Body Interaction

The van der Waals interaction between Rydberg atoms gives rise to an induced
interaction between the dressed state |−⟩ adiabatically connected to the ground
state |g⟩. The interaction-potential between two dressed states can then be ob-
tained by diagonalizing the two-body Hamiltonian with van der Waals interaction,
that is

HTB =
2∑
i=1

Hi + C6

2
∑
j,i

P iP j

|xi − xj |6
. (2.3)

Here, P i = |r⟩⟨r|i is the projection operator onto the i-th excited Rydberg-state
and C6 is the van der Waals coupling parameter. A plot of the resulting eigen-
energies over the separation x between the atoms is shown in Fig. 2.2. For far
off-resonant coupling between ground and Rydberg-state, ∆ ≫ Ω, the energy level
separation is on the order of the total detuning ∆, and thus allows for an adiabatic
Born-Oppenheimer treatment [48]. More specifically, a fourth order perturbation
in Ω/∆ yields the Born-Oppenheimer surface adiabatically connected to the many-
body ground-state, and yields the interaction-potential

VBO(x) = −2|E−| + ℏΩ4

8|∆|3
1

1 + (x/ξ0)6 , (2.4)

where ξ0 = (C6/4|E−|)1/6 is the two-body blockade-radius [41] (see appendix
6.A.4). A comparison between the full interaction-potential derived via numerical
diagonalization of the two-body Hamiltonian (2.3) and the Born-Oppenheimer
approximation (2.4) is shown in Fig. 2.2 for a realistic set of parameters.
In the low-energy limit scattering between atoms is well described within the first
Born-approximation and allows us to reduce the interaction-potential to a single
interaction-parameter geff [4] associated with the s-wave scattering length via the
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2.3 Weak Dressing Limit and Two-Body Interaction

Figure 2.2: (a) Eigenvalues of the two-body Hamiltonian (2.3) as a function of
the relative distance x between the atoms. We have choosen realistic
parameters for a setup using a 87Rb |43s⟩ state with Rabi-frequency
Ω = 7.8 kHz, detuning ∆ = 107 kHz and van der Waals interaction
coefficient C6 = 189 Mhzµm6. The lowest energy eigenstate then cor-
responds to the weakly-dressed ground state. Note that the energy-
scale of the induced interaction is not visible in (a). (b) Comparison
between the numerical diagonalization of (2.3) and the Born Oppen-
heimer interaction-potential (2.4).

relation geff = 4πℏ2as/m. Since low energy corresponds to small momenta q,
the problem of finding geff is equivalent to finding the Fourier-transform of the
interaction-potential in the limit q → 0. A straightforward calculation then yields
the Fourier-transform of the interaction-potential (2.4),

Veff(q) = π2

12
ℏΩ4

8|∆|3 ξ
3
0F (ξ0q), (2.5)

with the momentum-dependent part

F (z) = e−z/2

z

[
e−z/2 − 2 cos

( √
3

2 z + π

3

)]
. (2.6)

In the low-momentum limit q → 0, the function F → 1, and the effective interac-
tion-potential reduces to

geff = π2

12

√
C6

2
ℏΩ4

|∆|7/2 . (2.7)

Despite naive expectations this interaction parameter cannot be arbitrarily tuned
by simply lowering the detuning ∆. Indeed, a small detuning will result in an
increase in the Rydberg population and thereby an increase in spontaneous emis-
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

sion, and limits the timescale of any coherent experiment. A discussion of how to
optimize the s-wave scattering in a realistic experimental setup can be found in
appendix 2.C.

In the remaining part of this section, we provide an intuitive picture for the un-
derstanding of the Born-Oppenheimer interaction-potential (2.4). For Ω/∆ ≪ 1,
we can approximate the low-energy eigenstate |−⟩ adiabatically connected to the
ground-state |g⟩ by a series expansion of eq. (2.2), so that

|−⟩ ≈
(
1 − Ω2/4∆2) |g⟩ + Ω/2∆|r⟩ + O

(
(Ω/∆)3) . (2.8)

Correlations between Rydberg-excitations vanish for large distances x between the
atoms. Accordingly, the dressed atoms experience a van der Waals interaction,
renormalized by the probability for the respective atom to be in the Rydberg-
state. By introducing the notion of the Rydberg-faction, which in the limit of weak
dressing reduces to f = |⟨−|r⟩|2 = Ω2/4∆2, the effective interaction-potential can
be cast in the compact form

Veff = ⟨−|HTB|−⟩ = 2|E−| + f2C6

x6 , (2.9)

and corresponds to a leading order expansion in 1/x of eq. (2.4). On the other hand,
the blockade-mechanism prevents both atoms to be in the Rydberg-state if their
respective distance is small. This explains both the saturation of the interaction-
potential on a length-scale given by the two-body blockade radius ξ0 as well as its
independence of the Rydberg interaction parameter, namely C6. The finite energy
shift for close distances is then due to the fact that the blockaded system acquires
a collective ac-Stark shift driven by the collective Rabi-frequency ΩN =

√
NΩ,

whereas the spatially separated atoms both feel an individual ac-Stark shift. The
difference between those two can then be put in the form

Veff = ⟨−|HTB|−⟩ = −1
2

(
|∆| +

√
∆2 + 2Ω2

)
≈ −2|E−| + ℏΩ

4

|∆|3 , (2.10)

again in agreement with eq. (2.4). However, the dependence on the collective
Rabi-frequency rises the question of what the small parameter in our perturbation
actually is. Indeed, perturbation fails if the ratio of collective Rabi-frequency and
detuning

√
NΩ/∆ is too large. Since the number of atoms N inside the blockaded

region can be expressed in terms of the atomic density n we find the dimensionless

14



2.3 Weak Dressing Limit and Two-Body Interaction

Figure 2.3: Crossover from two-body interaction to the regime with collective
many-body interaction. The cross-over line scales like ∆ ∼ −Ω4/5

(dashed line) and preempts the onset of three-body interactions that
scales like Ω ∼ |∆| (dotted line).

parameter nfξ3
0 . In turn, perturbation holds provided that

nfξ3
0 ≪ 1. (2.11)

In order to get a more intuitive interpretation of this condition, consider the defin-
ing length-scales of the system: As long as nfξ3

0 ≪ 1 the two-body blockade radius
ξ0 is much smaller than the distance (nf)−1/3 between Rydberg-excitations and, in
turn, perturbation theory holds. Conversely, for nfξ3

0 ≫ 1, the blockaded regions
overlap, and the atoms interact in a collective fashion. If we now compare this tran-
sition with the onset of three-body interactions we find that those are suppressed
by a factor of Ω/|∆|, which yields the scaling law |∆| ∼ Ω. On the other hand,
by using the approximate expressions for the Rydberg fraction provided earlier we
obtain the expression

|∆| ∼
(
C6n

2

2ℏ

) 1
5

Ω4/5, (2.12)

for the transition into the collective regime. The fact of the matter is that the latter
transition occurs before three-body interactions play any significant role. Hence
the systems translates directly from a regime dominated by two-body interactions
into the collective regime.
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

2.4 Mean-Field/Variational Approach

In the following, we derive an effective model for the collective interaction between
Rydberg-dressed atoms. The general idea goes as follows: We assume the external
potentials to vary only on length-scales much larger than the two-body blockade-
radius ξ0, and allows for a coarse grained particle distribution in terms of a local
density n. The system can hence be described within a generalized Gross-Pitaevskii
equation

iℏ∂tψ(t,x) =
[
H0 + gsn(t,x) + ∂nERD [n(t,x)]

]
ψ(t,x), (2.13)

where ψ(t,x) is the macroscopic condensate wave-function with n(t,x) = |ψ(t,x)|2

and gs describes the background contact-interaction between the atoms. Further,
H0 = −ℏ2∇2/2m + Vext − µ is the non-interacting Hamiltonian for the external
degrees of freedom, Vext the external trapping potential, m the particle mass,
and µ the chemical potential. Last, the internal energy ERD[n] accounts for the
interaction induced via Rydberg-dressing and is governed by the eigenvalues of the
microscopic Hamiltonian (2.1). Here it is convenient to use a dimensionless form
of the microscopic Hamiltonian, namely

H = 2|E−|

[∑
i

Six sinϕ+ Siz cosϕ+ ξ6
0

∑
j,i

P iP j

|xi − xj |6

]
, (2.14)

with the angular parameter ϕ defined via

∆ = −2|E−| cosϕ, Ω = 2|E−| sinϕ. (2.15)

Since the internal energy-functional is highly nontrivial, we approximate ERD[n]
via an effective interaction-energy-functional Eeff [n] ≈ ERD[n] determined within
a variational mean-field approach, and thereby obtain an effective model for the
collective interaction due to Rydberg-dressing. The details of this particular ap-
proximation procedure are described in the next subsection.

2.4.1 Variational Ansatz

In contrast to the mean-field approach used to describe phase transitions [53], the
blockade-mechanism requires a more general treatment due to strong correlations
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in between excitations. A variational wave-function that allows us to include strong
correlations can be written in the general form

|var⟩ = 1
N

∑
s1,...,sN

[∏
i,j

Csi,sj (xi − xj)

]
|s1 . . . sN ⟩. (2.16)

Here, the si ∈ {g, r} describe the state of the i-th atom, while the Cs,s′ account
for short-range correlations between the atoms. Note that this ansatz is in close
analogy to a paramagnetic phase in a spin-model, with all spins aligned along the
⟨s⟩ direction.

It is instructive to consider the non-interacting case first: In the absence of interac-
tions, the short-range correlations Cs,s′ factorize like Cs,s′ = ζsζs′ , with ζg = cos θ
and ζr = sin θ, respectively. In consequence, the spin operator expectation-values
take the form

⟨Sz⟩ = 1
2 cos 2θ = 1

2 − f, ⟨Sx⟩ = −1
2 sin 2θ = −

√
f(1 − f), (2.17)

where f = sin2 θ is the probability for an atom to be in the Rydberg-state. As a
first test for our variational wave-function, we calculate the ground state energy
of a single atom interacting with the driving light-field. Upon minimization with
respect to the Rydberg-fraction f we obtain the variational ground-state energy

⟨var|Hmicro|var⟩ = E−. (2.18)

in agreement with the exact diagonalization of the single-atom Hamiltonian (2.1).

We now turn towards describing the interaction-part of the Hamiltonian (2.14),
which we denote as HRyd, in terms of a variational problem. To do so, we follow
ref. [43] and introduce the pair correlation-function g2

g2 = ⟨P iP j⟩
f2 , (2.19)

in order to account for correlations between the Rydberg-excitations. For small
inter-atom separation x, the blockade-mechanism prevents the simultaneous exci-
tation of both atoms and yields a vanishing expectation-value ⟨P iP j⟩ ≈ 0. Con-
versely, for large inter-atom separation, interactions and hence correlations vanish
and the expectation value of the correlation function factorizes like in the non-
interacting case, ⟨P iP j⟩ ≈ ⟨P i⟩⟨P j⟩ = f2. We therefore expect the correlation-
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

function g2 to vanish identically at small distances, whereas it approaches unity
at large ones. As is shown in ref. [54], the transition between the two regimes
is very sharp. We can hence define a characteristic correlation-length ξ marking
the transition between those two regimes and use it as a second variational pa-
rameter. Moreover, the variation of ξ allows for the use of the variational ansatz
(2.16) without precise knowledge of the short-range correlations Cs,s′ . Next, due
to the large number of atoms inside a blockade-volume ξ3

0n ≫ 1, we can replace
the summation over surrounding particles by an integration, so that∑

i

→ n

∫
d3x. (2.20)

It follows that the energy expectation-value of HRyd expressed in terms of the
correlation-function (2.19) and the local density n takes the form

⟨var|HRyd|var⟩ ≈ 2|E−|
∫
d3x

∫
d3x′ n2f2ξ6

0
g2(x)
x6

= 2|E−|
∫
d3x

4π n2f2ξ6
0

ξ3

∞∫
0

dz
g2(zξ)
z4 , (2.21)

where we have assumed a spherical symmetry of the correlation-function g2. Rescal-
ing of the spatial coordinate x = zξ reduces the last integral containing the
correlation-function g2 to a purely numerical constant,

2π
∫
dz

g2(zξ)
z4 = Y. (2.22)

A change in local form of g2 yields but a different numerical constant Y , and
ultimately a renormalization of the van der Waals coupling constant C6. Even so,
precise knowledge about the explicit form of g2 is not important for our approch.

By use of the above results, the mean-field energy expectation-value for the inter-
acting many-body system takes the form

⟨var|H|var⟩

= 2|E−|
∫
d3x

[
n
(
f − 1

2

)
cosϕ− n

√
f(1 − f) sinϕ+ 2Y n

2f2ξ6
0

ξ3

]
, (2.23)
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Note that this expression still contains the ac-Stark shift due to the light-field,
namely

Eac = nE−, (2.24)

which is present even in the non-interacting regime. Subtracting this energy shift
from the variational energy then yields the effective energy Eeff [n] describing the
collective interaction due to the Rydberg-dressing alone in terms of the variational
problem

Eeff [n] =
[

min
{|var⟩}

⟨var|H|var⟩
]

− Eac. (2.25)

The minimization with respect to the Rydberg-fraction f then follows the equation

∂f ⟨var|H|var⟩ = 0, (2.26)

and is equivalent to the self-consistency calculation used in ref. [43] to derive critical
exponents at the quantum-critical point ∆ = Ω = 0 (see appendix 2.D). On
the other hand, the term accounting for the Rydberg-interaction always yields a
positive contribution to the expectation-value ⟨var|H|var⟩. Since this is the only
part that contains the correlation-length, it is hence minimized by maximizing the
latter. Yet ξ itself is required to satisfy several constraints: First, for nfξ3 ≪ 1

Figure 2.4: Constraints for the correlation-length ξ across the critical density. For
nfξ3

0 ≪ 1, correlations are bound by the two-particle blockade length
ξ0. In contrast, for nfξ3

0 ≫ 1 the boundary is given by the distance
between Rydberg-excitations (nf)−1/3. The red line is a sketch for the
expected behavior of the correlation-length.
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with large average distances between Rydberg-excitations, correlations are limited
by the two-body blockade-radius giving rise to the condition ξ ≤ ξ0. Second,
for nfξ3 ≪ 1 the characteristic distance between Rydberg-excitations provides
a second length-scale that limits correlations. In particular, the normalization
condition [43]

nf

∫
d3x (1 − g2(x)) = 1 (2.27)

provides the upper bound ξ ≤ (vBnf)−1/3, where vB = 4π
∫
dz(1 − g2(zξ)) is

the dimensionless blockade volume factor. Quite unfortunately, it remains a free
parameter in the theory. Combining the above conditions, the upper bounds for
the correlation-length ξ take the piecewise form

ξ3 ≤ ξ3
0 min

[
1

nfvBξ3
0
, 1
]
. (2.28)

For the purpose of minimization, we expect the correlation-length ξ to take values
close to this upper bound, with a smooth behavior in the transition region. Indeed,
this criterion is consistent with our previous estimate (2.11).

In the low-density limit nfξ3
0 ≪ 1, the variational energy (2.25) is required to

reproduce the two-body interaction-parameter geff derived within the adiabatic
Born-Oppenheimer approach (2.4), that is

geff = π2

12
ℏΩ4

|∆|3 ξ
3
0 . (2.29)

Note that the assumption Ω ≤ ΩN ≪ ∆ obscures the fact that the energy scale
of the interaction parameter is proportional to the ac-Stark shift times the square
of the Rydberg fraction, namely geff = 8π2|E−|f2ξ3

0/3. On the other hand, the
two-body interaction-parameter predicted by the variational energy Eeff is given
by its second-order coefficient of the series-expansion in the atomic density n,

Eeff [n] = 4Y |E−|
ξ3

0
n2f2ξ6

0 = gvar

2 n2. (2.30)

For these two results to agree, it is thus necessary that

Y =
∫
dz

g2(ξz)
z4 = π2

3 ≈ 3.3. (2.31)
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As noted before, the parameter vB cannot be calculated in the same fashion. Yet,
under the assumption of a sharp transition between the correlated and uncorre-
lated regime used in ref. [43], the blockade-volume coefficient reduces to vB = 4π/3,
which is the volume of a unit sphere. Yet, under the same assumption the coef-
ficient Y would have taken the value 4π/3 ≈ 4.2. Since both results are on the
same order of magnitude, this justifies the use of vB = 4π/3.

2.4.2 Rydberg Interaction Energy-Functional

In the deep collective regime with nfξ3
0 → ∞, the last term in eq. (2.23) dominates.

A leading-order expansion of the condition (2.26) in 1/f then yields the scaling
behavior of the Rydberg-fraction

f →
(

(3/4π)2 sinϕ
πξ6

0n
2

) 2
5

, (2.32)

and, in consequence, the Rydberg-fraction goes to zero or nξ3
0 → ∞. Accordingly,

the effective interaction energy takes the form of a chemical potential, namely

Eeff [n] = 2|Eac| sin2 ϕ

2 = nµsat. (2.33)

In particular, the variational interaction-potential ∂nEeff [n] in the deep collective
regime is independent of the atomic density, and renders the atoms basically free.
This rather counterintuitive behavior is due to the fact that for nfξ3

0 → ∞, the
number of atoms inside a blockade volume diverges like nξ3 ≈ 1/f ∼ n4/5 → ∞.
As a result, all atoms in the ensemble up to a non-extensive part are within the
blocked region and thereby cannot acquire a Rydberg-dressing, which prevents
them to interact via the van der Waals channel. On the other hand, the energy
difference between the single-atom and the collective ac-Stark shift leads to a shift
in the chemical potential, and explains as to why µsat is independent of the van der
Waals interaction-energy C6n

2. Even so, according to eq. (2.32), the total number
of Rydberg-excitations nf ∼ n1/5 still grows with increasing atomic density. The
same is true for the internal energy Eeff [n] = µsatn, which depends linearly on the
atomic density n.
In order to get some intuition on what to expect from the general minimization, we
make the curdest of estimates imaginable: In the limit nfξ3

0 ≪ 1, the interaction-
energy is due to the two-body processes and gives rise to a linear growth of the
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

Figure 2.5: Numerical results for the effective interaction-potential ∂nEeff [n] for
different parameters ϕ. The solid blue line is the minimization-result
in the two-body regime with ξ ≈ ξ0, whereas the solid orange line is for
the collective regime with ξ ≈ (nf)−1/3. The dashed and dotted lines
account for the two-body and deep collective limit of the interaction.
Although we used the sharp transition (2.28) for the correlations, the
transition between the two regimes is surprisingly smooth.

variational interaction-potential ∂nEeff [n] ≈ geffn. On the other hand, the vari-
ational interaction-potential saturates at ∂nEeff [n] ≈ µsat For nfξ3

0 ≫ 1. If we
neglect the intermediate region for the time being, we can estimate the variational
interaction-potential via

∂nEeff [n] = 2|E−| min
[

4π2

3

(
ϕ

2

)4
nξ3

0 , sin2 ϕ

2

]
. (2.34)

The transition between the two-body and the deep collective regime then takes
place at the transition-density nt defined via

ntξ
3
0 = 3

4π2
sin2 ϕ/2
(ϕ/2)4 . (2.35)

For a fixed angle ϕ, the right hand side of eq. (2.35) is constant, and we are left with

22



2.5 Wave-Function in Thomas-Fermi Approximation

a scaling ntξ
3
0 =

√
C6n2

t /4|E−|. Again, this can be interpreted as a competition
between the van der Waals energy C6n

2
t and the ac-Stark shift E− and is in rough

agreement with the estimate (2.12). The major difference is that eq. (2.34) predicts
an applicability of two-body scattering even in the critical region ∆ = 0. Yet this
comes to no surprise, since eq. (2.12) marks the breakdown of the two-body regime,
whereas eq. (2.35) yields the point where two-body and collective interaction result
in the same energy.
Unfortunately, there is no general analytic solution for the variational problem
(2.25) in the intermediate regime. Still, simple numerics allow us to derive the
variational interaction-energy Eeff [n] for arbitrary atomic densities n. For the
following calculation, we use a sharp transition between the two-body and collective
regime according to eq. (2.28). In consequence, the energy-functional shows a
discontinuity in the second derivative at nfξ3

0vB = 1. Although eq. (2.28) is
an unphysical approximation, it yields an effective energy-functional Eeff that is
surprisingly well-behaved (see Fig. 2.5) and shows a very broad crossover between
the two-body and the collective regime: Deviations occur already at densities as
low as nξ3

0 ≈ 0.05. Conversely, its saturation is very slow, and convergence can
only be seen on a logarithmic scale. This gives rise to a wide collective regime, in
which the interaction-energy depends nontrivially on the local density n.

2.5 Wave-Function in Thomas-Fermi Approximation

In the Tomas-Fermi approximation [4], the kinetic energy of the particles is as-
sumed to be negligible as compared to the interaction-energy, either due to the
external trapping-potential Vtrap or due to the interaction between atoms. Thereby
the Gross-Pitaevskii differential equation (2.13) reduces to a transcendental equa-
tion

0 =
[
Vext − µ+ gsn(t,x) + ∂nEeff [n(t,x)]

]
ψ(t,x), (2.36)

and allows for a simple solution with respect to the local density n(x) = |ψ(x)|2. In
combination with the knowledge of the internal interaction-energy Eeff [n], we are
now able to derive the density-profile for a Bose-Einstein condensate in an external
trapping-potential Vext. In the two-body regime the internal energy takes the form
Eeff ≈ geffn

2/2 + O(n3) and gives rise to a normalized s-wave scattering parameter.
In turn, the density-profile follows the external potential n ≈ Vext/(geff + gs), and
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

Figure 2.6: Thomas-Fermi Density profile for a 87Rb atoms in a harmonic trap with
trap frequency ωtrap = 20 Hz under Rydberg-dressing and background
scattering-length as = 5.7 nm. For increasing atom-numbers we find
an accumulation in the center of the harmonic trap.

results in the famous inverted parabola density-profile for a harmonic trapping
potential Vtrap = mω2

trapx
2/2 [4]. In the deep collective regime, both the internal

interaction-energy and the energy due to the trapping potential increase linearly
with the particle-density. Hence, the energy for adding an additional particle
does no longer depend on the local density, but only on its position due to the
spatial dependence of the trapping potential. For a harmonic trap, this yields an
accumulation of particles in its center. Even so, the remaining interaction between

Figure 2.7: Sketch for the different interaction-regimes in the Thomas-Fermi
density-profile. For low densities, two-body interaction between the
Rydberg dressed atoms dominates. Then, for increasing densities,
the system enters the collective regime. Eventually, the interaction-
potential for the Rydberg dressed atoms saturates, and two-body in-
teraction between ground state atoms dominates again.
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2.6 Conclusion

Figure 2.8: Density profile for a Bose-Einstein condensate of 87Rb atoms in a har-
monic trap with trap frequency ωtrap = 40 Hz and background scatter-
ing length as = 5.7 nm for ϕ/π = 0.1−0.4. For small ϕ, the background
scattering dominates, and leads to an inverted-parabola density-profile.
In contrast, for large ϕ ≈ π/2 the density-profile is more Gaussian-like
due the collective Rydberg-interaction.

the ground-state atoms prevents the system from collapsing. Instead of an unstable
region, we again find a parabolic wave-function with its length-scale governed by
the background s-wave scattering length.

2.6 Conclusion

In chapter 2 we have shown that an atomic ensemble dressed with a Rydberg
state exhibits long-range interactions that can be tuned to orders of magnitude
larger than the s-wave scattering length between ground state atoms. For strong
long-range interactions, one usually expects higher orders of the interaction to
contribute significantly to the inter-particle interaction-potential. Yet, we have
found that the onset three-body interactions associated with the breakdown of
the first Born approximation is preempted by a transition into a collective regime,
where all orders of the interaction need to be taken into account. The latter is
governed by the strong van der Waals interaction between Rydberg atoms and
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

gives rise to a highly correlated state. However, the excitation blockade due to
this strong interaction prevents simultaneous excitation of spatially close atoms,
and hence reduces the losses such a long-range interaction would suggest.

We showed that such a system can be treated within a variational/mean-field ap-
proach, and explicitly calculated the effective interaction-potential between the
atoms in a generalized Gross-Pitaevskii energy functional. In turn, we derived the
effective interaction energy from the microscopic Hamiltonian describing the en-
semble of coherently driven atoms with interacting excited states. For nfξ3

0 ≪ 1,
the resulting effective interaction-potential reproduced the two-body interactions
in agreement with the first Born-Oppenheimer results, whereas it saturated for
large atom densities. This nonlinear behavior is based on the fact that the block-
ade mechanism limits the number of Rydberg-excitations the ensemble is able to
support: Although the number of Rydberg-excitations increases with increasing
atom density, we have found that the ratio between excitations and the number
of atoms goes to zero for nfξ3

0 ≫ 1 and renders the atoms basically free. Of
course, this leads to severe consequences for the shape of the condensate wave-
function: Rather than the inverted Thomas-Fermi parabola we have found that
the cloud takes a more Gaussian-like form. We have discussed this change for
different parameter sets, and have provided experimental parameters for which we
expect these effects to occur in current experimental setups.

2.A Suppression of the intermediate state via EIT

In this section we comment on the elimination of the intermediate p-state via
electromagnetically induced transparency (EIT). It is instructive to consider a
single atom first, before moving on to the full two-body Hamiltonian. In analogy
to the far off-resonant coupling we consider a system in which the ground state
|g⟩ is coupled to the Rydberg-state |r⟩ via an intermediate state |p⟩. The Rabi
frequencies driving the transition from the ground- to the p-state and the p- to the
Rydberg-state are denoted Ωr and Ωp, respectively. Moreover, the Rydberg state
is in two-photon resonance, ∆ = 0, so that both ground- and Rydberg state have
zero energy in the rotating frame, and the intermediate state is blue-detuned with
a detuning ∆p > 0. The eigenstates and eigenvalues for a single atom interacting
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2.A Suppression of the intermediate state via EIT

Figure 2.9: (a) Eigenvalues of the two-body EIT Hamiltonian as a function of the
relative distance x between the atoms. The plot is for atoms in the
87Rb |43s⟩ state, with a red Rabi-frequency Ωr = 0.7 MHz, a blue
Rabi-frequancy Ωr = 22 MHz and a blue detuning ∆p = 22 MHz from
the intermediate state |p⟩. Moreover, the van der Waals interaction co-
efficient is C6 = 189 Mhzµm6. Note that the energy scale of the induced
interaction is not visible in (a). (b) Comparison between the numerical
diagonalization and the Born Oppenheimer interaction-potential.

with this particular light-field can be calculated analytically, and take the form

|±⟩ = Ωr√
Ω2
r + Ω2

b + 4E2
±

|g⟩ + ±2E±√
Ω2
r + Ω2

b + 4E2
±

|p⟩ + Ωb√
Ω2
r + Ω2

b + 4E2
±

|r⟩,

|d⟩ = Ωb√
Ω2
r + Ω2

b

|g⟩ − Ωr√
Ω2
r + Ω2

b

|r⟩,

with eigenenergies E± = 1
2

(
±∆ +

√
∆2 + Ω2

r + Ω2
b

)
and Ed = 0, respectively.

The state |d⟩ corresponding to the eigenvalue Ed = 0 is a dark state that no longer
couples to the light field. The important point is that it does not contain any
contribution of the intermediate p-state. Therefore, the decay is solely governed
by the probability of the atom to be in the Rydberg state, i.e.

f = Ω2
r

Ω2
r + Ω2

b

. (2.37)

To limit this population, we choose a weak red coupling laser Ωr ≪ Ωb, so that
the effective decay rate reduces to

Γ = Ω2
r

Ω2
b

Γr, (2.38)
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

where we used Ω2
r + Ω2

b ≈ Ω2
b . In order to find the exact interaction potential

between the dark states, one has to solve the full two-body Hamiltonian. A matrix
representation of this particular Hamiltonian in the basis

{|g, g⟩, |p, g⟩, |g, p⟩, |r, g⟩, |g, r⟩, |p, p⟩, |r, p⟩, |p, r⟩, |r, r⟩}

reads

H =



0 Ωr/2 Ωr/2 0 0 0 0 0 0
Ωr/2 ∆p 0 Ωb/2 0 Ωr/2 0 0 0
Ωr/2 0 ∆p 0 Ωb/2 Ωr/2 0 0 0

0 Ωb/2 0 0 0 0 Ωr/2 0 0
0 0 Ωb/2 0 0 0 0 Ωr/2 0
0 Ωr/2 Ωr/2 0 0 2∆p Ωb/2 Ωb/2 0
0 0 0 Ωr/2 0 Ωb/2 ∆p 0 Ωb/2
0 0 0 0 Ωr/2 Ωb/2 0 ∆p Ωb/2
0 0 0 0 0 0 Ωb/2 Ωb/2 V


.

Numeric diagonalization of this matrix then yields the energy diagram as is shown
in Fig. 2.9. Fulfilling our expectations, the induced van der Waals interaction be-
tween the Rydberg-dressed atoms saturates at small distances, with the saturation
value given by

Vsat = Ω4
r

4Ω2
b∆p

. (2.39)

This is exactly the light shift Ω2
r/2∆ experienced by a single atom, weighted with

the probability f = Ω2
r/Ω2

b to be in the Rydberg-state. The length-scale defining
this transition takes the form

ξEIT =
(

2C6∆
Ω2
b

)1/6

(2.40)

which reduces to ξEIT = (2C6/∆p)1/6 for ∆p = Ωb. With the use of realistic
experimental values like in 2.C, that is C6 = 189 Mhzµm6, Ωb = ∆p = 22 MHz
and Ωr = 0.7 MHz, we can calculate the saturation of the induced energy potential
to be Vsat ≈ 11.6 Hz compared to 0.4 Hz in the far off-resonant case, while the two-
body blockade radius is ξ0 ≈ 1.61 µm. The resulting s-wave scattering length is
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2.B Generalized Gross-Pitaevskii Equation

then as ≈ 200 nm, and thus two orders of magnitude larger than in the far off-
resonant case, in which as ≈ 5 nm.

2.B Generalized Gross-Pitaevskii Equation

The Gross-Pitaevskii equation generally used in describing a weakly-interacting
Bose-Einstein condensate can be derived from scratch via the coherent state path
integral formalism. There, the action of a general many-body system is given by

S[ϕ∗, ϕ] =

ℏβ∫
0

dτ

[∑
α

ϕ∗
α(τ) (ℏ∂τ − µ)ϕα(τ) +H ({ϕ∗

α(τ)}, {ϕα(τ)})

]
, (2.41)

where we used imaginary time τ = −it. The coherent state amplitudes are defined
via

aα|ϕ⟩ = ϕα|ϕ⟩, |ϕ⟩ = exp

(∑
α

ϕαa
†
α

)
|0⟩. (2.42)

Here, we have the following system in mind: Every atom features a kinetic energy
Hkin, and individually interacts with an external trapping potential Vext. In ad-
dition, the atoms interact with each other via an arbitrary interaction-potential
Eint[ϕ∗, ϕ], which we explicitly assume to contain arbitrary orders of ϕ∗ and ϕ,
respectively. However, since the action has to be of real value, the coherent state
amplitudes only occur in the combination ϕ∗ϕ. Neglecting quantum fluctuations,
minimization of the action requires that the variation of the action vanishes,

0 = δS[ϕ∗, ϕ]
δϕ∗ . (2.43)

Under the above assumptions, this reduces to

0 =

[∑
α

ϕ∗
α(τ) (ℏ∂τ −H0)ϕα(τ) + Vint ({ϕ∗

α(τ)ϕα(τ)})

]
ϕα(τ), (2.44)

where H0 = Hkin + Vext − µ and Vint (n) = ∂nEint (n) is the derivative of the
inter-atom interaction-energy with respect to the density.
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

2.C Optimization of Experimental Parameters

In this section, we provide a scheme for maximizing the induced s-wave scattering-
length for the Rydberg-dressed interaction. First, the effective decay-rate γeff is
governed by the decay-rates from the Rydberg-state γr and the intermediate p-state
γp, via

γeff =
Ω2
p

4∆2
p

(
γp + Ω2

r

4∆2 γr

)
. (2.45)

The ratios (Ω/∆)2 and (Ωp/∆p)2 are the population of the Rydberg- and the
p-state in the weak-dressing limit. This allows us to express the population of the
p-state Ωp/2∆p in the expression for the two-photon Rabi-frequency

Ω = Ωr
2

Ωp
|∆p|

= Ωr
2 2
√

γeff∆2

γp∆2 + Ω2
rγr/4

(2.46)

in terms of the total detuning ∆ and the Rabi-frequency Ωr driving the transi-
tion |p⟩ → |r⟩ together with the effective decay-rate γeff . Then, the two-body
interaction-parameter reduces to

geff = π2

12

√
C6

2

√
|∆|Ω2

rγ
2

(γp∆2 + Ω2
rγr/4)2 . (2.47)

Since the effective decay-rate γeff is limited by experimental requirements and,
likewise, the Rabi-frequency Ωr by the available laser power, the only remaining
parameter left is the total detuning ∆. Optimization with respect to ∆ yields the
optimal detuning ∆o = −|Ωr|

√
γr/28γp, and, as a result, gives rise to the optimal

s-wave scattering-length

aeff = m

4πℏ2 geff [∆o] = m

4πℏ2
49π2

48

√
C6

2
γ2

γ2
r

(
Ω2
rγr

28γp

)1/4

. (2.48)

More specifically, in a setup of Rubidium atoms weakly-dressed with a Rydberg-
state |r⟩ = |35s⟩, Rabi-frequencies of Ωr = 22 MHz have been reached. Fur-
ther, an effective decay-rate γeff = 6 Hz is sufficient for a fast experiment. To-
gether with the decay-rates γr = 4 kHz and γp = 6 MHz and the van der Waals
interaction-parameter C6 = 189 Mhzµm6, the s-wave scattering-length reduces to
aeff = 49.5 nm. Note that this is an order of magnitude larger than the s-wave
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|Ωc| |Ωp/∆p| =
√
γ/2γp Ω Ω/∆c =

√
7γ/2γr

107 kHz 7.810−4 7.8 kHz 0.072

Table 2.1: Optimal parameters for s-wave scattering.

scattering-length of an undressed Rubidium atom, namely as = 5.7 nm. In addi-
tion, other system parameters are given in Table 2.1.

2.D Connection to Universal Scaling Results

At the quantum critical point ∆ = Ω = 0 the Rydberg-fraction f follows an
algebraic scaling-law that can be derived in a mean-field approach [43]. Here we
show that our eq. (2.28) which determines the Rydberg-fraction in the variational
ansatz yields the same critical exponents. To that means we consider the deep
collective regime in which the correlation-function takes the form ξ3 = 1/vBnf .
Hence, eq. (2.28) takes the form

∂f ⟨var|H|var⟩ = 2|Eac|

[
cosϕ−

1
2 − f√
f(1 − f)

sinϕ+ 4vBY ξ
6
0n

2f2

]
= 0. (2.49)

Here it is important to note that we have to evaluate the derivative with respect to
f first, and then insert the specific expression for the correlation-function, which
thus acts as a Lagrange parameter. In analogy to ref. [43], we now consider the
scaling of the Rydberg-fraction in the classical regime in which Ω = 0 as well as
in the quantum regime with ∆ = 0. First, for Ω = 0 the second term of eq. (2.49)
vanishes, and we are thus left with

f2 = 9
16π3

1
π3n2ξ6

0
. (2.50)

Since the first term in eq. (2.50) is always positive, this equation can only be
solved for positive detuning ∆. Conversely, for negative detuning, the energy
expectation-value (2.23) minimizes for vanishing Rydberg-fraction f = 0. To put
it another way, the Rydberg-fraction in the classical model is zero for negative
detunings ∆, and takes a finite value as soon as the detuning turns positive. Di-
rectly at the quantum critical point ∆ = Ω = 0, the Rydberg-fraction scales as
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2 Collective Many-Body Interaction in Rydberg-Dressed Atoms

f ≈ (2|E−|/C6n
2)1/2, which gives rise to the critical exponent ν = 1/2, predicted

in ref. [43]. Second, in the quantum regime ∆ = 0, the first term in eq. (2.49)
vanishes. The resulting minimization condition then takes the form

−
1
2 − f√
f(1 − f)

sinϕ+ 4vBY ξ
6
0n

2f2 = 0. (2.51)

Although a solution always exists due to the negativity of the first term eq. (2.51),
the solution cannot be cast in a closed-form expression. Still a leading-order series
expansion in 1/f yields

− 1
2

√
f

sinϕ+ 4vBY ξ
6
0n

2f2 = 0, (2.52)

and gives rise to the scaling law f ≈ (2|E−|/C6n
2)2/5. Explicitly, the critical

exponent turns out to be µ = 2/5 in agreement with ref. [43].

32



Chapter 3

Deterministic Single-Photon
Subtraction from Arbitrary Light

Fields

3.1 Motivation

Photons are a prime candidate for carrying quantum-information due to their weak
interaction with atomic systems. Yet, these weak interactions render them difficult
to control on a quantum level and require for novel schemes to efficiently couple
light and matter. On the other hand, since artificial atoms often show strong
optical non-linearities even for weak light-fields, as well as an enhanced photon-
coupling [55–57], they offer new possibilities to implement quantum-networks me-
diated by photons.
The main building blocks for this type of quantum information processing are
photon-sources, conditional quantum-gates, and photon-detectors. In a seminal
work, Saffmann and Walker [58] proposed to exploit the blockade-mechanism in
order for the deterministic generation of single photons. Their design is based on
the fact that an ensemble of atoms excited to the Rydberg-state can carry but
a single excitation. Implementing such a collective excitation into a four-wave
mixing scheme allows for the creation of a super-radiant Dicke-state [59]. In turn,
the phase imprinted via four-wave mixing gives rise to a highly directional emission,
which is paramount for photonic communication.
The second building block, that is an efficient photonic phase-gate, was demon-
strated by Gorshkov et al. [60] in 2011. There, a photon in an optically thick
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3 Deterministic Single-Photon Subtraction from Arbitrary Light Fields

atomic ensemble is converted into a dark-state polariton carrying a single Ryd-
berg excitation. Due to the dipole-dipole interaction between Rydberg atoms a
second photon in the atomic ensemble cannot form a polariton state, and, as a
result, travels at the speed of light through the blockade-region. The difference in
the propagation-velocity between the polariton and the bare photon then yields a
phase shift in the two-photon wave-function that can be used to implement a con-
ditional phase-gate. This concept was later generalized by Shahmoon et al. [61]
to photons coupled to different Rydberg-states, where an external field induces
resonant dipole-dipole interactions.
In this chapter, we present a design for a high-fidelity measurement of individual
photons, and represents the last element for efficient quantum-information. The
absorption-probability of a single two-state system is quite low and can only be
enhanced by precise control over the photon to be absorbed: A π-pulse and its
analogue on the single photon level [62] can coherently excite a single atom. Like-
wise, a stimulated Raman adiabatic passage (STIRAP) as used in ref. [63] allows
for a coherent population transfer into an excited state, but needs control over the
arrival-time of the probe-field.
Here, we show that a controlled dephasing of individual excited states in an atomic
ensemble in combination with excitation-blockade provided by strong interactions
yields an enhanced absorption probability that reaches unity in the limit of an
infinite number of atoms. Henceforth, we concentrate on the realization based on
Rydberg-blockade extensively studied in the past [38–41,64,65]. Yet, an analogous
blockade phenomenon occurs for strongly confined quantum-dots, where the inter-
action between excitons blocks a subsequent excitation [66], and might be used to
realise our design within a solid-state system. In addition, we show applications
of this setup for a single-photon transistor, a high fidelity n-photon detector, and
a scheme for the deterministic creation of non-classical states of light via photon-
subtraction.

3.2 Model for a Deterministic Single-Photon Absorber

In order to absorb a single photon, we need a system that can carry exactly one
excitation. Here, we consider an ensemble of atoms, in which each atom can be ex-
cited into a Rydberg-state via a two-photon process (see Fig. 3.2): a strong control
laser with Rabi-frequency Ωc and detuning ∆c ≫ Ωc couples the Rydberg-state
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Figure 3.1: Sketch of the single-photon absorber setup: The red beam with Rabi-
frequency Ωp is the weak probe field pulse, whereas the blue control
beam with Rabi-frequency Ωb accounts for both driving of the system as
well as the controlled dephasing. The transverse mode volume A of the
probe beam is set to be smaller than the extent of atomic ensemble, the
latter indicated by the black dots. Moreover, we consider an ensemble
that is smaller than a single blockade-radius ξ0 in order to ensure that
the system can support but a single excitation.

|r⟩ to an intermediate state |p⟩, while the transition from ground-state |g⟩ to the
p-state is driven by a weak probe-field with Rabi-frequency Ωp. The detuning of the
control and probe-laser is chosen such that the transition from ground- to Rydberg-
state is on two-photon resonance, that is ∆p ≈ −∆c. For large detuning from the
intermediate p-state, such a three-state system can be reduced to an effective two-
state system, giving rise to the two-photon Rabi-frequency Ω = ΩcΩp/4∆c [51]
(see Fig. 3.2). It is important to keep in mind that, despite the description via the
single Rabi-frequency Ω, this is actually a two-photon process, as it is a photon
from the probe-field we intent to absorb. Therefore, we additionally require the
probe beam to be strongly focussed with a transverse mode area A smaller than
the size of the transverse trapping of the atomic ensemble (see Fig. 3.1). In the
frozen Rydberg-gas approximation [52], the dynamics of an ensemble of strongly
interacting Rydberg atoms reduces to the coherent dynamic of a single super-atom
consisting of a collective ground-state |G⟩ and a collective excited state |W ⟩, driven
by the collective Rabi-frequency ΩN =

√
NΩ (see appendix 6.A.4). Accordingly,

the Hamiltonian for the atomic ensemble takes the form of an effective two-state
system,

Hcoh = ℏΩN2

[
|W ⟩⟨G| + |G⟩⟨W |

]
, (3.1)
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Figure 3.2: Laser configuration for the individual atoms: The ground-state is res-
onantly coupled to the Rydberg-state via a two-photon process. This
is achieved by a weak probe beam with Rabi-frequency Ωp coupling
the ground-state |g⟩ to the intermediate state |p⟩, and a second strong
control beam with Rabi-frequency Ωc coupling the intermediate state
to the Rydberg-state |r⟩. In turn, the intermediate state is far detuned,
i.e. ∆c ≫ Ωc, and allows the reduction to an effective two-state system
with two-photon Rabi-frequency Ω = ΩcΩp/4∆c.

with collective ground and excited state

|G⟩ = ⊗i|gi⟩, |W ⟩ = 1√
N

∑
i

|i⟩, (3.2)

where |i⟩ = |ei⟩ ⊗j,i |gj⟩ describes a state with an excitation in the i-th atom.

3.2.1 Breaking an Artificial Atom via Noise

The basis of our scheme is the following: The dynamics of a general ensemble
of N two-state atoms is described within a 2N -dimensional Hilbert-space. Even
so, the blockade-mechanism only allows for a single excitation in the ensemble,
and hence reduces the Hilbert-space dimension to N + 1. On the other hand, the
light-field drives a transition from the collective ground-state |G⟩ to the coherent
superposition of excited states |W ⟩. This induces a natural decomposition of the
Hilbert-space into a bright and dark subspace B and D, respectively, where only the
two-dimensional bright subspace B couples to the driving light-field. In contrast to
the first reduction of the Hilbert-space dimensionality, which is based on an energy
argument, the second one is but due to the nature of the light-field coupling, and
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3.2 Model for a Deterministic Single-Photon Absorber

Figure 3.3: Coupling to the dark states via controlled dephasing: The system
gives rise to a super-atom state |W ⟩ with a single Rydberg-excitation
shared among the atoms and coupled with collective Rabi-frequency
ΩN =

√
NΩ. In addition, the system exhibits N−1 dark states |Dj⟩,

which are coupled to the super-atom state via controlled inhomoge-
neous dephasing with a characteristic rate Γ.

thus can easily be broken by a secondary coupling between the bright and dark
subspace.

3.2.2 Decoherence and Master-Equation

The natural choice for such a coupling is to introduce an appropriate noise term.
Henceforth, we assume uncorrelated noise, defined via the relation ⟨∆i(t)∆j(t′)⟩ =
Γδ(t− t′). This allows for a convenient description in terms of a quantum-optical
master-equation, as is for instance described in ref. [67]. There are several ways
available to design noise that couples the bright and dark subspace. Here we
concentrate on fluctuations of the detuning ∆(t), giving rise to a dephasing of the
W-state according to U |W ⟩ =

∑
i
e−i∆it|i⟩; Then the Hamiltonian coupling the

system to the bath reduces to

Hcoupling =
∑
i

|i⟩⟨i|∆i(t). (3.3)

For a composite system like an artificial atom, we further need to distinguish be-
tween homogeneous and inhomogeneous dephasing: For homogeneous dephasing,
every constituent of the system experiences the same fluctuation at any given time
t, so that ∆i(t) = ∆(t). It follows that there is no particle-dependence in the
Hamiltonian coupling the system to the bath, which in turn becomes proportional
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to the projector onto the W-state,

Hhom = ∆(t)|W ⟩⟨W |. (3.4)

Consequently, the bright and dark subspaces stay invariant due to the vanishing
commutator between the coherent Hamiltonian and the bath-coupling. This may
also be seen in the resulting master-equation

∂tρ = − i

ℏ
[Hcoh, ρ] + Γ

2

(
cW ρc

†
W − 1

2 c
†
W cW ρ− 1

2ρc
†
W cW

)
, (3.5)

where the jump-operator takes the form cW = |W ⟩⟨W | and projects onto the W -
state. In contrast, inhomogeneous dephasing yields an individual energy shift ∆i(t)
for every atom in the ensemble. More specifically, the jump-operator ci = |i⟩⟨i|
yields the relation ci|W ⟩ < B, and induces transitions between the bright and
dark subspace. A straightforward calculation then yields the master-equation for
inhomogeneous dephasing,

∂tρ = − i

ℏ
[Hcoh, ρ] + Γ

2
∑
i

(
ciρc

†
i − 1

2c
†
i ciρ− 1

2ρc
†
i ci

)
, (3.6)

which no longer allows for a description in the bright subspace alone.

3.2.3 Symmetries of the Master-Equation

The above master-equation (3.6) for an N -atom ensemble consists of (N+1)2 first-
order differential equations describing the time-evolution of the individual density-
matrix components. Despite breaking the bright subspace invariance, those equa-
tions are still highly symmetrical due to the statistical nature of the fluctuations
∆i(t). Indeed, the equations for two different atoms i and j are still interchange-
able from a mathematical point of view. This allows for a reduction of the (N+1)2

differential equations to merely two, and is most conveniently done by projecting
eq. (3.6) onto the ground and W-state,

⟨G|ρ̇|G⟩ = −iΩN (⟨W |ρ|G⟩ − ⟨G|ρ|W ⟩) , (3.7)

⟨W |ρ̇|G⟩ = −iΩN (⟨G|ρ|G⟩ − ⟨W |ρ|W ⟩) − Γ
2 ⟨W |ρ|G⟩, (3.8)

⟨W |ρ̇|W ⟩ = −iΩN (⟨G|ρ|W ⟩ − ⟨W |ρ|G⟩) − Γ
(

⟨W |ρ|W ⟩ + ⟨G|ρ|G⟩ − 1
N

)
. (3.9)
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Eq. (3.9) and the time derivative of eq. (3.7) may be expressed in terms of the
expectation values G = ⟨G|ρ|G⟩ and W = ⟨W |ρ|W ⟩ alone, and lead us to the
reduced set of equations

G̈ = −2Ω2
NG+ 2Ω2

NW − Γ
2 Ġ,

Ẇ + Ġ = −Γ
(
W + G− 1

N

)
. (3.10)

The transition from first- to second-order differential equation requires an addi-
tional initial condition for the time derivative of the ground-state probability Ġ.
Although this seems to defy the deterministic time-evolution of the density-matrix,
the initial condition is already covered by eq. (3.8), and reduces to Ġ(t = 0) = 0
in the case of an uncorrelated artificial atom in the ground-state. The probability
to absorb a photon is then proportional to the probability E = 1 − G to find an
excitation in the system. Expressed in terms of E the reduced master-equation
(3.10) takes its final form

Ë = −2Ω2
N (E − 1) − 2Ω2

NW − Γ
2 Ė,

Ẇ − Ė = −Γ
(
W − E

N

)
. (3.11)

Before we continue with the numerical solution of the above equation, it is instruc-
tive to consider some analytic limits. First, for a single atom the master-equation
(3.11) reduces to

Ë = −2Ω2(E − 1) − 2Ω2W − Γ
2 Ė,

Ẇ − Ė = −Γ (W − E) . (3.12)

Since W = E for N = 1, the second equation is trivially fulfilled, and the system
dynamics is governed by the first equation,

Ë = −4Ω2E + 2Ω2 − Γ
2 Ė,

(3.13)

which is formally equivalent to a damped harmonic oscillator under the constant
force 2Ω2. The excitation probability corresponds to a displacement of the oscilla-
tor, whereas the Rabi-frequency is the spring constant. As one might expect from
this analogy, the equilibrium solution indeed is E = G = 1/2.
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In the steady-state with vanishing time-derivatives, the master-equation (3.11)
takes the form of an algebraic equation,

0 = −2Ω2
N (E − 1) − 2Ω2

NW,

0 = −Γ
(
W − E

N

)
. (3.14)

Via a straightforward calculation we find the steady-state solutions E = NW =
N/(N+1). The probability E for the system to carry an excitation approaches
unity in the limit of a large number of atoms N ≫ 1 inside the blockade-volume,
and, in that sense, beats the rule that population inversion cannot be achieved in
a two-state system. Since this is equivalent to the probability to absorb a photon,
such a system behaves like a perfect absorber. Yet, the exact number of atoms
N ≫ 1 is not important, and only renormalizes the absorption timescale via the
collective Rabi-frequency ΩN =

√
NΩ.

An intuitive picture of the population inversion can be drawn via Fermi’s golden
rule: First, we assume that the transition from ground-state to collective W-state
occurs at a rate kG→W , which is equal to the reverse process kG→W = kW→G.
Likewise, the dephasing Γ induces transition-rates between kW→Di and kDj→Di

all the excited states, that is the W -state and all the dark states. The actual
population-transfer per time-step is given by the rate times population in the
respective state. In equilibrium, all rates cancel each other, and we find an equal
population G = W = E/N = 1/(N+1) in all states.

3.2.4 Numerical Solution of the Master-Equation

The full eqs. (3.11) can be solved numerically within a Runge-Kutta routine, with
results shown in Fig. 3.4. As one might expect from the dynamics of a super-atom
without dephasing (see appendix 6.A.4), the characteristic timescale of the oscil-
lations is governed by the collective Rabi-frequency ΩN . On the other hand, the
probability E for the system to be in the excited state grows with a characteristic
rate Γeff . For small dephasing-rates Γ ≪ ΩN , E exhibits damped oscillations. Con-
versely, in the limit of large dephasing Γ ≫ ΩN , the system enters an over-damped
regime and is in close analogy to the behavior of a damped harmonic oscillator.
Although the dephasing-rate Γ governs the timescale on which the system enters
its steady-state, the collective Rabi-frequency sets a lower boundary for this to
happen: Since the dephasing only accounts for a transfer of population from the
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Figure 3.4: Numerical time-evolution of the master-equation (3.11) for the experi-
mental relevant case of E(0) = Ė(0) = W (0) = 0. (a) The probability
E for the atomic system to be in the excited state saturates exponen-
tially up to the final value E(t → ∞) = N/(N+1) with a characteristic
rate Γeff . The plot shows the numerical integration for N = 9 atoms
in the overdamped regime for Γ = 7ΩN (red line), as well as in the
underdamped regime with Γ = ΩN (green line), and in the crossover
regime ΩN = 3Γ (blue line). (b) In comparison, the bright W-state
shows the same initial time-evolution. Yet, the dephasing Γ accounts
for a probability transfer to the dark states, and leads to a damping of
W to the steady-state value E(t → ∞) = 1/(N+1). The color-code
matches the one in (a).
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W-state into the dark subspace, the ground-state is unaffected. Yet, population
transfer from ground to W-state is governed by the collective Rabi-frequency, which
thus acts as a bottleneck for the system dynamics. A more in-depth discussion of
the effective saturation-rate will follow in the next subsection.

In the scaling-limit tΩN → ∞, the probability to be in the excited state E saturates
at N/(N+1), independently of both the dephasing-rate and the collective Rabi-
frequency. Again, this is in perfect agreement with the previous analytic results.

3.2.5 Approximate Analytical Solution of the Master-Equation

A major drawback of the equations (3.11) is that they do not allow for a closed-
form analytic solution. However, we can make an intuitive approximation by

Figure 3.5: Comparison between the numerical solution of the exact equations for
the probability E (3.11) (solid red lines) and the analytical solution of
the approximate equations (3.15) (solid blue lines) and their respec-
tive difference (black dashed lines) for different system sizes N and
dephasing-rates Γ.
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Figure 3.6: Comparison between the numerical solution of the exact equations for
the probability W (3.11) (solid red lines) and the analytical solution
of the approximate equations (3.15) (solid blue lines) and their respec-
tive difference (black dashed lines) for different system sizes N and
dephasing-rates Γ.

neglecting the factor E/N < 1/N in the large-N limit, which simplifies the master-
equation (3.11) to

Ë = −2Ω2
N (E − 1) − 2Ω2

NW − Γ
2 Ė,

Ẇ − Ė = −ΓW. (3.15)

These equations can then be solved by an exponential ansatz. For the experimental
relevant initial conditions E(0) = Ė(0) = W (0) = 0 describing an uncorrelated
gas in the electronic ground-state the solution to the approximate equations read

E(t) = 1 − e− Γ
2 t

[
cosh γt+ Γ

4γ sinh γt
]2

,

W (t) = Ω2
N

γ2 e
− Γ

2 t sinh2 γt, (3.16)
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with γ =
√

(Γ/4)2 − Ω2
N ∈ C. A comparison between the analytic solution of

the approximate equations and numerical solution of the exact equations is shown
in Fig. 3.2.5 and 3.2.5 for E and W , respectively. As one might expect from
the approximation scheme we find deviations to be on the order of 1/N . With
the number of atoms inside a blockade-radius easily exceeding 102 even in a hot
gas Rydberg experiment [68], such an approximation is well justified. We can
therefore use the solution (3.16) in order to derive the effective saturation-rate Γeff

via a leading order expansion of the exponent, namely 2 cosh t ≈ −2 sinh t ≈ e−ℜt.
The resulting saturation-rate takes the form

Γ̃eff = Γ/2 − 2ℜγ. (3.17)

For small dephasing-rates Γ ≪ ΩN the square root is purely imaginary, and the
effective saturation-rate is given by Γ̃eff = Γ/2. Increasing the dephasing-rate Γ,
the aforementioned formula predicts a transition to the over-damped regime at a
critical dephasing-rate Γ̃c = 4ΩN . However, this naive derivation does not yield the
correct effective saturation-rate in the transition region: According to eq. (3.17),
the system exhibits an effective saturation-rate Γ̃eff > ΩN . As mentioned before,
the characteristic timescale of the system excitation is governed by the collective
Rabi-frequency ΩN , not the dephasing-rate Γ. Therefore, an effective saturation
rate larger than the collective Rabi-frequency is just not possible. This intuitive
behavior is also confirmed by a numeric evaluation of the system dynamics via

1/Γeff = G−1(1/e), (3.18)

and shows a transition into the over-damped regime already at Γc ≈ 2ΩN (see
Fig. 3.7). The disparity between the naive analytic calculation and the numeric
evaluation is due to the neglected interference effects between the cosh- and sinh-
terms in eq. (3.16). These lead to a slower saturation, with an effective saturation-
rate that is always smaller than the collective Rabi-frequency. On the other hand,
we find that the saturation-rate follows Γeff ≈ 4Ω2

N/Γ for strong damping Γ ≫ ΩN ,
predicted by both eq. (3.17) and (3.18), although from opposing limits. Note
that this slow-down of the system dynamics is in analogy to the quantum Zeno
effect [69], where a constant measurement effectively freezes the system.
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Figure 3.7: (a) Numerical time-evolution of the approximate master-equation
(3.15) for different dephasing-rates Γ in the cross-over regime Γ ≈ ΩN
(solid blue lines). The system shows a faster transition into the over-
damped regime as compared to the naive saturation-rate Γ̃eff defined
in eq. (3.17) (dashed brown line). The dashed blue line is a guide to
the eye and indicates 1 − 1/e. (b) Plot of the effective saturation rate
eq. (3.17) (solid yellow line) and the 1/E definition from eq. (3.18)
(solid green line). The plot clearly shows that eq. (3.17) overestimates
the saturation-rate, and suggests dynamics faster than the collective
Rabi-frequency ΩN . The dashed and dash-dotted black lines are the
scaling-limits for Γ ≪ ΩN and Γ ≫ ΩN , respectively, and agree well
with the numerical results.
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3.3 Absorption Properties of the Artificial Atom

3.3.1 Optical Density

For the setup to work, we need to ensure that the time it takes a photon to pass
through the system is large as compared to the time it takes to absorb it. The first
timescale may be captured by the coherence-time of a photon τ , while the second
one is given by the effective saturation-rate 1/Γeff . In turn, the above condition
reduces to Γeffτ > 1. The coherence-time τ of a single photon with frequency ωp

and transverse model volume A can be expressed in terms of the single-photon
Rabi-frequency [62]

Ωp =

√
2πωpd2

p

ε0cτA
, (3.19)

where dp is the dipole matrix-element for the transition |g⟩ → |p⟩, ε0 the vac-
uum permeattivity and c the speed of light. By use of the two-photon Rabi-
frequency Ω = ΩpΩc/4∆c and the effective saturation-rate in the over-damped
regime Γeff = 4Ω2

N/Γ, we find

Γeffτ = κ = 2πN d2

ℏε0cA

ωp
2Γ

Ω2
c

4∆2
c

= Ω2
c

8∆2
c

γp
Γ κp, (3.20)

where κ is the total optical density and κp = 6πλ2N/A is the resonant optical
thickness for the transition |g⟩ → |p⟩. Here it is important to note that for the
setup to work, the spontaneous emission Ω2

cγp/8∆2
c from the intermediate p-state

needs to be smaller than the dephasing Γ of the W-state, which results in the
condition Ω2

cγp/8∆2
cΓ ≪ 1. Hence, the full absorption has to take place on a

timescale shorter than the spontaneous emission from the Rydberg-state.

The above conditions can easily be satisfied within a cold Rydberg setup: A 87Rb
Bose-Einstein condensate with N = 103 atoms in a small trap with trapping-
frequency 1 kHz has a Thomas-Fermi radius of rTF ≈ 1 µm. The resonant optical
thickness thus reduces to κp ≈ 350. In consequence, this provides a wide range to
adjust the spontaneous emission from the p-state via the detuning ∆c and control
Rabi-frequency Ωc. Indeed, assuming Ω2

cγp/8∆2
cΓ ≈ 0.1 yields an optical thickness

κ ≳ 10.
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3.3.2 Dynamics of a Saturating Absorber

Under the assumption that the saturation-rate Γeff is the dominating energy-scale
of the system we can neglect any photon re-emission and coherent dynamics, and
are left with the effective master-equation

∂tρ = Γeff

[
cρc† − 1

2
(
c†cρ+ ρc†c

)]
, (3.21)

describing the time-evolution of a composite system of absorber and light-field with
density-matrix ρ. Here, the jump-operator c = a|E⟩⟨G| accounts for the transition
from an excitation in the light-field to one in the two-state system, with a the
photon annihilation-operator defined via a|n⟩ =

√
n|n− 1⟩.

There are two important points to make about eq. (3.21): First, the jump-operator
satisfies c2 = 0 due to the factor |E⟩⟨G| and accounts for the fact that a single
photon saturates the absorber. Without this condition eq. (3.21) would lead to
an exponential decay of the light-field intensity as, for instance, is observed in
glass. Second, the description within this master-equation differs from a simple
application of the photon annihilation-operator onto a state of light: The latter
describes an instantaneous process like the reflection of a photon on a beamsplitter
[70], whereas the former describes absorption over a time large compared to the
coherence-time of a single photon [71].
Here we concentrate on the experimental relevant case in which the absorber is in
the ground-state |G⟩. Thus the initial density-matrix reduces to ρ0 = |G⟩⟨G| ⊗ χ,
where χ describes an arbitrary light-field. It turns out that the time-evolution
super-operator U(t) for the density-matrix ρ of the composite system can be cal-
culated analytically (see appendix 3.B) and the application of U(t) onto the initial
density-matrix yields

U(t)|G⟩⟨G| ⊗ χ = |E⟩⟨E| ⊗
∑
n,n′

χn,n′
2

√
nn′

n+ n′

(
1 − e− Γefft

2 (n+n′)
)

|n− 1⟩⟨n′ − 1|

+ |G⟩⟨G| ⊗
∑
n,n′

χn,n′e− Γefft
2 (n+n′)|n⟩⟨n′|. (3.22)

The first term is proportional to the excited state |E⟩⟨E|, and grows exponentially
on a timescale given by the effective saturation–rate times the number of photons
in the respective light-state. The difference to the simple application of a photon
annihilation-operator is the factor of 1/(n+n′). Even so, in the short time limit
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with e− Γefft
2 (n+n′) ≈ 1 − Γefft

2 (n + n′) we recover the same expression a simple
application of a would yield. On the other hand, the second term proportional to
the ground-state |G⟩⟨G| shows an exponential decay on a corresponding timescale.
In the scaling-limit Γefft ≫ 1, the resulting state takes the form

U(t → ∞)|G⟩⟨G| ⊗ χ = |E⟩⟨E| ⊗
∑
n,n′

χn,n′
2

√
nn′

n+ n′ |n− 1⟩⟨n′ − 1|

+ |G⟩⟨G| ⊗ χ0,0|0⟩⟨0|, (3.23)

where the probability for the two-state system to be in the excited state is thus
given by 1 −χ0,0. Note that this is the fundamental quantum limit for any photon
absorption: Without any photon present, none may be absorbed.

3.4 Experimental Implementation of Noise

There are several microscopic mechanisms that can lead to decoherence and de-
phasing in a super-atom. While fluctuations in phase and intensity of the driving
lasers are definitely one of the major sources of decoherence, those are generally
on a length-scale much larger than the inter-atom separation. Yet, for our pur-
pose it is paramount that spatial correlations are on the order of the inter particle
distance, so every atom experiences its individual noise.

3.4.1 Speckle Pattern of Light

To create such a strong and controlled inhomogeneous decoherence, the method
of choice would be to induce an ac-Stark shift on the Rydberg-state. This may
be achieved by a speckle-pattern of light, in close analogy to experiments done
in the context of Anderson-localization [22]. In contrast to the aforementioned
experiment, where a random but static potential was created, we envisage the use
of white light to remove temporal correlations. The combination of strong-field
white light pulses and a diffusive plate that accounts for the speckle-pattern via
diffraction creates the required decoherence. Then, the detuning for each atom
fulfills ⟨∆i(t)∆j)(t′)⟩ = Γδijδ(t − t′), and allows for the derivation of the master-
equation (3.6) by standard methods [67].
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Figure 3.8: A white light pulse shines on a diffusive plate, which induces a spatially
random phase shift. As a result, interference between the light creates
a random potential landscape on the focal plane.

3.4.2 Pulsed Dephasing

Another way to create dephasing of the W-state is to employ a random but static
detuning ∆i for each of the excited states |i⟩. The time-evolution for the i-th
excited state takes the form U∆(t)|i⟩ = e−i∆it|i⟩, leading to a decrease of the
overlap between the initial W-state and its time-evolved counterpart U∆(t)|W ⟩,
like

|⟨W |U(t)|W ⟩|2 = 1
N

+ 1
N2

∑
i,j

ei(∆i−∆j)t. (3.24)

In consequence, such a time-evolution coherently drives the system into the sub-
space of the dark states. In the limit of a large number of atoms N we can replace
the summation over random detunings by an integral over their probability dis-
tribution. It follows that the dephasing-rate is determined by the characteristic
properties of the probability-distribution. For instance, a gaussian distribution of
width ∆̄ yields a decay of the W-state like |⟨W |U(t)|W ⟩|2 = |e−∆̄t|2, and con-
sequently E = 1 − |e−∆̄t|2. However, this scheme will not work for a coherent
coupling of the W-state to the collective ground-state |G⟩: If the Rabi-frequency
is large compared to the characteristic detuning, the coherent time-evolution will
de-excite the system before any relevant dephasing can occur. Conversely, if the
characteristic detuning is large compared to the Rabi-frequency, the coupling to
some of the excited states |i⟩ is far off-resonant, and strongly suppresses their pop-
ulation. A way out is to use a pulsed Rabi-frequency to effectively decouple the
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timescales of dephasing 1/∆̄ and coherent pumping 1/Ω. A detailed analysis of
this scheme is described in the appendix 3.C.

3.5 Applications

3.5.1 Photon Counter

The combination of several absorbers into a chain of individually addressable cells
opens the way for high fidelity n-photon detection. With every cell absorbing only
a single photon, a n-photon light state passes through the chain up to the n-th
cell where the last photon is absorbed. Probing for a Rydberg-excitation in each
cell then provides a deterministic photon-number detection of the absorbed state.
By use of a robust detection-scheme for the Rydberg-excitation, the setup allows
for single-photon detection with near unit fidelity. In analogy to the many-body
Rydberg-gate [72,73], we can use electromagnetic induced transparency (EIT) [50]
in order to detect a Rydberg-excitation: With no Rydberg-excitation present, a de-
tection beam just passes through the system. Conversely, as soon as an atom is ex-
cited into the Rydberg-state, the EIT condition is violated and the detection beam
acquires a phase-shift ϕ = Ω2

c/4∆c due to the real part in the dielectric response
function [50]. This phase shift can then be detected by a subsequent homodyne
measurement, thus creating a near perfect single-photon detector. In addition, this
setup also allows for the realization of a classical single photon transistor: A single

Figure 3.9: Setup for a high fidelity k-photon detector: Illustration of the incoming
probe-field with three photons on a chain of several cells, each with a
deterministic single photon absorber. Each cell absorbs exactly one
photon, while the remaining beam propagates to the next cell. In
the first three cells exactly one photon is absorbed and an atom is
excited to the Rydberg-state, which in turn is subsequently detected:
The position of the last Rydberg-excitation provides the number of
photons within the beam.
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3.5 Applications

Figure 3.10: In gate operation language, the absorber can act as a single photon
transistor: The induced phase shift of ϕ = Ω2

c/4∆c can trigger a
macroscopic light beam via a Mach-Zender interferometer.

photon in the probe-beam can switch several photons in the homodyne detector
(see Fig. 3.10).

3.5.2 Creation of Non-Classical States of Light

Subtracting a single photon from a squeezed-vacuum state allows for the creation
of non-classical states of light [70]. This idea has previously been explored both
theoretically and experimentally in the context of creating photonic cat-states from
a squeezed vacuum [74–77]. However, the means applied to absorb single photons
in these experiments were highly probabilistic, resulting in a low efficiency of the
setup. Here, our scheme provides a major advantage, as it allows for the subtraction
of photons with near unit probability. As shown in section 3.3.2, the density-matrix
for a photon-subtracted state of light can be calculated analytically. Starting from
an initial squeezed-vacuum state [78] with density matrix

χsv =
∑
n,n′=0

C∗
r (n)|n⟩⟨n′|Cr(n′), (3.25)

Cr(n) = 1√
cosh r

√
m! cos π2m

2−m/2
(
m
2

)
!

tanhm/2 r, (3.26)

and squeezing factor r, the absorption of a single photon yields for Γefft ≫ 1 the
non-classical state

χfalsecat =
∑
n,n′=1

C∗
r (n)|n− 1⟩2

√
nn′

n+ n′ ⟨n′ − 1|Cr(n′). (3.27)
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3 Deterministic Single-Photon Subtraction from Arbitrary Light Fields

Figure 3.11: Non-classical states of light: Wigner-function of the outcoming photon
state after the deterministic absorption of a photon within the cell.
The incoming state is characterized by a coherent state (α = 0) with
subsequent amplitude squeezing (w = −0.3).

The negative values of the resulting Wigner-function are a clear sign of the non-
classical nature of this particular state of light. It is important to mention that the
creation of cat-states in ref. [79] is based on reflection of photons, and only takes the
short time limit of the time-evolution U into account. Indeed, the time-evolution
operator takes the approximate form

U = eΓeff (Ĵ+L̂)t ≈ 1 + Γeff(Ĵ + L̂)t+ O
(
(Γefft)2) . (3.28)

In contrast to eq. 3.27 the resulting light state reads aχsva
†. The difference is the

factor of 2/(n+n′), and stems from higher orders of Γefft in the time-evolution
operator. Even so, for small cats α ≪ 1, large photon-numbers play a minor role,
and the overlap between the cat-state in both methods of creation is close to unity
(see Fig. 3.13).

3.6 Conclusion

We have shown in chapter 3 that the absorption properties of an artificial atom
can be strongly enhanced by inducing a controlled dephasing for the excited states.
Such an additional coupling lead to an induced coupling between the previously
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Figure 3.12: Density plot showing the overlap between a photon-subtracted state
(3.27) created from an initial squeezed-vacuum with squeezing factor
r and an odd cat |odd cat⟩ = |α⟩ − | − α⟩.

Figure 3.13: Optimal overlap between a photon subtracted state (3.27) created
from an initial squeezed-vacuum with squeezing factor r and an odd
cat |odd cat⟩ = |α⟩ − | − α⟩ (orange line). In comparison we plotted
the optimal overlap between the non-classical state created via photon
reflection (aχsva

†) and an odd cat |odd cat⟩ = |α⟩ − | −α⟩ (blue line),
as was demonstrated in ref. [70].
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3 Deterministic Single-Photon Subtraction from Arbitrary Light Fields

dark states and the bright states, and therefore strongly increased the density of
states for the excited level. The resulting asymmetry between ground- and excited
states then accounted for the enhanced absorptive properties of the artificial atom,
while the strong interaction between the excitations prevented the system to carry
more than a single excitation simultaneously, and rendered the system invisible
after the first photon had been absorbed.

We have derived a theoretical description of this single-photon absorber in terms
of a quantum-optical master-equation and have shown that the symmetry of the
artificial atom allowed for a reduction of these (N+1)2 differential equations to
just two. Moreover, we have provided both a full numerical solution as well as
an approximate analytical solution for the density-matrix time-evolution in the
limit of large atom numbers. This allowed us to thoroughly analyze the absorptive
properties of such a medium, and identify a regime where deterministic single-
photon absorption can be achieved within an ensemble of cold atoms coherently
coupled to a Rydberg-state. In addition, we discussed possible implementation
schemes for the controlled dephasing. By neglecting the coherent dynamics of
the system in the limit of strong dephasing Γ ≫ ΩN , we were able to derive the
effect of single-photon absorption on arbitrary states of light, and calculated an
analytic expression for the density-matrix of a photon-subtracted state. Moreover,
we explored possible applications of our design as a n-photon detector, a single-
photon phase gate and a device capable to deterministically create non-classical
states of light. Further work needs to be, and actually, is done in the context
of pulse propagation through the sample, an issue we generously neglected in the
current work. This, of course, is related to the question whether such a medium
reflects an incoming probe beam, and hence would nullify our efforts in fabricating
a deterministic single-photon absorber. However, preliminary studies indicate that
reflection can be strongly suppressed by using an appropriate density profile for
the absorbing ensemble.

3.A Effective Master-Equation in the Overdamped Regime

The master-equation for inhomogeneous dephasing reads

∂tρ = − i

ℏ
[Hcoh, ρ] + ΓL(ρ), (3.29)
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where L(ρ) and Hcoh describe the inhomogeneous dephasing and the coherent
time-evolution driven by the laser coupling, respectively,

L(ρ) =
∑

ciρc
†
i − 1

2
{
c†
i ci, ρ

}
, Hcoh = Ω

∑
i

[
|i⟩⟨G|ai + |G⟩⟨i|a†

i

]
. (3.30)

It is convenient to go to the Laplace-space, in which this equation takes the form

sR(s) −R(0) = − i

ℏ
[Hcoh, R(s)] + ΓL(R(s)), (3.31)

with R(s) the Laplace-transform of the density-matrix ρ. Henceforth, we assume
that (i) the number of atoms N is large and (ii) the dephasing-rate Γ is the
dominating energy scale. In particular, the coherent time-evolution of the density-
matrix is much slower than the incoherent dephasing, so that Ω ≪ Γ. Additionally,
we restrict our discussion to the case in which the atomic ensemble is in the col-
lective ground state |G⟩ and thus R(0) = |G⟩⟨G|. For the following analysis it is
convenient to define the projection operators PD, PW̄ , and PC that project the
density-matrix onto its diagonal D, the coherences between the excited states W̄
and the coherences between the excited and the ground state C, respectively, as
well as the projection PQ via PQ = id − PC . By applying the projection operator
PC on the master-equation (3.31), we obtain

PCsR(s) = − i

ℏ
PC [Hcoh, PQR(s)] − Γ

2 PCR(s), (3.32)

where we have used PCR(0) = 0. Under the assumption that Γ/2 + s ≈ Γ/2 we
may solve this equation with respect to PCR(s), and find

PCR(s) ≈ − i

ℏ

2
ΓPC [Hcoh, PQR(s)]. (3.33)

Likewise, the master-equation projected onto the subspace Q takes the form

PQ(sR(s) −R(0)) = − 1
ℏ2

2
ΓPQ[Hcoh, PC [Hcoh, PQR(s)]] − ΓPW̄R(s). (3.34)

To further reduce this equation we use PQ = PD+PW̄ in order to split the double-
commutator into its diagonal part D and the coherences between excited states W̄ .
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The projection onto the latter then reads

[Hcoh, [Hcoh, RQ]C ]W̄

=

[
2
∑
i,j

|i⟩ai⟨G|RQ|G⟩a†
j⟨j| −

∑
i,l

{
|i⟩aia†

l ⟨l|, RQ
}]

W̄

, (3.35)

where latin indices run over all excited states and, again, s + Γ ≈ Γ applies.
Additionally we have used the short-hand notation RQ = PQR. The first term on
the right-hand side of eq. (3.35) describes transitions from the ground state to the
coherences between the excited states, whereas the second is due to transition in
between the latter. The first term is clearly dominating since initially ⟨i|R|j⟩ = 0,
and any change is suppressed by a factor Ω2/Γ2. (Note that neglecting s does,
in fact, spoil the relation ⟨i|R|j⟩ = 0 in eq. (3.35).) Indeed, a simple model
that assumes all coherences to be of the same value proofs this assumption to be
correct. Thus, the coherences between the excited states do follow the ground-state
occupation,

PW̄R(s) = 4Ω2

Γ2

∑
i,j

|i⟩ai⟨G|RQ|G⟩a†
j⟨j|, (3.36)

as is the case for the coherences between the ground and the excited states (see
eq. (3.33)). On the other hand, the time-evolution of the diagonal part of eq. (3.34)
is solely governed by the double-commutator with characteristic time-scale Ω2/Γ,
as may be seen directly in the projection,

[Hcoh, [Hcoh, RQ]C ]D

=

[
2
∑
i,j

|G⟩a†
i ⟨i|RQ|j⟩aj⟨G| −

∑
i

{
|G⟩a†

iai⟨G|, RQ
}

+ 2
∑
i

|i⟩ai⟨G|RQ|G⟩a†
i ⟨i| −

∑
i

{
|i⟩aia†

i ⟨i|, RQ
}]

D

. (3.37)

Following the argument above we may neglect any contributions due to off-diagonal
elements by replacing the double sum in the first term with a simple one. To an
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accuracy of Ω2/Γ2 the master-equation in time-domain hence reduces to

ρ̇D = 1
ℏ2

2Ω2

Γ
∑
i

[
2C†

i ρQCi −
{
C†
iCi, ρQ

}
+ 2CiρQC†

i −
{
CiC

†
i , ρQ

}]
D

, (3.38)

with the effective jump operator Ci = ai|i⟩⟨G|. The first and the last term in
the square bracket induce transitions from the excited states back to the ground
state. Their contribution is proportional to the probability to be in the excited
state, which increases from zero to 1/(N+1). Conversely, the two middle terms
are proportional to the ground state occupation number that decreases from its
initial value of one to 1/(N+1). Hence, the former, back-action terms only become
relevant close to the steady-state in which, by definition, no time-evolution occurs,
and may thus be neglected. Such an approximation results in a slightly modified
steady-state, meaning that the ground-state occupation number approaches zero
as compared to 1/(N+1). We therefore find the approximate master-equation for
the diagonal entries of the density matrix

PDρ̇ = 4Ω2

Γ PD
∑
i

[
CiPQρC

†
i − 1

2
{
C†
iCi, PQρ

}]
. (3.39)

All off-diagonal elements can be expressed in terms of the diagonal elements by
use of the eqs. (3.33) and (3.36), meaning that eq. (3.39) is sufficient to describe
the system dynamics. For all intents and purposes the individual states |i⟩ are
equivalent except for their spatial position. The latter difference is however unim-
portant as long as all the atoms are situated within a blockade volume. We may
hence introduce a dummy-sate |E⟩ that describes any of the atoms to carry an
excitation. With that the master-equation reduces to

PDρ̇ = 4Ω2N

Γ PD

[
CPQρC

† − 1
2
{
C†C,PQρ

}]
, (3.40)

where C = a|E⟩⟨G| is the dummy jump-operator. Note that the characteristic
time-scale is Ω2

N/Γ, in agreement to the analysis presented in subsection 3.2.5.
Moreover, it is important to stress that the dummy-state is, in fact, not a coherent
superposition but an incoherent mixture due to the strong dephasing. Indeed, a
coherent superposition would be a W -state, and to prevent it was the sole purpose
of the deterministic single-photon absorber in the first place.
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3.B Dynamics of a Saturating Absorber

In this section, we derive the influence of a single-photon absorber on a weak
probe-field χ. The single-photon absorber is described by a two-state system with
collective ground- and exited state denoted by |G⟩ and |E⟩, respectively. Under
the assumption that the absorption-rate Γeff is the dominating energy-scale we can
neglect any photon emission and coherent dynamics. Then the time-evolution for a
density-matrix ρ describing the composite system of absorber and light-field takes
the form

∂tρ = Γeff

[
cρc† − 1

2
(
c†cρ+ ρc†c

)]
. (3.41)

Here, the jump-operator c = a|E⟩⟨G| accounts for the transition from an excitation
in the light-field to one in the two-state system, with the photon annihilation-
operator denoted by a. An important aspect is that the jump-operator satisfies
c2 = 0, and corresponds to the fact that a single photon saturates the absorber.
It is convenient for the following discussion to express the master-equation in the
compact form

∂tρ = Γeff(Ĵ + L̂)ρ, (3.42)

with the super-operators Ĵ and L̂ are defined via

Ĵρ = cρc†, L̂ρ = −1
2
(
c†cρ+ ρc†c

)
. (3.43)

Then, a formal solution to the above master-equation takes the form of a time-
evolution operator U , so that

ρ(t) = Uρ0 = eΓeff (Ĵ+L̂)tρ0, (3.44)

where ρ0 is the initial state of the system at t = 0. The saturation-condition c2 = 0
allows for a decomposition of the exponential in the time-evolution operator,

U = Ĵ
∑
n

L̂n−1

n! (Γefft)n + eΓeff L̂t. (3.45)

First, note that for any light-field χ, the density-matrix ρ = |E⟩⟨E|⊗χ is an eigen-
state of the time-evolution operator due to the relation Ĵ |E⟩⟨E| = L̂|E⟩⟨E| = 0.
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To put it in a more physical context, the excited absorber no longer couples to the
light-field, and is thus invisible. Consequently, we can reduce our discussion to the
experimentally relevant initial states ρ = |G⟩⟨G| ⊗ χ, where the two-state system
is in the ground-state. Second, the summation in the time-evolution operator may
be written in the more compact form

∑
n=1

L̂n−1

n! (Γefft)n = 1
L̂

(
eΓeff L̂t − 1

)
= Γeff

t∫
0

dt eΓeff L̂t. (3.46)

In consequence, the full time-evolution operator reads

U =
(
Ĵ

[
Γeff

∫ t

0
dt

]
+ 1
)
eΓeff L̂t. (3.47)

Within a Fock-basis {|n⟩}, the operator eΓeff L̂t can be expressed as

eΓL̂tχ =
∑
n,n′

χn,n′eΓeff L̂t|n⟩⟨n′| =
∑
n,n′

χn,n′e−Γeffc
†ct/2|n⟩⟨n′|e−Γeffc

†ct/2

=
∑
n,n′

χn,n′e− Γefft
2 (n+n′)|n⟩⟨n′|, (3.48)

and thus predicts an exponential decay proportional to the photon-number carried
by the respective density-matrix component. The integral in the Ĵ term then yields
an exponential saturation of the exited state according to

Γeff

∫ t

0
dt eΓeff L̂tχ = Γeff

∑
n,n′

χn,n′

t∫
0

dt e− Γefft
2 (n+n′)|n⟩⟨n′|

=
∑
n,n′

χn,n′
2

n+ n′

(
1 − e− Γefft

2 (n+n′)
)

|n⟩⟨n′|. (3.49)

Finally, the time-evolution of an initial product density-matrix ρ = |G⟩⟨G| ⊗ χ is
given by

U(t)|G⟩⟨G| ⊗ χ = |E⟩⟨E| ⊗
∑
n,n′

χn,n′
2

√
nn′

n+ n′

(
1 − e− Γefft

2 (n+n′)
)

|n− 1⟩⟨n′ − 1|

+ |G⟩⟨G| ⊗
∑
n,n′

χn,n′e− Γefft
2 (n+n′)|n⟩⟨n′|. (3.50)
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The first term proportional to the excited state |E⟩⟨E| increases exponentially
on a timescale governed by the number of photons in the respective light state.
Conversely, the second term proportional to the ground-state |G⟩⟨G| shows an
exponential decay on a corresponding timescale. In the scaling-limit, this results
in a state

U(t → ∞)|G⟩⟨G| ⊗ χ = |E⟩⟨E| ⊗
∑
n,n′

χn,n′
2

√
nn′

n+ n′ |n− 1⟩⟨n′ − 1|

+ |G⟩⟨G| ⊗ χ0,0|0⟩⟨0|, (3.51)

where the probability for the two-state system to be in the excited state turns out
to be 1−χ0,0. In general, the resulting density-matrix does no longer correspond to
a pure state due to the factor 1/(n+ n′) that prevents a decomposition according
to χ = |χ⟩⟨χ|. Still, deviations from the initial state are small for large average
photon-numbers. For instance, absorption of a single photon from a coherent state
of light |α⟩ with density-matrix

χ0 = e−|α|
∑
n,n′

α∗n
√
n!

αn
′

√
n′!

|n⟩⟨n′|, (3.52)

results in a state

χ∞ = e−|α|2 ∑
n,n′

2
n+ n′ + 2

αnα∗n′

√
n!n′!

|n⟩⟨n′|, (3.53)

which in general cannot be decomposed. Yet, in the limit of large α corresponding
to a large average photon-number n ≈ |α|2, this particular state closely resembles
a coherent state with α′ =

√
α2 − 1. On the other hand, strong deviations occur

for small α ≈ 1 (see Fig. 3.14). This fact also shows in the purity of the resulting
state, which, renormalized by trχE , takes the general form

trχ2
E

trχE
= 1

1 − χ0,0

∑
n,m=0

|χn+1,m+1|2
[

1 −
(

n−m

n+m+ 2

)2
]
. (3.54)

Again, for a coherent state |α⟩, this expression reduces to

trχ2
E

trχE
= 1
eα2 (eα2 − 1)

(
e2α2

− 1 + γ + Γ(0,−2α2) + log(−2α2)
)
, (3.55)
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Figure 3.14: Average photon-number of a coherent state |α⟩ over time. The solid
blue line is the part proportional to the ground-state of the absorber,
whereas the solid red line is the part proportional to the excited state.
The black dashed line depicts the naive expectation that the photon-
number decrease by one, when a single photon is absorbed. The plot
clearly shows that this naive estimate fails for small values α.

where Γ(x, y) and γ denote the incomplete Gamma function and the Euler-Mascher-
oni constant, respectively. As one might expect, eq. (3.55) approaches unity for
α ≫ 1. In addition, the calculation for a two-state saturating absorber can eas-
ily be generalized for an n-state system: The time-evolution is then given by
Un(t) = [U(t)]n, and yields n− 1 exponentially decaying states, and a single expo-
nentially increasing state which carries n excitations.

3.C Pulsed Rabi-Frequency

A possible way to realise a system featuring inhomogeneous dephasing is to use
a random but static detuning for each atom in combination with a pulsed Rabi-
frequency. The main idea goes as follows: While the coupling laser is on, the
collective ground-state is excited into the W-state with little dephasing due to the
random detunings. On the other hand, the dead-time in between the pulses allows
the W-state to acquire a large enough overlap with the dark subspace before the
coherent driving de-excites the system again. More specifically, in a setup where a
single pulse coherently transfers a fraction f of the collective ground-state popula-
tion into the W-state, perfect dephasing accounts for a second transfer of a fraction
f(1 − 1/N) from the W-state population into the dark subspace. A subsequent
pulse excites another fraction f of the remaining ground-state population, while
only a fraction f2/N is transferred back. The asymmetric transfer hence creates an
exponential decay of the collective ground-state population for f2/N ≪ 1, where
the effective decay-rate Γpulse = −p log(1 − f) is determined by the pulse-rate p
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Figure 3.15: Time evolution for a system with static random detuning ∆ ∈ [−Ω,Ω]
and pulse-times ∆pulse = 5ΩN . The solid red line shows the probabil-
ity E to be in the excited state, whereas the dashed blue line shows the
probability to be in the W-state. The pulse-shape is sinusoidal, and
indicated by the filled blue line. In the dead-time between the pulses,
the dephasing accounts for a probability transfer from the W-state
into the dark states, as can be seen around tΩN ≈ 4.

and the transfer fraction f . Such behavior can be studied by a straightforward
numerical integration of the coherent dynamics with a pulsed control-laser. The
amount of population transfer within each pulse is determined by the pulse-area∫ T

0 dt ΩN (t); optimal transfer is achieved for a π-pulse with ΩN ≈ π/T , while the
shape of the pulse plays a minor role. On the other hand, it is desirable that within
each pulse individual states acquire a phase-shift ψi = ∆it that is on the order of
π. Indeed the numerical analysis confirms these expectation (see Fig. 3.15) and
even a sinusoidal modulation of the coupling laser leads to a very fast dephasing.
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Chapter 4

Quantum-Motion of a Topological
Defect

4.1 Motivation

Efforts to demonstrate quantum-behavior of macroscopic objects, especially ones
that can be seen by the naked eye, have attracted considerable interest [80–83].
The fundamental difficulty in observing quantum-effects on a macroscopic scale is
due to the huge number of degrees of freedom involved [84]. Those all individually
couple to the environment and, as a result, experience a slightly different inter-
action that is responsible for a loss of coherence in between the constituents and
thereby their capability to interfere [85]. Yet, a topological excitation is not char-
acterized by its local degrees of freedom [86], but rather by a non-trivial topology
of a macroscopic order-parameter. The latter represents a non-local quantity that
features an extensive energy gap, and is thus stable despite local perturbations.
In concert with the remarkable progress in the control over cold atomic gases this
opens the path to realise such states in an idealized environment [1]. Here we
ask the simple question whether a macroscopic object such as a topological exci-
tation can show quantum-behavior. In particular, we consider a quantum vortex
in a cold atomic gas confined to an optical lattice, and show that it can exhibit
interference-effects.
The application of classical hydrodynamic considerations in describing vortex-
dynamics in a continuous superfluid has proven to be remarkably successful even
for a low number of vortices [87]. This is mostly due to the fact that the vortex
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de Broglie wavelength decreases with decreasing interaction between the super-
fluid particles [88]. As a result, the healing-length for a weakly interacting system
such as a cold atomic gas is much larger than its de Broglie wavelength and, ac-
cordingly, so is the spatial dimension of the vortex-core. Moreover, the vanishing
superfluidity in the core gives rise to dissipation and hence quantum effects are fur-
ther suppressed [89–91]. On the other hand, strongly-correlated systems such as
d-wave superconductors [92] or cold atoms in an optical lattice close to the Mott-
insulator transition might exhibit quantum-motion of vortices [90,93]. Indeed, the
latter system allows for near arbitrary tuning of the healing-length via external
fields, and is thus a prime candidate for observing quantum-effects of topological
excitations. If we assume the vortex core to be smaller than the lattice spacing,
the vortex itself is pinned to the plaquettes of the lattice [94–96], and dissipative
effects due to the finite core size vanish. On the other hand, the vortex is allowed
to tunnel from one pinning-site to the other, with the tunneling rate being gov-
erned by the global properties of the superfluid phase rather than a local one [93].
The tunneling of vortices in cold atoms has been investigated previously in both
a homogeneous system with two pinning-sites [97–99] as well as in a lattice in the
context of hall conductivity of hard-core bosons [91, 100, 101]. Yet a thorough in-
vestigation that focuses on the signatures of quantum-motion of individual vortices
is missing so far.

In this chapter we study the behavior of quantum vortices in a cold atomic gas
confined to an optical lattice. In concert with a Feshbach-resonance the latter
allows us to tune the interactions between the superfluid particles and thereby
control their fluctuations. We are particularly interested in the regime close to the
Mott-insulator transition, with a large average number of superfluid particles per
lattice site. In combination these conditions lead to a small vortex-core as well
as negligible density-fluctuations, and thus drive the vortices into the quantum-
regime. In turn, the vortices are confined to the plaquettes of the optical lattice.
Starting from a two-dimensional Bose-Hubbard model with repulsive interactions
we derive an effective theory for the vortex degrees of freedom in terms of a tight-
binding model on the dual lattice sites associated with the plaquettes of the original
lattice. In analogy to the classical hydrodynamic theory we find that a moving
vortex acquires a Berry-phase due to the superfluid filling and exhibits a logarith-
mic interaction-potential for other vortices. The former then leads to an effective
magnetic field and in turn to a Lorentz-like force acting on a moving vortex. In
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addition, the finite tunneling-amplitude gives rise to a finite vortex mass induced
by the underlying lattice, for which we provide an analytic expression. Last, we
discuss the fundamental differences between classical and quantum vortex motion
and comment on the possibility to realise a vortex interference-experiment within
a cold atomic setup.

4.2 Mapping from Bose-Hubbard to Vortex Degrees of Freedom

4.2.1 Gauged Bose-Hubbard Model

We start with the two-dimensional gauged Bose-Hubbard model [102,103],

H = −w
∑
⟨i,j⟩

a†
iaje

iAij + a†
jaie

−iAij + U

2
∑
i

ni(ni − 1) + µ
∑
i

ni, (4.1)

where a†
i (ai) creates (annihilates) a bosonic particle on site i of the two-dimensional

lattice and ni = a†
iai counts the number of superfluid particles on site i. The op-

erators need to be supplemented with an algebra that constitutes the appropriate
commutation relation, namely [ai, a†

j ] = δi,j . Moreover, w and U are the particle
hopping rate and on-site interaction parameter, respectively, whereas µ is a global
chemical potential. The phase Aij acquired at every hop is due to an artificial
external magnetic field BI perpendicular to the plane, and thus fulfills the relation∑

□

Aij = BI , (4.2)

where
∑
□ denotes the summation around a plaquatte I of the lattice. This mag-

netic field will later act as a chemical potential for the vortices. Such a system
can easily be realised within a cold atomic setup [103], where either rotation [104]
or external lasers in concert with internal degrees of freedom [105] are used in
order to create the effective magnetic field for the neutral atoms. For our in-
tents it is convenient to express the Hamiltonian (4.1) in terms of a coherent state
path-integral [106], where we use a basis

|{ψi}⟩ = exp

[∑
i

ψia
†
i

]
|vac⟩. (4.3)
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4 Quantum-Motion of a Topological Defect

Here, ψi is the probability-amplitude to find a particle in the Wannier state created
by the operator a†

i . In imaginary time τ → −it, the action of the Bose-Hubbard
model (4.1) reads

SψBH =

ℏβ∫
0

dτ
∑
i

ψ∗
i (ℏ∂τ − µ)ψi − w

∑
⟨i,j⟩

ψ∗
i ψje

iAij + c.c.+ U

2
∑
i

|ψi|2(|ψi|2 − 1)

=

ℏβ∫
0

dτ L({ψi}). (4.4)

In the following we provide a transformation that shifts our point of view from the
particle description in (4.1) towards a vortex description.

4.2.2 Quantum Phase Model

A vortex is a point defect in the phase of a superfluid carrying a non-zero winding
number q [86], where the singular point of the phase then marks the position of
the vortex core. In order to derive an effective model for the dynamics of these
topological quasi-particles, we need to cast the gauged Bose-Hubbard (4.1) model
in terms of this very phase variable ϕ. According to ref. [107], this can be achieved
via the relation ψi =

√
n̄+ δnie

iϕi , giving rise to the action

SnϕQPM =

ℏβ∫
0

dτ
∑
i

[1
2ℏ

˙δni + iℏϕ̇i(δni + n̄)
]

− 2w
∑
⟨i,j⟩

√
n̄+ δni

√
n̄+ δnj cos(ϕij +Aij) + U

2
∑
i

δn2
i , (4.5)

with ϕij = ϕi−ϕj . Moreover, we split the local superfluid filling ni into an average
filling n̄ and local fluctuations δni under the assumption that

∑
i
⟨δni⟩ = 0. Note

that the phase ϕi and the superfluid fluctuations δni are conjugate variables and,
in quantized form, their operators fulfill the commutation relation [ϕi, δnj ] = iδij .
The factor ˙δn in the first term of eq. (4.5) is a total time-derivative and hence can
be dropped, whereas the topological term iϕ̇n̄ accounts for the Magnus-force for
non-integer n̄, as is shown in section 4.3.3.
At this point we need to apply the first of two approximations, namely that the
fluctuations of the superfluid δn are much smaller than the average superfluid
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4.2 Mapping from Bose-Hubbard to Vortex Degrees of Freedom

Figure 4.1: Regime of validity for the Quantum Phase model. Below the dashed-
blue line, the system enters the Mott-insulating regime, where phase-
coherence between different lattice sites is lost. The solid red line marks
the transition into the Galilei-invariant Gross-Pitaevskii regime. There,
the healing-length exceeds the lattice-spacing, and strong density-
fluctuations on the individual lattice sites occur.

filling n̄. This allows us to replace the non-local factor in the second term by a
global one, that is

√
n̄+ δni

√
n̄+ δnj → n̄, and ultimately leads to the definition

of the superfluid stiffness K = 2wn̄. As is shown in ref. [107], the regime of validity
for this approximation is given by

1
n̄2 ≪ U

n̄w
≪ 3. (4.6)

The lower boundary of eq. (4.6) is the transition into the Galilei-invariant regime,
where the lattice is but a small perturbation. In this regime, one needs not refer to
the Bose-Hubbard model for an adequate description, but rather use the Galilei-
invariant Gross-Pitaevskii equation. Conversely, the upper boundary marks the
transition to the Mott-insulator, where any phase-correlations in between lattice
sites is lost [14]. Even so, for large enough superfluid filling factors n̄, there is an
intermediate regime where the above approximation is justified.
The next step is then to integrate over the remaining superfluid fluctuations δni,
and yields the action of the reduced Quantum-Phase model (rQPM),

SϕrQPM =

ℏβ∫
0

dτ
∑ ℏ2ϕ̇i

2

2U +
∑
i

iℏϕ̇in̄−K
∑
⟨i,j⟩

cos(ϕi,j +Ai,j). (4.7)
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4 Quantum-Motion of a Topological Defect

Here it is important to note that the only dynamical variable is the local phase
ϕi and its time-derivatives. Yet the non-linear cosine-term accounts for the highly
non-trivial features of the model, and in particular allows for multivalued solu-
tions such as vortex excitations. In order to deal with the cosine-term we follow
the ideas developed in solid-state theory in the context of the XY-model, and per-
form a duality-transformation [108]. The first step is a Villain-transformation (see
ref. [109])

eK cosϕ →
∞∑

l=−∞

e− 1
2K l

2−ilϕ, (4.8)

which marks the second approximation in this calculation. It allows us to remove
the non-linear cosine-term at the cost of an additional field l that we interpret
as the superfluid current. The applicability of the Villain-transformation is based
on large prefactors K. Since K ∼ n̄, this condition is equivalent to the lower
boundary of the validity of the Quantum Phase model (see eq. (4.6)). By carrying
out the Villain-transformation on every lattice link ⟨i, j⟩, the resulting action takes
the form

SlϕrQPM =

ℏβ∫
0

dτ
∑
i

1
2U
(
ℏϕ̇i + iUn̄

)2 + 1
2K

∑
⟨i,j⟩

l2i,j

+
∑
i

iϕi

(∑
j∈i

li,j

)
+
∑
⟨i,j⟩

ili,jAi,j , (4.9)

where we dropped the constant term ∼ Un2. The short-hand notation
∑

j∈i

describes the summation over all lattice sites j adjacent to site i, and is thus the
lattice equivalent to the divergence for the l’s. A subsequent integration over the
phase variables ϕi yields the action in terms of the superfluid currents l alone,

SlrQPM =

ℏβ∫
0

dτ
∑
i

∑
j∈i

li,j

(
− U

2ℏ2∂2
τ

)∑
j′∈i

li,j′ +
∑
i

Un̄τ

ℏ

(∑
j∈i

li,j

)

+ 1
2K

∑
⟨i,j⟩

l2i,j +
∑
⟨i,j⟩

ili,jAi,j . (4.10)
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4.2 Mapping from Bose-Hubbard to Vortex Degrees of Freedom

In analogy to common electrodynamics [110], we now rewrite the superfluid cur-
rents l corresponding to the electromagnetic field in terms of potential-derivates
li,j = hI − hJ − ℏ∂τfJI . Here, hI and fJI are a scalar- and vector-potential, re-
spectively, and are defined on the plaquettes I and their respective links ⟨IJ⟩. A
geometric interpretation of this mapping is a π/2-rotation of every lattice current
li,j , with the rotation axis center situated on the links of the original lattice, see
Fig. (4.2). For the sake of brevity, we again denote hI − hJ = hIJ . A consequence
of this particular mapping is that the divergence-term

(∑
j∈i li,j

)
on the original

lattice turns into a curl-term on the dual lattice, as(∑
j∈i

li,j

)
= −ℏ∂τ

∑
□

fJI , (4.11)

and the □ denotes summation over the edges of one lattice plaquette. Note that
only the link variables fJI contribute to eq. (4.11), whereas the local field hI drops
out.

An integration by parts allows us to remove the inconvenient time-derivatives ∂τf ,
which, in retrospect, justifies the definition of f as a time-derivative in the first
place. In particular, for the term coupling the magnetic vector-potential AJI to
the vector-potential ∂τfJI this yields the expression fJI∂τAJI . In Weyl gauge,
the time-derivative of the vector-potential is an electric field for the superfluid
particles, namely ∂τAij = F . Since the superfluid particles have unit charge, the
external electric field is equivalent to an external force F . Yet, for the sake of
clarity, we henceforth assume F = 0. On the other hand, we can use the definition
of the magnetic field eq. (4.2) in order to express the summation of the AJI over
one plaquette as

∑
J∈I AIJ = BI , which explicitly shows the gauge invariance

of the theory with respect to the external field. Upon dropping a constant term
∼ Un̄2 that arises due to a completion of the square, we are thus left with the
discrete electromagnetic action

ShfrQPM =

ℏβ∫
0

dτ
U

2
∑
I

(
n̄+

∑
□

fJI

)2

+ 1
2K

∑
⟨I,J⟩

(hIJ − ℏ∂τfJI)2 + i
∑
I

hIBI . (4.12)

Last, we perform a poisson summation which renders the action in terms of the
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4 Quantum-Motion of a Topological Defect

Figure 4.2: Diagrammatic representation of the mapping. We start from the Bose-
Hubbard model described by the phase and density on the individual
lattice sites. The density-fluctuations can then be integrated out, and
give rise to a dependence on the time-derivative of the local phases ϕi.
A subsequent Villain-transformation allows us to replace the phases ϕi
by superfluid currents lij defined on the links of the lattice. In anal-
ogy to electrodynamics, we introduce the discrete scalar- and vector-
potential hI and fJI , respectively. In order to remove the discreteness
from the fields, we apply a Poisson-summation, and obtain continuous
fields θI and ψJI at the cost of discrete charges qI and currents jJI
representing the vorticity and the vortex current, respectively.
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4.2 Mapping from Bose-Hubbard to Vortex Degrees of Freedom

continuous potentials θ̃ and ψ̃ as well as the discrete charges qI and their respective
currents jIJ ,

Sθ̃ψ̃rQPM =

ℏβ∫
0

dτ
U

2
∑
I

(
n̄+

∑
□

ψ̃JI

)2

+ 1
2K

∑
⟨I,J⟩

(θ̃IJ − ℏ∂τ ψ̃JI)2

− 2πi
∑
I

θ̃I

(
qI − BI

2ℏπ

)
− 2πiℏ

∑
⟨I,J⟩

ψ̃JIjJI . (4.13)

The charges qI and currents jJI will be interpreted as vortex-density and -current
later on. Note that the magnetic field BI modifies the coupling of the vortex charge
(vorticity) to the scalar potential θ̃I , and thus acts as a chemical potential for the
vortices.

It is convenient for the following treatment to define a field ηIJ via n̄ =
∑
□ ηJI .

We can then write eq. (4.13) in the compact notion
∑
□ ψJI , with ψJI = ψ̃JI +ηJI ,

and find a coupling of the current jJI to the background superfluid ηJI that leads
to a phase shift for a vortex moving from one site to another. As will be shown
in section 4.4.2, this term creates an effective magnetic field for the vortices. Yet,
since n̄ and hence ηJI are constant in time, ∂τ ψ̃JI = ∂τψJI . It follows that the
action of the vortex model then takes the final form

SθψrQPM =

ℏβ∫
0

dτ
U

2

[∑
I

(∑
□

ψJI

)2

+
∑
⟨I,J⟩

(θIJ − ∂csτψJI)
2

]

− 2πiℏ
∑
I

θIcs

(
qI − B̄

)
− 2πiℏ

∑
⟨I,J⟩

(ψJI − ηJI) jJI , (4.14)

where we further absorbed the sound-velocity cs =
√
UK/ℏ in the definition of

θI = θ̃I/cs. Since the lattice spacing is a dimensionless quantity, the effective
chemical potential B̄I = BI/2πℏ is but the magnetic flux BI divided by the flux-
quantum 2πℏ. As already mentioned above, the action (4.14) is formally equivalent
to a theory of charged particles on a two-dimensional lattice. The vortices play
the role of the positive or negative charges, depending on their respective vorticity,
whereas the superfluid phonon modes correspond to the electromagnetic fields
mediating the interaction [111]. In analogy to electrodynamics, one can cast the
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4 Quantum-Motion of a Topological Defect

action (4.14) in terms of (2+1)-vectors

χI =

 θI

ψx̂I

ψŷI

 , jI =

 cs(qI − B̄I)
jx̂I

jŷI

 , (4.15)

where x̂ and ŷ are mere directional indices. In this covariant form, the action
(4.14) reads

SχrQPM =

ℏβ∫
0

dτ
U

2
∑
I,J

χI∆I,JχJ − 2πiℏ
∑
I

χIjI + 2πiℏ
∑
I

ηIjI , (4.16)

where ∆I,J is the coupling-matrix between the phonon-fields χI . Since we are only
interested in the vortex degrees of freedom, we can integrate over the phonon field
χI , and are left with

SjrQPM = − (2πℏ)2

2U

ℏβ∫
0

dτ

ℏβ∫
0

dτ ′
∑
I,J

jI∆−1
I,JjJ + 2πiℏ

ℏβ∫
0

dτ
∑
I

ηIjI . (4.17)

The explicit form of the Green’s-function ∆−1
I,J will be discussed in the next section.

4.2.3 Lattice Green’s-Function

We now turn towards our actual goal, that is to calculate the vortex-action on
a square lattice. Unfortunately, the relatively short continuum calculation (see
appendix 4.A) turns quite extensive and rather cumbersome on a lattice, and is
thus banished to appendix 4.B. We find that the interaction-matrix on the lattice
may be written as

∆IJ =
∫
dω eiωτ

∫
d2k

(2π)2 e
ik(xI−xJ )∆reg

k,ω, (4.18)

with the regularized interaction-matrix (see appendix 4.B)

∆reg
k,ω =

(
ω2

c2
s

+ 4
[
sin2 kx

2 + 4 sin2 ky
2

])
id, (4.19)

72
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and the identity matrix id. Since ∆reg
k,ω is diagonal, it can easily be inverted. The

resulting lattice Green’s-function is then given by

∆−1
IJ (τ) = id Λ−1

IJ (τ), (4.20)

with the one-dimensional propagator

Λ−1
IJ (τ) =

∫
dω

2π

∫
d2k

(2π)2
eik(xI−xJ )+iωτ

ω2/c2
s + 4

[
sin2 kx

2 + sin2 ky
2

] . (4.21)

4.3 Effective Vortex Lattice Model

4.3.1 Definition of the Vortex Current

Analog to the expression for the vortex current in the continuum provided by
D. Lee and M.P.A. Fisher [112], the vortex current on a lattice takes the form

j0
I = cs

∑
i,ni

qiδI,Ini

[
Θ(τ−τni) − Θ(τ−τni+1)

]
, (4.22)

jJI =
∑
i,ni

qiδ⟨IJ⟩,⟨Ini−1Ini ⟩δ(τ−τni). (4.23)

Here, qi = ±1 is the integer vorticity, Θ is the Heaviside step-function and τni is
the time when the ni-th hop from site Ini−1 to site Ini occurs. The particular site
Ini can be written as a sum over all previous jumps,

Ini = I0i +
ni∑

mi=0

µ̂mi , (4.24)

with µ̂ = x̂, ŷ denoting the direction of the n-th jump. Therefore, Ini is the
lattice trajectory of a vortex. This rather complicated form of the lattice current
as compared to the continuum version is due to the current being defined on
the lattice links, in contrast to the density that is defined on the lattice itself.
Fortunately, we will only need the most basic versions of this expression, namely
the current of two static vortices sitting at sites Y and Z, respectively, and the
current of a vortex which performs a single jump from one site to another.
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4 Quantum-Motion of a Topological Defect

4.3.2 Vortex-Vortex Interaction

In order to calculate the vortex-vortex interaction potential on a lattice, we assume
two vortices to sit at sites Y and Z, respectively. Thus, the constant (2+1)-current
takes the trivial form

jI =

 csqY δI,Y + csqZδI,Z

0
0

 . (4.25)

We can write the action for such a configuration by the use of the eqs. (4.17) and
(4.20), and find the action

Sint = (2πℏ)2c2
s qY qZ

U

∫
dτdτ ′∆−1

Y Z(τ − τ ′), (4.26)

under the assumption that fluctuations do not contribute [106]. Moreover, we
neglect any self-interaction terms, since those would be present regardless of the
presence of a second vortex, and only keep track of the cross-terms describing the
interaction between the vortices (thus, the factor of 2). The time-integral over the
Green’s-function then reduces to∫

dτdτ ′∆̄−1
Y Z(τ − τ ′) =

(∫
dτ

)∫
d2k

(2π)2
eik(xY −xZ)

4
[
sin2 kx

2 + sin2 ky
2

] . (4.27)

The integral over time in the brackets yields the time interval of our observation,
whereas the integral over the momentum k gives the actual interaction energy.
According to ref. [113], the latter integral can be well approximated via∫

d2k

(2π)2
eik(xY −xZ)

4
[
sin2 kx

2 + sin2 ky
2

] ≈ 2π log |xY − xZ | + const. (4.28)

for large inter-vortex distances as compared to the (dimensionless) lattice spac-
ing, i.e. |x1 − x2| ≫ 1. We therefore recover the logarithmic interaction potential
between vortices as is found in the continuum hydrodynamic description. By ne-
glecting the constant terms, we are left with the action

Sint =
(∫

dτ

)
4π2qY qZ n̄w2π log |xY − xZ | , (4.29)
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where we used c2
s = UK/ℏ2 = n̄wU/ℏ2. Note that this is in agreement with the

model used in ref. [101].

4.3.3 Instanton Action

The current generated by a single vortex hopping at time τ = 0 from site Y to site
Y + x̂ cast in terms of the (2 + 1)-vector notation takes the form

jI = q

 cs [δI,Y Θ(−τ) + δI,Y+x̂Θ(τ)]
δI,Y δ(τ)

0

 . (4.30)

If we neglect any fluctuations in the bounce, the instanton-action reads

Sphonon
inst = (2πℏ)2

2U

∫
dτdτ ′

∑
I,J

jI(τ)∆−1
IJ (τ − τ ′)jJ(τ ′). (4.31)

It is important to note that this action only takes phase-fluctuations into account,
whereas it neglects density-fluctuations as well as the structure of the vortex core.
However, the former approximation is justified since we are interested in the regime
close to the Mott-insulator transition, where density-fluctuations are suppressed.
For the sake of clarity we split the below calculation into its spatial- and time-
component.

By inserting a single vortex tunneling from Y to Y + x̂ in the spatial component
of the general instanton-action (4.31), we find the the expression

Sspace
inst = (2πℏ)2q2

2U

∫
dτdτ ′δ(τ)δ(τ ′)∆−1

Y Y (τ − τ ′) = (2πℏ)2q2cs

2U Λ̄−1
Y Y (0). (4.32)

Here we introduced the rescaled Green’s-function Λ̄−1
Y Y (τ/cs) = Λ−1

Y Y (τ)/cs in the
last step. Explicitly, the rescaled Green’s-function takes the form

Λ̄−1
Y Y (0) =

∫
dω/cs

2π

∫
d2k

(2π)2
1

ω2/c2
s + 4

[
sin2 kx

2 + sin2 ky
2

] , (4.33)
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and is but a numerical constant. Numerical integration yields the approximate
value of Λ̄−1

Y Y (0) ≈ 1/3, with which the action (4.32) reads

Sspace
inst ≈ 2π2ℏ

3

√
K

U
. (4.34)

The time component of the instanton-action (4.31) for a tunneling vortex (4.30) is
more involved: First, note that the instanton-action takes the form

Stime
inst = (2πℏ)2

2U

∫
dτdτ ′c2

s q
2cs

[
Θ(−τ)Θ(−τ ′)Λ̄−1

0 + Θ(−τ)Θ(τ ′)Λ̄−1
−x̂

+ Θ(τ)Θ(−τ ′)Λ̄−1
x̂ + Θ(τ)Θ(τ ′)Λ̄−1

0

]
, (4.35)

where we have introduced the short-hand notation for the scalar Green’s-functions
Λ̄−1

0 = Λ̄−1
Y,Y (τ − τ ′) and Λ̄−1

x̂ = Λ̄−1
Y+x̂,Y (τ − τ ′) in order to conserve space. From

this we need to subtract the action created by a stationary vortex, namely a vortex
that sits on site Y for the entire time of observation,

Stime
stationary = (2πℏ)2

2U

∫
dτdτ ′

∑
I,J

c2
s q

2csΛ̄−1
0 . (4.36)

Since the Green’s-function is translationally invariant, Λ̄−1
Y Y (τ − τ ′) = Λ̄−1

Y+x̂,Y+x̂,
subtracting the action of a stationary vortex cancels the first and last term in
eq. (4.35). In consequence, we obtain the regularized instanton-action

S̄time
inst = Stime

inst − Stime
stationary

= (2πℏ)2

2U

∫
dτdτ ′c2

s q
2cs

[
Θ(−τ)Θ(τ ′)(Λ̄−1

−x̂ − Λ̄−1
0 )

+ Θ(τ)Θ(−τ ′)(Λ̄−1
x̂ − Λ̄−1

0 )
]
. (4.37)

The difference Λ̄−1
−x̂ − Λ̄−1

0 between the two Green’s-functions can easily be calcu-
lated, and gives rise to the explicit expression

[Λ̄−1
−x̂ − Λ̄−1

0 ](τ − τ ′) =
∫

dω/cs

2π e
cs(τ−τ ′) ω

cs

×
∫

d2k

(2π)2
e+ikx̂ − 1

ω2/c2
s + 4

[
sin2 kx

2 + sin2 ky
2

] . (4.38)
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Integration over the respective time domains (τ > 0, τ ′ < 0 or τ < 0, τ ′ > 0; Note
that both domains give the same contribution, and in turn allows us to add both
in eq. (4.37) in order to get rid of the imaginary parts) yields

S̄time
inst = (2πℏ)2q2cs

2U

∫
d2k

(2π)2
− sin2 kx

2

4
(

sin2 kx
2 + sin2 ky

2

)3/2 . (4.39)

Again, the integral in eq. (4.39) is a purely numerical factor that, surprisingly,
is half of −Λ̄−1

Y Y (0) (on a numerical precision of 10−9). This intriguing relation
hints on a hidden symmetry between the two contributions, which has proven to
be elusive so far. In total, the time-component of the instanton-action takes the
form

S̄time
inst ≈ −π2ℏ

3

√
K

U
. (4.40)

The full phonon instanton action then reads

Sphonon
inst = Sspace

inst + S̄time
inst ≈ π2ℏ

3

√
K

U
. (4.41)

and marks the main result of this section.
The coupling between the vortex current j and the background superfluid density
n̄ expressed in terms of the vector-potential η gives rise to a phase shift for a vortex
hopping from one site to another. In particular, the phase shift of a single hopping
process is

SMagnus
inst = 2πℏi

∫
dτ
∑
I

ηIjI = 2πℏi
∫
dτ
∑
I

ηJIjJI . (4.42)

Henceforth, we assume η to be given in Landau-gauge ηI,I+ŷ = n̄(xI · x̂) = n̄xI

and ηI,I+x̂ = 0. A hopping process from site I to site I + ŷ therefore yields the
instanton-action

SMagnus
inst = 2πℏi

∫
dτ
∑
I

ηI,I+ŷqY δI,Y δ(τ) = 2πℏin̄qY xY . (4.43)

The i in this action ensures that the contribution due to the superfluid coupling
is indeed a phase factor, and accounts for the effective magnetic field felt by a
vortex. The field strength is then equal to the average particle filling n̄, as can
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easily be seen by calculating the accumulated phase of a vortex moving around
a single plaquette of the dual lattice. For integer n̄, the phase is a multiple of
2π, and yields an overall factor of one due to xI ∈ Z. As a matter of fact, the
effective magnetic field is only defined modulo 2π. This simple fact has but sever
consequences for both the effective magnetic field felt by the vortices as well as
the Hall-conductivity of the superfluid particles [114], and will be discussed in
section 4.4.2.

Note that in the above calculation, we neglected any contribution due to the vortex
core. We justified this approximation a priori by assuming that the healing-length
is much smaller than the lattice spacing, ξ ≪ 1. A rigorous proof of this assumption
can be obtained by following Feigelman et al. [115], who estimated the instanton-
action of a tunneling vortex core to be Score

inst ∼ ℏn̄ξ2. In turn, this leads to the
condition

1 ≪ Sphonon
inst

Score
inst

≈
√
n̄w/U

n̄ξ2 =
√
n̄w/U

n̄ w
Un̄

=

√
Un̄

w
. (4.44)

Incidentally, eq. (4.44) is the lower bound of eq. (4.6), and validates the treatment
of the Bose-Hubbard model in terms of the Quantum-Phase model.

4.3.4 Effective Vortex Mass

The finite instanton-action acquired by a vortex moving from one site to another
induces an effective mass mv to these topological excitations. In this section we
will give an analytic expression for the mass in terms of the original parameters
of the Bose-Hubbard model. According to ref. [106], the instanton-action for a
massive particle tunneling across a barrier V (x) takes the form

Sinst =
∫
dx
√

2mV (x). (4.45)

By splitting the potential-barrier V (x) = V0v(x) into a constant prefactor V0 a
dimensionless coordinate-dependent part v(x) ∼ O(1), we can write the above
equation like

Sinst =
√

2mV0

∫
dx
√
v(x). (4.46)
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The integral in eq. (4.46) is then but a numerical factor that depends implicitly on
the shape of the barrier v(x). Here, we are only interested in how the vortex mass
depends on the microscopic Bose-Hubbard parameters, and will hence neglect any
numerical factors on the order of one. Since we know the instanton-action from
our previous discussion we can solve the eq. (4.46) for the mass mv neglecting any
numerical factors (in particular the numerical integral itself), which then yields
the explicit expression

mv ≈ S2
inst

V0
. (4.47)

For a vortex, V0 is the strength of the pinning due to the depletion of the superfluid.
An analytic expression for the vortex-pinning-potential was calculated in ref. [96],
and yields

V vortex
0 ≈ ℏ2

mS
n̄Q(kξ), (4.48)

where mS is the mass of the superfluid particles and ξ =
√
w/Un̄ is the healing

length. The function Q(z) is defined via Q(z) = J1(2z)
2z +

∫∞
1 dx J0(2xz)

x
, where Ji(z)

is the i-th Bessel-function of the first kind. By use of eq. (4.47) in combination
with (4.48) and (4.41), we find that the vortex mass takes the analytic form

mv = mS

Q(kξ)
w

U
. (4.49)

In the relevant region of kξ ≪ 1 the function Q can be approximated by

Q(z) ≈ −0.0772 − log z. (4.50)

This shows that Q depends but weakly on kξ, and takes values on the order of
one. We then find the final expression for the approximate vortex mass

mv = mS

− log(kξ)
w

U
. (4.51)

Note that since kξ ≪ 1, log(kξ) < 0 and hence cancels the minus sign, so that
mv > 0 for all parameters.
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4.3.5 Validity of the Model

In the following, we want to discuss the limitations of our model with regard to the
approximations made and thus provide an intuitive understanding of the validity
of our approach. In addition, we compare our findings to previous works regarding
that particular problem in order to provide a wider picture.

Our derivation of the vortex-model and the induced vortex-mass is based on the
assumption that the system is in a regime where the lattice spacing is the domi-
nating length scale. From a more physical point of view this means that the lattice
always plays a significant role, and cannot be considered as a small perturbation to
the otherwise continuous superfluid. This basically leaves us with two boundaries
to obey: First, we require phase-coherence between the individual lattice sites in
order to create a vortex excitation. The loss of phase-coherence and the associated
transition into the Mott-insulating regime occurs at a critical interaction strength
Uc = 8wn̄ and hence sets an upper boundary for the lattice depth. Second, the
coherence-length ξ needs to be smaller than the lattice spacing in order to ensure
that the vortex core does not extend over several lattice sites. A violation of this
condition causes a (topological) transition into a Galilei-invariant regime [107], in
which the healing-length is far larger than the lattice spacing. In turn, this gives
rise to dissipative vortex motion as well as significant density-fluctuations and,
as a result, leads to a frequency-dependence of the vortex-mass. The very same
frequency-dependence was already found by Arovas and Freire [116] by starting
from a Ginzburg-Landau Lagrangian. They obtained an explicit expression for the
frequency-dependent vortex-mass, which exhibits both an infrared and ultraviolet
divergence. The latter was found to be due to the vortex-core, and can be treated
by introducing an ultraviolet temporal cutoff ξ/cs. The finite frequency ω sup-
presses the infrared divergence and leads to the low-frequency approximation for
the vortex-mass,

mv = msπnsξ
2
[ 1

2δ ln δ + 1
δ − 1 + signω iπ2δ

]
, (4.52)

with δ =
√

1 + ω2ξ2/c2
s . Here, the factor msπnsξ

2 can be considered as the
mass of the vortex core. It is important to stress that although this expression
diverges logarithmically as ω → 0, its Fourier-transform is causal. Such logarithmic
divergence has previously been found by Eckern and Schmid [117] in the context of
vortices in granular films as well as Stamp et al. [118] for magnetic domain-walls.
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Wang et al. [89] confirm these results and show that one can understand the vortex
mass as a coupling-effect of the many-body vortex-excitation to the environmental
modes. They derive an effective action for a single vortex in a superfluid by
integrating out the fluctuations of the environmental modes, where they consider
both phase- and density-fluctuations. Furthermore, they identify a regime in which
a vortex moves dissipationless, and find a well-defined expression for the vortex-
mass in the continuum, namely

mv = msπnsξ
2
[
π2

32 + lnR/ξ
2

]
. (4.53)

The first term in the brackets accounts for phase fluctuations, whereas the second is
due to density-fluctuations with the spatial cutoff R taking the value of the smaller
of the system size and the distance between the vortices. The validity of their ap-
proach is based on the assumption that the vortex cyclotron-frequency ωc is much
smaller than the temporal cutoff cs/ξ associated with the vortex core structure.
Although hard to achieve in the continuum, they claim that this condition can be
met within an optical lattice, in which the condition ωc ≪ cs/ξ then translates to
ξ ≪ 1. Together with the condition U < Uc that ensures phase coherence between
the different lattice sites they find but for notational differences

1 ≫ w

Un̄
≫ 1

n̄2 . (4.54)

However, this is exactly the condition (4.6) which marks the validity of the quan-
tum phase model (see section 4.2.1 and ref. [107]). In that sense, this justifies
our assumption of instantaneous vortex hopping, since any dissipative term would
be due to finite hopping times. By a simple translation of the continuum vortex
mass (4.53) they derive an equivalent expression for the lattice,

mv = mS
πw

U

[
π2

32 + 1
4 log U

wn̄

]
. (4.55)

Again, the first term in the brackets accounts for phase fluctuations, whereas the
second is due to density-fluctuations. Comparing eq. (4.55) with our findings (4.51)
we see that the two results agree in leading order, although our result does not show
the logarithmic dependence on the coherence length. This is hardly surprising,
since this term is due to density-fluctuations which we explicitly neglected in the
approximation δn ≪ n̄. In turn, Wang et al. [89] do not find the weak dependence
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Q(ξ) ≈ − log ξ that originates from the effective vortex potential. The reason for
that might be the very nature of how they translate their continuum results to the
lattice, which is based on the correspondence w ↔ ℏ2/2ms and U ↔ 4πasℏ

2/ms,
with as the scattering length.

4.3.6 Vortex-Hubbard Model

The previous results allow us to write an effective tight-binding Hamiltonian for
vortices hopping between dual lattice sites

HVH = wv

∑
⟨I,J⟩

(
v†
IvJe

i2πqJηIJ + v†
JvIe

−i2πqIηIJ
)

+ πK
∑
I,J

(2πqI)(2πqJ) log |xI − xJ | . (4.56)

Here, v†
I (vI) creates (annihilates) a vortex with vorticity qI on the dual site I and

K = n̄w is the superfluid stiffness. In turn, the vortex hopping rate is given by the
vortex mass derived in eq. (4.51), i.e. wv = ℏ2/mv. Eq. (4.56) is the generic model
for two-dimensional charged particles on a lattice under the influence of both an
external magnetic and electric field. The ratio between the hopping-rate and the
interaction-strength is

wv

K
= ℏ2

mv2n̄w = n̄ℏ2

mSU

[
U

wn̄

]2
, (4.57)

and marks the balance between kinetic and interaction energy. Increasing the
mobility of the superfluid particles decreases the mobility of the vortices and, as a
result, drives them into the classical regime. Conversely, strong interactions in the
superfluid leads to a quantum-mechanical behavior of the vortices. According to
eq. (4.6), the term in brackets has to take values between 1/n̄2 and 3 and, hence,
the ratio (4.57) takes values

wv

K
∈ ℏ2

mU

[ 1
n̄3 , n̄

]
. (4.58)

For large enough average superfluid filling n̄, this gives rise to a huge regime in
which the interaction energy can be tuned respective to the kinetic energy. Even so,
one needs to keep in mind that the interaction is long-range and shows no screening
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effect, as for instance occurs in dipolar gases. In that sense, the interaction between
vortices is always strong.

4.4 Vortex Dynamics

In section 4.3 we derived a fully quantum-mechanical model for vortices in an
optical lattice. Our main result in section 4.3.3 was that vortices in an optical
lattice become massive quantum-particles and hence should behave accordingly.
The immediate question that arises is: What are the signatures for a quantum-
motion of massive vortices as compared to their massless counterparts?

4.4.1 Classical Vortex Motion

It is instructive to begin with a semiclassical description of vortex motion in a con-
tinuous superfluid. Such a massless vortex is well described as a massless quasipar-
ticle subject to two different kinds of forces: The interaction between the superfluid
flow and the velocity-field of a vortex with vorticity q gives rise to the so-called
Magnus force,

FM = −2πℏqnSvS ∧ ẑ, (4.59)

that is proportional to the local superfluid density nS and the superfluid velocity
vS. On the other hand, a vortex moving around a closed loop of area A picks up
a Berry-phase ϕBerry = 2παA, where α is a proportionality factor that depends on
the particular microscopic Hamiltonian of the superfluid. This phase is in analogy
to the Aharonov-Bohm-phase picked up by a charged particle in a magnetic field,
and leads to the equivalent of the Lorentz-force, namely the Berry-force

FB = 2πℏqαvv ∧ ẑ. (4.60)

Similar to the Magnus-force, the Berry-force acts perpendicular to the vortex ve-
locity vv. The dynamics of a vortex in a continuous superfluid is hence governed
by the equation of motion

0 = FB + FM = 2πℏq(αvv − nSvS) ∧ ẑ, (4.61)

where the zero on the left-hand side stems from the lack of an inertial term for a
classical vortex. If we assume the vortex and the superfluid to be stationary in a
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given reference-frame, both the Magnus- and the Berry-force vanish and, therefore,
vv = vs = 0 is a solution to eq. (4.61). Galilei-invariance tells us that this is true for
any reference frame moving at a constant velocity vG. Yet the Galilei-transform
of the stationary solution is only a solution itself if α = nS, as can easily be seen
by 0 = α(−vG) − ns(−vG) = αv′

v − nsv′
S. Therefore, a classical vortex follows

the superfluid velocity at its core position. On the other hand, if one explicitly
breaks Galilei-invariance, this symmetry-argument no longer holds and the relation
α = ns is allowed to change.
A different interpretation of the forces acting on a vortex can be given in terms of
the Josephson-relation [114]. A moving vortex creates a time-dependent jump in
the superfluid phase ∆ϕ due to its non-trivial winding number q. The Josephson-
relation ∆µ = ℏ∂t∆ϕ then relates such a jump to a change in the chemical potential
∆µ perpendicular to the vortex velocity, and in turn leads to a superfluid flow.
The resulting change in momentum of the superfluid particles is then transferred
to the moving vortex, and, according to Newton, yields a force proportional to the
relative velocity vv − vS.

Massive Vortices

Henceforth we consider the case in which the vortex turns massive. However, we do
not specify the nature of this vortex mass, nor do we remove the Galilei-invariance
of the system. Obviously, this is a rather naive approach, since the vortex mass
derived in section 4.3.3 is rooted in the underlying lattice structure. On the other
hand, it is instructive to consider the fundamental differences in the dynamics of

Figure 4.3: (a) Trajectory of a classical massless vortex. The balance between
Magnus- and Berry-force in the Galilei-invariant system requires the
vortex to follow the superfluid flow. Hence, we obtain vv = vs. (b) For
a massive vortex in a Galilei-invariant system, the vortex-motion is no
longer uniform, but exhibits oscillations. Still, on average a massive
vortex follows the superfluid flow, ⟨vv⟩ = vs.
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a massive classical vortex as compared to its massless equivalent as well as its
quantum counterpart. The addition of an inertial term to eq. (4.61) leaves us with
the modified equations of motion

mv∂tvv = FB + FM = 2πℏqα(vv − vS) ∧ ẑ. (4.62)

For a vortex in a superfluid with initial velocity v0
v, the solution to eq. (4.62) reads

xs = tvs + v0
v − vs

ωc
(id cosωct− ε sinωct) , (4.63)

where ωc = 2πℏqns/mv is the classical cyclotron frequency, vs is the superfluid
velocity and ε is the totally antisymmetric tensor. Since the equation of motion is
now of second order, the vortex no longer reacts instantaneously to a change of the
superfluid flow. In addition, the wedge admixes parallel and orthogonal velocity
components, and leads to a non-vanishing vortex velocity perpendicular to the
superfluid flow. Rather than to accelerate in that direction, the vortex oscillates
with an amplitude

aosc = mvvs

2πℏqns
. (4.64)

Averaging over the oscillating term in eq. (4.63) still yields a vortex that follows
the superfluid flow, regardless of the initial conditions. Hence, a mass-term in
itself does not change in the fundamental dynamics of a vortex, but only adds
an additional texture to its trajectory. Indeed, for a classical vortex in a weakly
interacting superfluid, the oscillation amplitude is much smaller than the core-
radius, ξ ≫ aosc = vs/ωc ≈ cs/ωc, and is thus obscured.

4.4.2 Vortex Motion on a Lattice

The introduction of a lattice explicitly breaks the Galilei-invariance and thus the
balance between Magnus- and Berry-force. In order to derive the lattice-version
of the continuum-relation α = ns, we start from our vortex lattice model (4.56).
For a single vortex the interaction term drops out, and we are left with a generic
Hamiltonian of a gauged particle on a lattice,

HVH = −wv

∑
⟨I,J⟩

(
v†
IvJe

i2πqJηIJ + v†
JvIe

−i2πqIηIJ
)
. (4.65)
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Here, the gauge-field 2πηIJ due to the superfluid filling nS =
∑
□ ηIJ accounts for

the non-vanishing commutation relation between the translational operators Tµ,
namely

TxTy = TyTxei2πnS . (4.66)

Formally, the addition of the phase factor is a transition from a linear represen-
tation of the translation group to a projective representation that is linear up to
scalar factor. The Berry-phase of a vortex-state |ψI⟩ moving around a lattice site
with superfluid filling ns takes the form

ϕBerry = 2πα = arg⟨ψI |T−ŷT−x̂TŷTx̂|ψI⟩ = 2πns mod 2π. (4.67)

Yet, due to the 2π ambiguity of this expression the Berry phase is not uniquely
defined and allows for a whole set of solutions α = nS +Z. A better understanding
of the physics behind this ambiguity can be obtained by considering the change
in momentum. Transporting a vortex along the y-direction yields a momentum-
change ∆Px = 2πnS∆y. Since the motion takes place on a lattice, the momentum
is only defined up to a reciprocal lattice vector. The simple 2π ambiguity has
but severe consequences for the Hall-conductivity of the charged superfluid and,
accordingly, for the Hall-conductivity of the vortices. Namely, the addition of
the reciprocal lattice vector 2πZ in principle allows for a change of sign in the
Hall-conductivity for monotonously increasing superfluid filling ns. As it turns
out, this is indeed what happens. In a series of papers N. Lindner, A. Auerbach,
D. Arovas and S. Huber [100,101,114,119] provided a comprehensive picture of the
Hall-conductivity in lattice systems and found a topological transition from the al-
ternating Hall-conductivity close to the Mott-insulator to the uniformly increasing
classical expression in the Galilei-invariant Gross-Pitaevskii limit (see ref. [114] for
further details).

Semiclassical Equations of Motion

As long as the Berry-phase ϕBerry remains small, the vortex only experiences a
Lorentz-force leading to a cyclotron motion in the (lowest) energy-band. However,
for large Berry-phase contributions α mod 1 ≫ 0 the effective magnetic field
changes the Bloch-band itself. Indeed, for ns = p/q ∈ Q we are left with q magnetic
subbands, the so-called magnetic Bloch-bands. This yields a fractional structure
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for the energy bands, which, due to its distinguished form, is called the Hofstadter
butterfly [120]. The charged particle then only feels the excess magnetic field
δn = ns − Q, whereas ns is included in the dispersion relation. In turn, the
charged particle performs a cyclotron motion in the magnetic Bloch-band. Xiao et
al. [121] derived semi-classical equations of motion for this particular system. In a
two-dimensional lattice with orthogonal magnetic field the semiclassical equations
are

ℏk̇ = F − ẋ ∧ δnsẑ, ℏẋ = ∂EM
∂k − ℏk̇ ∧ ẑΩ(k). (4.68)

Here, EM = Ep/q(k) − m(k)δns is the magnetic Bloch band Ep/q(k) with an
additional Zeeman splitting m(k)δns due to the rotation of the wave-packet [121],
whereas δns = ns − Q is the excess magnetic field. Moreover, Ω(k) is the Berry-
curvature

Ω(k) = i⟨∇ku(k)| ∧ |∇ku(k)⟩, (4.69)

that acts as the momentum-space equivalent of a magnetic field. In a two-dimen-
sional setup with orthogonal magnetic field, one can show that the Berry-curvature
is perpendicular to the plane. Since the Berry-curvature explicitly depends on the
vortex wave-function, we are not able to derive the equations of motion for general
superfluid filling factors explicitly.

The Most Simple Interference Experiment

To circumvent the problem of calculating the Berry-curvature, we exploit the fact
that the underlying vortex Hamiltonian (4.65) is periodic in the effective magnetic
flux, that is the superfluid filling ns. Accordingly, for integer superfluid filling
ns ∈ N we find that (4.65) is invariant under time-reversal. The same has to be
true for the corresponding equations of motion, which for ns ∈ N take the form

ℏk̇ = F, ℏẋ = ∂EM
∂k − F ∧ Ω(k). (4.70)

Time-reversal of eq. (4.70) then gives rise to the condition Ω(−k) = −Ω(k). Yet the
spatial inversion symmetry of the underlying square lattice requires Ω(−k) = Ω(k).
To fulfill both these conditions, the Berry-curvature has to vanish identically
throughout the Brillouin-zone. Therefore, the effective equations of motion at

87



4 Quantum-Motion of a Topological Defect

integer superfluid filling take the simple form

ℏk̇ = F, ℏẋ = ∂E0(k)
∂k , (4.71)

where the magnetic Bloch-band reduces to the cosine-band suggested by the nearest-
neighbor hopping in the Hamiltonian (4.65). The remaining quantum-property of
these equations is the non-trivial dispersion relation E0(k) = −2wv[cos kx+cos ky].
Given the trivial solution of the first of the eqs. (4.71) under a constant force,
namely ℏk = Ft+ k0, the second equation reduces to

ẋ = ∂E0(k)
∂ℏk

∣∣∣∣
ℏk=Ft+k0

= 2wv

ℏ

[
x̂ sin Fxt

ℏ
+ ŷ sin Fyt

ℏ

]
. (4.72)

Here, the periodic structure of the energy-band gives rise to Bloch-oscillations of
the vortex velocity and in turn to the vortex position. The important point is
that these oscillations are due to interference between the different eigenfunctions
the wave-packet is composed of and hence are a hallmark for quantum properties
of the vortex. In contrast to the oscillations of a classical massive vortex, the
Bloch-oscillation amplitude is now parallel to the external force F . Moreover, the
Hall-motion perpendicular to the external force vanishes completely due to the
lack of an effective magnetic field.

The easiest way to apply a constant force on a vortex is to generate a constant
superfluid current which, according to eq. (4.59), gives rise to a Magnus-force. A
classical vortex would then just follow the superfluid flow, whereas the massive
quantum vortex oscillates perpendicular to the superfluid current (see Fig. 4.4).

Figure 4.4: Trajectory of a quantum vortex on a lattice. For integer superfluid
filling n̄ ∈ N, which is equivalent to a vanishing effective magnetic
field, the vortex experiences no Berry-force. However, the periodic
dispersion-relation due to its induced mass leads to Bloch-oscillations
of the vortex perpendicular to the superfluid flow vs. Yet the vortex
basically stays localized since ⟨vv⟩ = 0.
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The oscillation-amplitude and -frequency can be obtained directly from the equa-
tion of motion (4.72), and, by use of wv = ℏ2/mv, take the respective form

aBO = ℏ2

mv2πℏqn̄vs
= −Uℏ log ξ
wms2πqn̄vs

, (4.73)

ωBO = F

ℏ
= 2πqn̄vs. (4.74)

Last, we want to give a rough estimate for the expected amplitude of such Bloch-
oscillations. According to eq. (4.6), the factor of U/wn̄ in aBO takes values in
[1/n̄2, 3]. That leaves us with ℏ/msvs, which we expect to be much smaller than
the recoil momentum pR = 2πℏ. For msvs = ps ≈ 0.01pR, U/wn̄ ≈ 0.1 and all
other factors on the order of one, we find that the oscillation-amplitude is roughly
on the order of aBO ≈ 10 and can easily be observed.

4.4.3 Experimental Realization

Our results can be directly verified in a system of cold atoms. The creation of
superfluid vortices is achieved by the use of an optically synthesized magnetic field
for ultra-cold neutral atoms [122], that in turn acts a chemical potential for the
vortices. Alternatively, there is the possibility to directly transfer orbital angular
momentum from a holographically generated light beam using a two-photon stimu-
lated Raman process [123]. The fundamental difference in the vortex trajectory as
described in the previous section can then be measured via interference with a sec-
ond condensate, as is described in ref. [124]. Although an in situ technique [125]
would be desirable, it suffers from a major advantage in this particular regime:
Since the vortex core is much smaller than the lattice spacing in the strongly in-
teracting regime, one has to ramp the parameters to the weakly interacting regime
in order to make the vortex visible.

4.5 Conclusion

In this chapter, we have considered vortex-excitations in a cold atomic gas confined
to an optical lattice. By use of a coherent-state path-integral approach we were
able to map the superfluid degrees of freedom onto the vortex degrees of freedom,
and thus derive an effective action for the vortices. The basis of this derivation has
been the assumption that the lattice-spacing is the dominating length-scale, and
that the system is in the strongly-interacting regime. Therefore, the vortex-core
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that is much smaller than the lattice-spacing and, as a result, the vortex is confined
to a single lattice-plaquette. By neglecting fluctuations around the semiclassical
path, we have derived an analytic expression for the instanton-action of a single
vortex hopping from one plaquette to another. We have found that the imaginary
part of the instanton-action is due to the interaction between the velocity-field
of the vortex and the superfluid density, and yields the lattice-equivalent of the
Magnus-force. Conversely, the real contribution stems from the vortex interacting
with its own phonon-field. By integration over the latter we have obtained an ex-
plicit expression for the vortex hopping rate, and, accordingly, for the vortex mass.
In turn, we have derived an effective tight-binding model for the vortex degrees of
freedom with nearest-neighbor hopping as well as logarithmic interaction, as was
found earlier in the context of vortex lattice melting. Last, we have provided a semi-
classical equation of motion for the massive quantum vortices, and have compared
those to the hydrodynamic equation of motion of a classical vortex. Rather than
to follow a superfluid flow, quantum lattice vortices can exhibit Bloch-oscillations
perpendicular to it, and thus provide clear evidence for quantum-interference.

4.A Continuum Limit of the Vortex Action

In this section we derive the continuum version of the action (4.14) and establish
its connection to the electrodynamic field theory in analogy to ref. [116]. Our
starting point is the action

SθψrQPM =

ℏβ∫
0

dτ
U

2

[∑
I

(∑
□

ψJI

)2

+
∑
⟨I,J⟩

(θIJ − ∂csτψJI)
2

]

− 2πi
∑
I

θIcs

(
qI − B̄

)
− 2πiℏ

∑
⟨I,J⟩

(ψJI − ηJI) jJI . (4.75)

The first term in eq. (4.75), namely the magnetic term
∑
□ ψJI , reduces to∑

□

ψJI = −(ψ(I,I+x̂)+ŷ − ψI,I+x̂) + (ψ(I,I+ŷ)+x̂ − ψI,I+ŷ)

≈ ∂xψ
ŷ − ∂yψ

x̂ = ∇ ∧ ψ(x). (4.76)

Note that this is indeed in analogy to the magnetic field in common electrodynam-
ics, and thus justifies our notation. Likewise, the second, electric term θIJ−∂csτψJI
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in eq. (4.75) takes the form

θIJ − ∂csτψJI ≈ ∇θ(x) − ∂csτψ(x). (4.77)

The full action (4.75) in the continuum-limit then reads

Scont
rQPM =

ℏβ∫
0

dτd2x
U

2

[
(∇ ∧ ψ(x))2 + (∇θ(x) − ∂csτψ(x))2

]
− 2πiℏθ(x)(c(x) − B̄(x)) − 2πiℏ(ψ(x) − η)j(x). (4.78)

Here, the term in the square brackets is the well-known Lagrangian of a free elec-
tromagnetic field, that is LEM = 1/4 (e2 + c2

s b
2). The disturbing plus-sign arises

due to the imaginary time, and can easily be seen in Weyl-gauge, where the electric
field is but a time-derivative of the vector-potential. As in the lattice-calculation
above, we can introduce the covariant notation by using the (2+1)-vector χ. In
this notion, the continuum vortex action takes the compact form

Scont
rQPM =

ℏβ∫
0

dτd2x
U

2 χ(x)∆χ(x) − 2πiℏ(χ(x) − η)j(x), (4.79)

where the coupling-matrix ∆ is given by

∆ =

 −∂2
x − ∂2

y ∂x∂csτ ∂y∂csτ

∂x∂csτ −∂2
csτ − ∂2

y ∂x∂y

∂y∂csτ ∂x∂y −∂2
csτ − ∂2

x

 . (4.80)

This very expression was already found by Arovas and Freire [116]. They started
from the standard Ginzburg-Landau Lagrangian density in the presence of an
external gauge field, and derived eq. (4.79) via a Hubbard-Stratonovich transfor-
mation. In order to derive an effective theory for the vortices we integrate over the
phonon degrees of freedom, and are left with the effective vortex action

Scont
rQPM = − (2πℏ)2

2U

∫
dτd2x dτ ′d2x′ j(x, τ)∆−1(x − x′, τ − τ ′)j(x′, τ ′)

+ 2πiℏ
∫
dτd2x η(x)j(x, τ). (4.81)
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As is expected from the analogy to electrodynamics, or, more specifically, U(1)
gauge theory, the coupling-matrix ∆ is singular, and has to be regularized in order
to obtain the explicit expression for the vortex Green’s-function. By choosing
the Lorentz-gauge, namely ∂χ = 0, the non-zero part of ∆ takes the simple form
∆ = −id∂2, which, in turn, can be easily inverted. We are thus left with the trivial
propagator for the phonon field,

∆−1 = −id 1
∂2 = −id 1

∂2
csτ + ∂2

x + ∂2
y
. (4.82)

In the static limit, the Green’s-function ∆−1 gives rise to a logarithmic interaction
between the vortices in agreement with the classical hydrodynamic theory. Taking
retardation effects into account one finds a frequency-dependent mass term which
diverges in both the UV and IR limit (see subsection 4.3.5 and ref. [116]).

4.B Lattice Green’s-Function

It is convenient to calculate the Green’s-function on the lattice in Fourier-space,
in which the phonon-fields θI and ψJI take the respective form

θI =
∫
dω eiωτ

∑
k

eikxI θk,ω (4.83)

and

ψJI =
∫
dω eiωτ

∑
k

eik
xJ+xI

2 ψJIk,ω. (4.84)

For the sake of convenience, we split the free action for the phonons into the electric
term (θIJ − ∂ψJI)2 and the magnetic term (

∑
□ ψJI)

2. The Fourier-transform of
the electric term then reads∫

dτ
∑
⟨I,J⟩

(θIJ − ∂ψJI)2

=
∑
I

∑
⌞

∑
k,k′

∫
dω

[
θk,ωθk′,−ω

(
eikxI − eikxJ

)(
eik

′xI − eik
′xJ
)

+ θk,ωi
ω

cs
ψJIk′,−ω

(
eikxI − eikxJ

)
eik

′ xJ+xI
2 + ω2

c2
s
ψJIk,ωψ

JI
k′,−ωe

i(k+k′) xJ+xI
2

]
,
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where the summation
∑
⌞ denotes the two links in the positive direction situated at

the dual lattice site I. For the sake of brevity we henceforth only consider a link in
the x̂-direction, so that I = J+ x̂. A link in the ŷ-direction yields an analog result,
however with x̂ and ŷ interchanged. Moreover, we will split the above summation
into its three components, in the vain hope to achieve something resembling a clear
calculation.

(i) First term:∑
J

∑
k,k′

θk,ωθk′,−ω
(
eik(xJ+x̂) − eikxJ

)(
eik

′(xJ+x̂) − eik
′xJ
)

=
∑

k

|θk,ω|24 sin2 kx
2 ,

with the short-hand notation |θk,ω|2 = θk,ωθ−k,−ω.

(ii) Second term:∑
J

∑
k,k′

θk,ωi
ω

cs
ψJIk′,−ω

(
eik(xJ+x̂) − eikxJ

)
eik

′ xJ+xJ+x̂
2

= −
∑

k

θk,ωψ
JI
−k,−ω2 ω

cs
sin kx2 ,

and, of course, the conjugate counterpart.

(iii) Third term:∑
J

∑
k,k′

ω2

c2
s
ψJIk,ωψ

JI
k′,−ωe

i(k+k′) xJ+xJ+x̂
2 =

∑
k

ω2

c2
s

|ψJIk,ω|2.

The overall result may then be written in the compact form∫
dτ
∑
⟨I,J⟩

(θIJ − ∂ψJI)2

=
∫
dω
∑

k

(
θ−k,−ω

ψJI−k,−ω

)(
4 sin2 kx

2 −2 ω
cs

sin kx
2

−2 ω
cs

sin kx
2

ω2

c2
s

)(
θk,ω

ψJIk,ω

)
,

together with the equivalent expression in which x and y are interchanged.
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In Fourier-space, the lattice version of the curl reads∑
□

ψJI = ψI,I+x̂ + ψI+x̂,I+x̂+ŷ − ψI+ŷ,I+x̂+ŷ − ψI,I+ŷ

=
∑

k

ei
kx+ky

2 2i
[

− ψx̂k,ω sin ky2 + ψŷk,ω sin kx2

]
eikxI .

Omitting the factor of (2i)2 = −4, the magnetic term reduces to∑
I

∑
k,k′

ei(k+k′)xI ei
kx+ky

2 ei
k′
x+k′

y
2

[
− ψx̂k,ω sin ky2 + ψŷk,ω sin kx2

]
×
[

− ψx̂k′,−ω sin
k′
y

2 + ψŷk′,−ω sin k
′
x

2

]
=
∑

k

[
ψx̂k,ωψ

x̂
−k,−ω sin2 ky

2 − ψx̂k,ωψ
ŷ
−k,−ω sin kx2 sin ky2

− ψŷk,ωψ
x̂
−k,−ω sin kx2 sin ky2 + ψŷk,ωψ

ŷ
−k,−ω sin2 kx

2

]
.

Thus, we are left with the identity∫
dτ
∑
I

(∑
□

ψJI

)2

= 4
∫
dω
∑

k

(
ψx̂−k,−ω

ψŷ−k,−ω

)(
sin2 ky

2 − sin kx
2 sin ky

2

− sin kx
2 sin ky

2 sin2 kx
2

)(
ψx̂k,ω

ψŷk,ω

)
.

Cast in terms of the (2+1)-vector notation χk,ω = (θk,ω, ψ
x̂
k,ω, ψ

ŷ
k,ω), we find the

Fourier-transform of the interaction-matrix for the phonon field as

∆IJ =
∫
dω eiωτ

∫
d2k

(2π)2 e
ik(xI−xJ )∆k,ω, (4.85)

with

∆k,ω =

 4 sin2 kx
2 + 4 sin2 ky

2 −2 ω
cs

sin kx
2 −2 ω

cs
sin ky

2

−2 ω
cs

sin kx
2

ω2

c2
s

+ 4 sin2 ky
2 −4 sin kx

2 sin ky
2

−2 ω
cs

sin ky
2 −4 sin kx

2 sin ky
2

ω2

c2
s

+ 4 sin2 kx
2

 . (4.86)

However, the interaction-matrix (4.86) is singular and, therefore, needs to be reg-
ularized in order to derive a well-defined inverse. This may be achieved by adding
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a convenient zero in the form of 0 = Ωk,ωχk,ω with

Ωk,ω =

 ω/cs

2 sin kx
2

2 sin ky
2

⊗

 ω/cs

2 sin kx
2

2 sin ky
2

 . (4.87)

The Euler-Lagrange equations of the action (4.14) imply that Ωk,ωχk,ω = 0 is in-
deed fulfilled. In the language of electromagnetism, this is just the discrete Lorentz-
gauge condition. In turn, the regularized interaction-matrix ∆reg

k,ω = ∆k,ω + Ωk,ω

is purely diagonal, and takes the form already presented in eq. (4.19).
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Chapter 5

Fractional Excitations in Cold Atomic
Gases

5.1 Motivation

Excitations carrying fractional quantum numbers are one of the most intriguing
features of strongly interacting many-body systems. Arguably the most celebrated
of those is the charge e/3 Laughlin quasiparticle responsible for the fractional
quantum hall effect, where a single electronic charge attaches to three magnetic
flux-quanta [126]. Much effort is devoted into finding novel phases with even
more exotic excitations such as non-abelian anyons and fractional statistics in
three-dimensional systems. Yet, those excitations are notoriously hard to study
in solid-state systems, as their very nature is based on interactions rather than
single-particle properties. In the quest for the experimental realization of such
strongly-correlated phases, cold atomic gases with their clean and controllable
environment are a promising candidate and testing-ground [16].
A variety of theoretical proposals in cold atomic gases focus on the realization
of strongly-correlated phases with fractional excitations. Among the most promi-
nent examples are systems which support spin-liquid phases [127], as well as Ki-
taev’s famous toric-code with abelian anyonic excitations [128–131], and systems
in large effective magnetic fields [103, 105] which exhibit fractional quantum hall
states [104, 132–137]. These proposals are based on standard experimental tools
presently available in the context of quantum-simulation, and are reviewed in the
comprehensive work of Bloch, Dalibard and Nascimbéne [138]. The latest develop-
ment of experiments [27,139] with single-site readout and addressability in optical
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lattices has opened the path for the observation of a novel quantum phase transi-
tion in tilted optical lattices [2, 140–142], and marks a first step in this direction
of simulating fractional excitations within cold atomic gases.
A tilted optical lattice exhibits a transition from a phase with one atom on each
lattice-site into a density-wave phase with broken translational symmetry, in which
fundamental excitations are domain-walls carrying an effective fractional charge.
Yet, the simplest experimentally accessible excitation is achieved by moving a single
atom from a doubly-occupied site to its neighboring site and corresponds to the
creation of two closely bound domain-walls. This is in direct analogy to the one-
dimensional Ising-model in the antiferromagnetic phase; there, the fundamental
excitations take the form of two adjacent spins pointing upwards. The important
question is then, whether these experimentally accessible excitations will decay
into the fundamental domain-wall excitations and how to detect these fractional
excitations. In this chapter, we answer this question thoroughly, and provide
both a theory for the dynamics of fractional excitations as well as a scheme for
their experimental observation. In addition, we confirm our theoretical analysis by
t-DMRG simulations, which were created in collaboration with Jad Halimeh, Ian
McCulloch and Ulrich Schollwöck in Munich.

5.2 Tilted Bose-Hubbard Model

We start with the one-dimensional tilted Bose-Hubbard model studied both theo-
retically [140, 142] and experimentally [2, 15]. With the on-site interaction U , the
hopping-rate w, and the lattice-tilt E per site, the microscopic Hamiltonian takes
the form

HTBH = − w
∑
j

(
a†
jaj+1 + aja

†
j+1

)
+ U

2
∑
j

nj(nj − 1) − E
∑
j

jnj . (5.1)

Here, a†
j (aj) is the bosonic creation (annihilation) operator for a particle on site

j, nj = a†
jaj the number operator.

In the following, we focus on the regime with an average density of one atom per
lattice-site and a large on-site interaction U compared to the hopping-rate w. We
further assume a positive tilt E > 0, that is the lattice is tilted to the right. The
relevant energies are then the energy difference ∆ = E − U and the hopping-rate
w. For large negative ∆, the Mott-insulator state is stable. However, increasing
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5.3 Effective Model for Fractional Excitations

Figure 5.1: Phase diagram for the tilted Bose-Hubbard model in the regime
∆, w ≪ U,E > 0 and an averaged density of one particle per lattice-
site: Mott-insulator (MI) ground-state for ∆/w < γc ≈ 1.85 [140], and
the density-wave phase (DWP) for ∆/w > γc.

∆ ≈ w allows for particles to tunnel to their right neighboring site as long as the
particle on that respective site has not tunneled itself. An adiabatic increase of the
lattice-tilt E from zero to E ≫ U then yields a transition from the Mott-insulating
phase to a density-wave phase with broken translational symmetry in which two
atoms occupy each second lattice-site. Note that this is not the ground-state but
rather a metastable state, in which energy conservation prevents relaxation.
These constraints are most conveniently incorporated by a mapping of the Bose-
Hubbard model to a spin-model: The spin-degree of freedom resides between two
lattice-sites i and i + 1. If an atom has tunneled from site i to site i + 1, the
respective spin points down. In turn, if the atom is still on its original site i,
the spin points up. Then, the Bose-Hubbard model maps to the one-dimensional
Ising-model

HIsing = − 2
√

2w
∑
i

Six + ∆
∑
i

Siz + J
∑
i

(
Siz − 1

2

)(
Si+1
z − 1

2

)
, (5.2)

where Siz (Six) is the spin operator along the z (x) axis. Moreover, the last term
accounts for the conditional tunneling constraint and formaly requires to take the
limit J → ∞. In the Ising-picture, the Mott-insulating state corresponds to a
paramagnetic phase with all spin-up, whereas the ordered broken-symmetry phase
corresponds to a Ising antiferromagnetic ground-state.

5.3 Effective Model for Fractional Excitations

The fundamental excitations in the density-wave phase with E,U ≫ ∆ ≫ w take
the form of domain-walls separating the two degenerate density-wave realizations,
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and are marked by a singly occupied site. However, the experimentally accessible
low-energy excitations are achieved by moving a particle from a doubly occupied
lattice-site to its neighboring site on the left (see Fig. 5.4). The energy cost of such
a single-particle excitation is the energy due to the lattice-tilt E minus the on-site
interaction U , that is ∆, and is exactly double the energy of a single domain-wall.
In that sense, domain-walls are excitations carrying a fraction, namely half, the
energy of a single-particle excitation. A single-particle excitation can thus be con-
sidered as two domain-walls sitting on adjacent lattice sites. The fractional char-
acter shows directly in the analog Ising picture: There, a single-particle excitation
in the density-wave phase corresponds to a single spin-flip in the antiferromagnetic
configuration, thus creating three adjacent spins pointing upwards. Conversely, a
domain-wall is a configuration where only two adjacent spins point upwards, and
separates the two degenerate antiferromagnetic phases.

5.3.1 Second-Order Processes

Quantum-fluctuations allow a domain-wall to hop from one lattice site to the
other. Due to the broken translational symmetry of the density-wave phase, an
individual hopping process takes place from site i to site i± 2. Therefore, domain-
walls are restricted to even or odd lattice-sites each, depending on the local order.
In principle, such hopping allows for the decay of a single-particle excitation into
two spatially separated domain-walls, and hence creates a phase of opposing order
between the latter. In second-order perturbation in w/∆, only a single process
contributes to the domain-wall hopping (see Fig. 5.3): For a domain-wall hopping
to the right, a particle from the doubly occupied site to the right of the single
particle associated with the domain-wall first moves to the left. Then, the initial
single particle moves one site to the right, and thus creates a double occupancy
on the previously empty site. The single occupancy is now directly to the right of
this particular site. The energy difference between the intermediate state and the
initial one in this process is ∆. In contrast, reversing the order of this process would
yield an intermediate state with energy difference −E. Since we assumed E ≪ ∆,
the latter is strongly suppressed. The resulting expression for the second-order
hopping rate then takes the form

z = 2w2/∆. (5.3)
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Figure 5.2: Leading order fluctuation processes contributing to the nearest-
neighbor interaction: (a) Fluctuations of the single-particle excitation:
A particle from the second site can hop to the third and back again
(i). Likewise, a particle from the fifth site can hop to the fourth (ii).
Those two intermediate states have an opposing energy difference with
respect to the initial configuration, and thus the energy contribution
vanishes. However, in an initial state of two fractional excitations (b)
a particle can hop from the fourth to the third site (i). In turn, the
energy of this configuration is lowered by 2w2/∆, where the factor of
2 is due to Bosonic enhancement. Processes on the order of 1/E and
1/U are not shown in this diagram.

An explicit calculation for this particular expression is found in appendix 5.A. On
the other hand, adding quantum-fluctuations lifts the classical (w = 0) degen-
eracy between the single-particle excitation and two spatially separated domain-
walls. By applying the same second-order perturbation-theory as above we find
the energy-shift

V = 2w2/∆, (5.4)

which represents a repulsive short-range interaction between the domain-walls.
Note that this interaction energy V takes the same value as the hopping rate z.
In consequence, the effective theory derived below will feature but a single energy
scale. The question is weather this interaction gives rise to a stable bound state
of domain-walls.
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Figure 5.3: Intermediate states for a fractional excitation hopping from the second
to the fourth site: In second-order, one of the two particle from the
fourth can first hop to the third site, and then the particle from the
second can hop to the third site (i). The reversed order process how-
ever, in which the particle from the second site hops to the third site
first (ii) is strongly suppressed due to the large energy difference E of
the intermediate state.

5.3.2 Hard-Core Boson Model

The conditional tunneling restriction of fractional excitations in the microscopic
lattice can be uniquely fulfilled by introducing a new lattice: Each singly occupied
site and the combination of a doubly occupied site next to an empty site count as
a new lattice-site (see Fig. 5.4). In consequence, the number of effective lattice-
sites between two excitations is half the number of microscopic lattice-sites. The
dynamics of fractional excitations is then governed by the hard-core boson model
with nearest-neighbor hopping z and interaction V ,

HHCB = −z
∑
i

(
b†
jbj+1 + bjb

†
j+1

)
+ V

∑
j

njnj+1, (5.5)

where b†
j (bj) is the creation (annihilation) operator for a fractional excitation on

site j, and nj = b†
jbj ∈ [0, 1] the number operator. Similar Hamiltonians have been

studied previously in the context of repulsively-bound states [143, 144]. There, a
bound-state of fractional excitations means that the experimental accessible single-
particle excitation cannot decay into its two fractional constituents due to energy
conservation. Likewise, the absence of a bound state corresponds to a situation in
which the single-particle excitation decays into delocalized fractional excitations,
and thus can be observed individually in an experiment. Up to second-order per-
turbation, the hard-core Boson model has the single energy scale z = V , which
yields an universal bound-state structure for the fractional excitations.
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Figure 5.4: Mapping from the tilted Bose Hubbard model (TBH) onto the effective
hard-core boson model (HCB): Two neighboring lattice-sites occupied
by a 0, 2-configuration map onto a single unoccupied site, whereas a
singly occupied site maps onto an occupied site. A second-order tran-
sition with z = 2w2/∆ allows for an effective hopping of the fractional
excitations.

5.3.3 Eigenstates of the Hard-Core Boson Hamiltonian

In order to derive the two-particle eigenfunctions of the effective Hamiltonian (5.5),
we write the wave-function for two fractional excitations in the effective model as
ψ(i, j), where i and j denote the positions of the fractional excitations in the
effective lattice. The discrete translational invariance of the system provides con-
servation of the center-of-mass quasi-momentum Q, which allows for an expansion
into eigenfunctions of HHCB for a fixed center-of-mass quasi-momentum. There-
fore, the two-particle wave-function can be factorized as ψ(X,x) = e−iQXψ(x)
with the center-of-mass X = (i+ j)/2 and relative coordinates, x = i− j (see ap-
pendix 5.C.1). In particular, we choose the normalization such that x is restricted
to non-negative values.
We find two different regimes for the two-particle states: In the first regime
with |Q| ≤ Qc = 2π/3, the two-particle eigenfunctions are given by scattering
states ψq alone with energy Eq = −zQ cos q, where q is the relative momentum
and zQ = 2z cosQ/2 denotes the hopping-rate in the center-of-mass frame. Its
wave-function reduces to plane waves, ψq(x) = (1 − δx,0) cos(q|x| + ϕQ,q), with a
scattering-phase shift

ϕQ,q = arctan cos q + 2 cosQ/2
sin q .

The Kronecker-delta factor 1 − δx,0 then accounts for the hard-core constraint and
enforces ψq = 0 at x = 0. In the second regime for |Q| > Qc, an additional
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bound state ψB emerges. The repulsive interaction yields a bound-state energy
EB = z(1 − 4 cos2 Q/2) lying above the scattering continuum (see Fig. 5.5). Its
two-particle wave-function shows an exponential decay with relative distance x,
and can be written as

ψB(x) = (1 − δx,0)
[

1 − 4 cos2 Q/2
4 cos2 Q/2

] 1
2 (

−2 cos Q2

)|x|
. (5.6)

Note that the alternating amplitude of the wave-function is a typical feature of a
repulsively-bound state. The general wave-function of two fractional excitations

Figure 5.5: Center-of-mass energy diagram for the scattering states and the bound
state of the effective hard-core boson model. The scattering continuum
is indicated by the fish-eye (yellow). Above a critical momentum Qc =
2π/3, a stable repulsively bound state emerges (blue line).

with fixed center-of-mass momentum Q can therefore be decomposed as

ψ(X,x) = e−iQX

[
CBψBe

−iEBt/ℏ +
∫

dq

2π Cqψqe
−iEqt/ℏ

]
, (5.7)

with CB and Cq denoting the overlap of the initial wave-function with the bound
and scattering eigenfunctions of HHCB.

5.4 Time-Evolution of a Single-Particle Excitation

In the following we use an initial state of delocalized excitations with a finite
center-of-mass momentum Q in order to maximize the correlation-function C(t).
This behavior may seem counterintuitive at first, as one would expect a localized
excitation to yield stronger correlations. Yet, localization in configuration space
gives rise to a flat momentum distribution and thus a superposition of eigenstates
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with different center-of-mass momenta Q. Even so, the finite-Q initial state can
still be composed of localized excitations via superposition, so that

|ψQ⟩ =
∑
j∈2N

ei
Q
2 ja†

j−1aj |DWP⟩, (5.8)

with |DWP⟩ denoting the density-wave phase with two particles on every even
lattice-site. The factor of two in the phase then accounts for the two-site hopping
of fractional excitations in the microscopic model. In the effective model the initial
state (5.8) corresponds to two adjacent occupied sites, so that ψSPE = e−iQXδx,1.
Then, the overlap with the bound eigenstates of the effective Hamiltonian takes
the form

CB = θ(|Q| −Qc)
√

1 − 4 cos2 Q/2, (5.9)

where θ(x) is the Heaviside step-function. Likewise, the overlap with the scattering
states is

Cq =
√

2 cos(q + ϕQ,q). (5.10)

The integral over the relative quasi-momentum q in eq. (5.7) can be carried out
analytically, giving rise to a formal solution in terms of an infinite sum of Bessel-
functions of the first kind: First, since the integrand Cqψq is periodic in q, we can
express it in terms of a Fourier-series

Cqψq =
∑
m

cme
iqn, (5.11)

where the Fourier-coefficients cm =
∫
dq Cqψq take the form of hypergeometric

functions. Integration over different relative momenta yields

π∫
−π

dq

2π Cqψqe
−iEqt/ℏ =

∑
m

cme
iπ2 mJm(2zQt/ℏ), (5.12)

where Jm is the m-th Bessel-function of the first kind. Since the Fourier-coefficients
scale like cm ∼ 1/m!, this gives access to a powerful approximation scheme. On
the other hand, the time-evolution is solely governed by the Bessel-functions and
in turn allows us to calculate the scaling explicitly. At the critical center-of-mass
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Figure 5.6: Time evolution of the relative wave-function ψ(x): (a) ForQ = 0.3Qc ≤
Qc, the wave-function is strongly localized at around a relative distance
x ≈ tzQ. (b) For Q = 0.8Qc > Qc, the bound state adds an additional
exponentially decaying contribution, with its maximum at x = 1.

momentum, the summation reduces to a closed-form expression, which yields the
wave-function

ψSPE(X,x) =e−iQcXe−iπ2 |x| [J|x|(2zt) + iJ|x|−1(2zt)
]
. (5.13)

The time-evolution of the wave-function for Q = 0.3Qc and Q = 0.8Qc is shown
in Fig. 5.6 (a) and (b), respectively. The superposition of scattering states leads to
a ballistic expansion of the fractional excitations with a velocity determined by the
hopping energy zQ. In turn, the two-particle wave-function ψSPE is strongly local-
ized around a linearly growing relative distance x ≈ tzQ/ℏ, with some additional in-
terference fringes appearing at smaller relative distances x, but propagating at the
same velocity. On the other hand, the finite overlap with the bound state (5.6) for
Q > Qc creates an additional stationary peak at x ≈ 1 (see Fig. 5.6(b)). With the
scattering states moving away from each other, measurement of the wave-function
amplitude at x = 1 on times t ≫ 1/zQ allows us to single out the bound-state
contribution. Formally, this can be cast in terms of a correlation-function

C(t) = |ψSPE(X,x = 1)|2 (5.14)

on the effective lattice. In the microscopic lattice, C(t) corresponds to ⟨PiPi+1⟩,
with Pi = ni(ni − 2) being the projection operator on singly-occupied sites. The
time-evolution of C(t) for different center-of-mass quasi-momenta is shown in
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Figure 5.7: Time evolution of the correlation-function C(t) for different center-of-
mass quasi-momenta Q: Below the critical momentum |Q| < Qc, the
correlation-function decays to zero, while for |Q| > Qc, the overlap
with the emerging repulsively bound state leads to a finite probability
for fractional excitations to stay at relative distance x = 1, resulting in
a finite value of the correlation-function for tzQ/ℏ≫ 1.

Fig. 5.7. For Q < Qc, the correlation-function decays to zero with a characteristic
behavior ∼ (tzQ/ℏ)−3, and exhibits characteristic oscillations due to interference
between the different scattering states. Furthermore, the correlation-function C(t)
exhibits an intermediate regime with a characteristic behavior ∼ (tzQ/ℏ)−1. The
time scale for the crossover between the long-time behavior and this intermedi-
ate regime diverges approaching the critical value Qc. Consequently, the decay at
Q = Qc is given by a critical behavior ∼ (tzQ/ℏ)−1 for the correlation-function,
in agreement with the analytical solution (5.13). The presence of a bound state is
characterized by a saturation of the correlation-function

C(t) → θ(|Q| −Qc)[1 − 4 cos2 Q/2]2 (5.15)

for tzQ/ℏ≫ 1, where the bound-state contribution grows steadily towards the edge
of the Brillouin-zone and eventually becomes an eigenstate of the Hamiltonian at
|Q| = π with a constant correlation-function C(t) = 1. The characteristic beating
of the correlation function is due to interference. Its frequency can be calculated
directly by use of the formal analytic solution (5.7) to be

ω± = EB ± ESC(q = 0) = z(1 − cos2 Q/2 ± 2 cosQ/2). (5.16)
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Figure 5.8: t-DMRG results (solid lines) in a finite lattice with L = 30 microscopic
sites (i.e. l = 16 sites in the effective lattice) in comparison to the
analytic results (dashed lines) in an infinite lattice for various center-
of-mass momenta Q. Finite size effects start come into play a role at
times t ≈ 4ℏ/z.

This gives experimental access to the energy-gap between bound- and scattering-
states, and allows for the measurement of the energy-diagram in Fig. 5.5.

5.5 Deviations from the Ideal Setup and t-DMRG

To confirm our perturbative results and to provide further insight into an experi-
mental realization, we provide time-adaptive density matrix renormalization group
(t-DMRG) simulations [145,146] of a single-particle excitation in the original tilted
Bose-Hubbard model in eq. (5.1). Here, we use a realistically large lattice of L = 30
sites, which translates to l = 16 sites in the effective lattice. Time-evolution cal-
culations are performed using second- and fourth-order Trotter decompositions. A
comparison between the analytic correlation-function and the t-DMRG result is
shown in Fig. 5.8. On the one hand, t-DMRG results show good agreement with
the perturbative model. We find that the timescale of the correlation-function
decay and the saturation values agree well with the analytic results. On the other
hand, we observe deviations due to finite system size and finite values U , E, and
w, which we discuss in the following. First, the simulations are performed in a
finite-size system. This leads to revivals of the correlation-function C(t) due to
scattering of fractional excitations at the system boundaries. In a microscopic
lattice of L = 30 sites, we find deviations due to finite-size at times t ≈ 4ℏ/z. A
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hard-core model neglecting nearest-neighbor interaction that allows for an analytic
solution even in a finite system, agrees well with the t-DMRG result and gives an
estimate for revival times. From this, we can derive a lower boundary of L ≳ 26 to
observe a signature for a bound state in the correlation-function. Second, the sim-
ulated correlation-function shows an additional high-frequency oscillation, which
can be explained as follows: Since the initial state is not an energy eigenstate of
the Hamiltonian for a finite ratio w/∆, this leads to interference between different
energy contributions, and ultimately in oscillations on the order of the excitation
spectrum, namely ∆. We find that for a ratio of ∆/w ≳ 30 the suppression of
these oscillations is strong enough to see a clear correlation-function signal (see
Fig. 5.8). Finally, the validity of the correlation-function is based on the stability
of the density-wave phase. However, second-order processes in w/U and w/E allow
the system to reach states with more than two particles on a single lattice-site (see
ref. [140]). Our simulations show the probability for having three particles on a
single lattice-site at times t = 4ℏ/z of the order 10−6.

5.6 Experimental Setup

In order to observe excitation decay as described above, one needs access to the
correlation-function C(t) via single-site resolution as demonstrated in the groups
of Markus Greiner and Immanuel Bloch. The density-wave phase is prepared by an
adiabatic tilt of the Mott-insulator phase, see ref. [2]. Single-site addressing [138]
then allows for the creation of the initial single-particle excitation state |ψQ⟩. Al-
though current experiments can only resolve an even or odd number of atoms per
lattice-site, this is no limitation in our case: Fractional excitations can still be ob-
served as single atoms, whereas the density-wave phase with zero or two atoms per
lattice-site show as zero atoms. Since the typical lifetime of an atom in an optical
lattice is on the order of seconds, an effective hopping-rate z ≈ 1 Hz should be suf-
ficient for observation of the correlation-function saturation C(t) → const. If we
assume a microscopic hopping-rate of w = 15 Hz, suppression of high-frequency os-
cillations requires a minimal single-particle excitation energy ∆ ≳ 450 Hz. Finally,
an on-site interaction U = 3.6 kHz results in a strong suppression of effects on the
order of 1/U as well as a stable broken-symmetry phase for the duration of the
experiment. To limit the effect of the finite system size, we require a lattice-size
of L ≳ 26 sites. Although the realization of such a large density–wave phase might
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be the hardest part to accomplish, a sufficiently large initial Mott-insulting state
should be experimentally accessible via algorithmic cooling [147].

5.7 Conclusion

In chapter 5, we have studied the behavior of excitations in the tilted one-dimen-
sional Bose-Hubbard model as recently realised in the group of Markus Greiner [2].
In the density-wave phase with two particles occupying every other lattice site, the
experimentally accessible excitations are achieved by moving a single particle from
a doubly-occupied site against the tilt by one site. Such a single-particle excitation
carries an energy ∆, which is given by the difference between the tilt per lattice
site E and the on-site interaction U . On the other hand, fundamental excita-
tions in this system are domain-walls that correspond to singly occupied sites and
separate the two possible realizations of the density-wave phase. These domain-
walls each carry an energy of ∆/2, and thus are fractional excitations. In this
chapter, we thoroughly answered the question whether single-particle excitations
decay into fractional excitations, or remain stable. To these means we employed
a perturbative treatment which allowed us to derive an effective hard-core Bo-
son model describing the time-evolution of the domain-walls. The dynamics of a
single-particle excitation can then be calculated by an expansion into eigenfunc-
tions of the effective Hamiltonian. The latter featured a single repulsively bound
state above a critical center-of-mass momentum Qc = 2π/3, whose overlap with an
initial single-particle excitation increased towards the edge of the Brillouin zone.
Conversely, for center-of-mass momenta smaller than Qc, a single-particle exci-
tation can be fully described by the scattering states. We derived an analytic
expression for the time evolution of such a single-particle excitation, and provided
an in-depth analysis of the correlation-function C(t) describing the probability for
finding two domain-walls on adjacent lattice sites. We found that below the crit-
ical center-of-mass momentum, a single-particle excitation completely decays into
a ballistically expanding state of two domain-walls. Above the critical center-of-
mass momentum, we found a finite probability for the domain-walls to stay in
a bound state, which showed as a finite value in the long-time behavior of the
correlation-function C(t). The validity of our approach was confirmed by the use
of t-DMRG simulations created in collaboration with Jad Halimeh, Ian McCulloch
and Ulrich Schollwöck, and gave insight into the limits of our perturbative analysis
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as well as the finite-size effects. Moreover, we discussed the implementation of our
setup in state-of-the-art experiments, and gave parameters important for an actual
measurement of fractional-excitation dynamics in cold atomic gas.

5.A Perturbation Theory

We start with a Hamiltonian H, which we decompose into its diagonal and off-
diagonal components, that is

H ≈ HD +HO. (5.17)

For dominating diagonal elements HD, we can approximate the above Hamiltonian
via

H ≈ HD +
∑
I

HO|I⟩⟨I|HO

HD − ⟨I|HD|I⟩ , (5.18)

where I denotes intermediate states. In the case of the tilted Bose-Hubbard model
(5.1), the decomposition into diagonal and off-diagonal parts takes the form

HD = U

2
∑
j

nj(nj − 1) − E
∑
j

jnj ,

HO = −w
∑
j

(
a†
jaj+1 + aja

†
j+1

)
.

(5.19)

The intermediate states |I⟩ contributing to the expectation value ⟨H⟩ for a single-
particle excitation and two spatially separated fractional excitations are depicted
in Fig. 5.9. Consequently, with U,E ≫ ∆, the leading order contributions are of
the form 1/∆. Thus, the energy difference V between a single-particle excitation
and two fractional excitations take the form

V = ESPE − E2FE = 2w2

∆ . (5.20)

Likewise, the matrix element connecting a fractional excitation on site i to one on
site i± 1 takes the form

z = 2w2

∆ , (5.21)

with intermediate states |I⟩ shown in Fig. 5.9.
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Figure 5.9: Second-order fluctuation processes contributing to the nearest-neighbor
interaction: (a) Fluctuations of the single-particle excitation with inter-
mediate energy. (b) Fluctuations of two domain-walls with intermedi-
ate energy. Since U ≫ ∆, only the processes (iv) and (vi) for the single-
particle excitation and (iv) for the two domain-walls do contribute.

5.B Scaling-Limit

In the scaling-limit zQt/ℏ ≫ 1, the Bessel-function of the first kind takes the
approximate form

Jm(2zQt/ℏ) ≈ ei
π
2 m

√
2

π2zQt/ℏ
cos
(

2zQt/ℏ− π

4 − π

2m
)
. (5.22)

Hence, we can write the equation (5.12) in the form∑
m

cme
iπ2 mJm(2zQt/ℏ)

≈
√

2
π2zQt/ℏ

[
sin
(2zQt
ℏ

+ π

4

) ∑
m even

cm + i cos
(2zQt
ℏ

+ π

4

) ∑
m odd

cm

]
.
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The summation over even and odd Fourier-coefficients cm can then be expressed
as a superposition between the wave-functions at relative momentum q = 0 and
q = π, respectively,∑

meven

cm =
∑
m

cm
2
[
e−i0x + e−iπx] = ψ0C0 + ψπCπ

2 ,

∑
modd

cm =
∑
m

cm
2
[
e−i0x − e−iπx] = ψ0C0 − ψπCπ

2 .

However, both ψ0C0 and ψπCπ vanish identically except at the critical center-of-
mass momentum Qc, where they take the form

cm = e−iπ2 x

2
(
δ|m|,x + iδ|m|,x−1

)
. (5.23)

For a leading-order expansion we use the next order in the Bessel-function series,
that is

Jm(2zQt/ℏ) ≈ 1 − 4m2

4

√
1

2πY 3 sin
(

−2zQt/ℏ+m
π

2 + π

4

)
. (5.24)

The term proportional to 1 will vanish identically according to the above calcula-
tion. We are thus left with the term proportional to m2, so that the above equation
reduces to∑
m

cme
iπ2 mJm(2zQt/ℏ)

≈
√

1
2π(2zQt/ℏ)3

[
cos
(2zQt
ℏ

+ π

4

) ∑
m even

m2cm + i sin
(2zQt
ℏ

+ π

4

) ∑
m odd

m2cm

]

By use of the relation −∂2
qf(q) =

∑
m
m2f(m), the summations take the closed

form∑
m even

m2cm =
∑
m

m2 cm
2
[
e−i0n + e−iπn] = −ψ′′

0C
′′
0 + ψ′′

πC
′′
π

2 = −4z2
Q

z2 + z2
Q

(z2 − z2
Q)2 ,∑

m odd

m2cm =
∑
m

m2 cm
2
[
e−i0n − e−iπn] = −ψ′′

0C
′′
0 − ψ′′

πC
′′
π

2 = 4z2
Q

2zqQ
(z2 − z2

Q)2 ,
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where the prime denotes derivatives with respect to q. The resulting long-time
behavior for Q , Qc is thus given by

ψ = −
√

2
π(2zQt/ℏ)3

[
z2
Q

(z − zQ)2 e
iπ4 +i2zQt +

z2
Q

(z + zQ)2 e
−iπ4 −i2zQt

]
. (5.25)

Here, it is important to note that the coefficients diverge for zQ → z, which
corresponds to Q → Qc.

5.C Eigenstates of the Effective Hamiltonian

5.C.1 First-Quantized Version of the Hard-Core Boson Hamiltonian

It is most convenient to express the hard-core Boson Hamiltonian (5.5) in a first-
quantized form in order to find the two-particle eigenstates. Formally, this can
be done by introducing a non-symmetrized coordinate basis {|i, j⟩} where i and j

denote are the positions of the two particles in the lattice. A general two-particle
state |ψ⟩ then decomposes like

|ψ⟩ =
∑
i,j

ψ(i, j)|i, j⟩, (5.26)

where ψ(i, j) is the probability amplitude for finding the first particle at position
i and the second at position j. In this basis, the Schrödinger-equation takes the
form

− z
∑
i,j

[
ψ(i+ 1, j) + ψ(i, j + 1) + ψ(i− 1, j) + ψ(i, j − 1)

]
|i, j⟩

+ V
∑
i,j

ψ(i, j) (δi+1,j + δi−1,j) |i, j⟩ = EQ
∑
i,j

ψ(i, j)|i, j⟩, (5.27)

where EQ is the center-of-mass energy. By using the orthogonality relation of the
coordinate-basis vectors, a projection of the above equation on a basis bra ⟨i′, j′|
yields

− z
[
ψ(i+ 1, j) + ψ(i, j + 1) + ψ(i− 1, j) + ψ(i, j − 1)

]
+ V ψ(i, j) (δi+1,j + δi−1,j) = Eψ(i, j). (5.28)
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The translational invariance of this equation gives rise to a conservation of the total
quasi momentum Q. In turn, the wave-function factorizes as ψ(i, j) = eiQXψq(x),
where x = i− j and X = (i+ j)/2 are the relative and center-of-mass coordinates,
respectively. Here we restrict ourselves to positive relative coordinates x only,
which also takes care of the symmetrization of the wave-function. The resulting
Schrödinger-equation (5.28) thus reads

−zeiQX2 cos Q2
[
ψ(x+ 1) + ψ(x− 1)

]
+ V δ|x|,1e

iQXψ(x) = EQe
iQXψ(x). (5.29)

Last, by only keeping track of the relative coordinate, eq. (5.29) takes its final
compact form

−zQ
[
ψ(x+ 1) + ψ(x− 1)

]
+ V δ|x|,1ψ(x) = Eψ(x), (5.30)

where zQ = 2z cosQ/2 the center-of-mass hopping-rate.

5.C.2 Bound States

In a one-dimensional system, a bound state decays exponentially with the relative
distance of the constituents. We use an ansatz ψ(x ≥ 1) = N Λ|x|−1

Q with N a
normalization-constant and ψQB (x = 0) = 0 due to the hard-core nature of the
interaction. This yields the two equations

x = 1 : −zQΛQ + V − EQ = 0, (5.31)

x ≥ 2 : −zQ(Λx−2
Q + ΛxQ) − EQΛn−1

Q = 0. (5.32)

The first equation of (5.32) provides an expression for the bound-state energy,

EQ = −zQ
1 + Λ2

Q

ΛQ
. (5.33)

Substitution of EQ in the second equation of (5.32) then leads to

−zQΛQ + V + zQ
1 + Λ2

Q

ΛQ
= 0. (5.34)

which gives rise to ΛQ = −zQ/V = −2 cosQ/2.
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5.C.3 Scattering States

The scattering states are obtained by using a standard plane-wave ansatz with an
additional scattering-phase shift ϕQ,q, that is

ψq =
√

2(1 − δx,0) sign x cos(q|x| + ϕQ,q). (5.35)

This ansatz solves the Schrödinger-equation for all x except |x| = 1, giving rise to
the condition (

cos q + 2 cos Q2

)
cosϕQ,q − sin q sinϕQ,q = 0, (5.36)

which can be solved by

ϕQ,q = arctan
cos q + 2 cos Q2

sin q . (5.37)

5.C.4 Green’s-Function Approach

There are at least two ways in order to derive a two-particle bound state in a Bose-
Hubbard Hamiltonian. Here, we show that the calculation via the exponential
ansatz [144] yields the same result as a Green’s-function approach [143]. Poles
in the scattering amplitude f(Q,E) indicate the presence of a bound sate. For
nearest-neighbor interactions the former reduces to [148]

f(Q,E) = − 1
G0
Q(E;n) + 2V

G0
Q(E; 0) −G0

Q(E; 1)
G0
Q(E; 0)

×
cos q −

G0
Q(E;1)

G0
Q

(E;0)

1 + 2V
G0
Q

(E;1)

G0
Q

(E;0) − V [G0
Q(E; 0) +G0

Q(E; 2)]
, (5.38)

where G0
Q(E;n) is the free Green’s-function. In turn, the last factor and, accord-

ingly, the scattering amplitude diverges for

1 + 2V G
2(1)
G(0) − V [G(0) +G(2)] = 0. (5.39)
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By use of the explicit form for a free one-dimensional Green’s-function [149]

G0
Q(E, x) =

π∫
−π

dq

2π
eiqx

E − 4z cosQ/2

= (−1)xsignx+1E
e

−|x| cosh−1
∣∣ E

4z cosQ/2

∣∣√
E2 − (4z cosQ/2)2

, (5.40)

we can show that eq. (5.39) is equivalent to eq. (5.33), and yields the same bound
state energy.

5.D Hard-Core Model without Interaction

In this section we provide a model to estimate revivals of the correlation-function
(5.14) due to finite-size effects. Since these revivals are due to scattering of excita-
tions at the system boundaries, we expect interactions to play a minor role. Hence,
we approximate the Hamiltonian (5.5) by neglecting nearest-neighbor interaction
completely and just keep the hard-core constraint. The major advantage of this
approximation is that it allows for an analytic solution even in a finite-size system.
The approximate Hamiltonian for an n site lattice then reduces to

H = −z
n̄−1∑
i=1

b†
i bi+1 + b†

i+1bi. (5.41)

The two-particle eigenstates of the corresponding Schrödinger-equation take the
form

ψ2(x, y) =

{
ψk1 (x)ψp1(y) − ψp1(x)ψk1 (y), x > y,

ψp1(x)ψk1 (y) − ψk1 (x)ψp1(y), x < y,
(5.42)

where ψk1 (x) is single particle eigenstate defined via

ψk1 (x) =
√

2
n̄+ 1 sin kx, k = jπ

n̄+ 1 , j = 1, ...n̄. (5.43)

Since there are no bound states in this model, the two-particle energy is given by
E2 = −2z(cos k + cos p) = −2zQ cos q. The wave-function for an initial state of
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two particles on adjacent lattice-sites with center-of-mass momentum Q reads

ψ2(0) = eiQ
x+y

2 [δx−y,1 + δx−y,−1] . (5.44)

Time-evolution of this initial state is then most conveniently derived via Fourier-
decomposition. Since we know the energy in the momentum basis, we can calculate
the time-evolution for the initial state (5.44) in the form of a large sum of oscillating
terms. In the limit of an infinite number of lattice-sites the summation can be
approximated by an integral, and reduces the wave-function to the closed-form
expression

ψ2(t) = eiQ(x+y+1)
∑
s=±1

s e−isπ2 (x−y−s)Jx−y−s(−2zQt/ℏ). (5.45)

As one might expect, deviations from the analytical result occur at a characteristic
time-scale τf that scales with the system-size (see Fig. 5.11). Due to the ballistic
propagation the scaling is easily understood in terms of scattering of fundamental
excitations at the system boundaries. Hence we propose to measure the correlation-
function C(t) in the middle of the lattice in order to maximize the time it takes a
scattered particle to reach the point of measurement.

Figure 5.10: Finite size effects in the hard-core Boson model: The plot shows the
analytical solution for the hard-core Boson model (5.41) for an infinite
lattice (solid blue lines) and a finite lattice of size l = 30 for various
center-of-mass momenta ranging from Q = π/6 to π/2. Deviations
from the analytical solution can be seen at times tzQ/ℏ ≈ 4. These
deviations are due to finite-size effects, that is scattering at the system
boundaries.
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Figure 5.11: Scaling of finite-size effects with the system size l. The plot shows the
time τ0.05 at which deviations averaged over different Q values reach
0.05. As expected, the data suggests a linear scaling of τ0.05 due to
the ballistic motion of particles in a lattice.
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Chapter 6

Basic Concepts

6.A Rydberg Atoms

An atom in a highly-excited electronic state close to the ionization limit is called a
Rydberg atom [150]. These atoms show very extreme properties, which are mostly
based on their huge spatial dimension, exceeding the radius of normal atoms by
several orders of magnitude. Hence, Rydberg atoms are easily polarizable, which
in turn makes them very susceptible to electric fields and account for their huge
van der Waals interaction. It is exactly this property that makes them a prime
candidate to study quantum many-body physics in cold atomic gases.

6.A.1 General Properties

Here we concentrate on Rydberg atoms with only a single electron excited into
a high electronic state. In consequence, the atom shows a structure similar to
Hydrogene, where one electron is in a state with high principal quantum-number
n bound to a positively charged ion. Since the Hydrogen wave-function is strongly
localized at a distance ∼ n2, the electron will feel only the excess charge of the
shielded core, which in turn justifies the treatment as a two-body system. Any
effects due to the inner structure of the core can be included via a renormalization of
the principal quantum-number n∗ = n− δ, with δ < 1. The Rydberg-Ritz formula
[36] then allows for the calculation of explicit values of the so called quantum-
defects δ, and have been confirmed in several experiments [151]. Most properties
of Rydberg atoms strongly depend on their principal quantum-number n, or its
renormalized equivalent n∗. A short compilation of the scaling-laws for several
important properties is shown in table 6.1.
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Property Scaling 87Rb |5s⟩ 87Rb |43s⟩
Binding energy (n∗)−2 [150] 4.18 eV 8.56 meV [49]
Level spacing (n∗)−3 [150] 2.5 eV 109.99 GHz [49]
Orbit-radius (n∗)2 [150] 0.298 nm 0.126 µm [49]
Polarizability (n∗)7 [152] -79.4 mHz cm2/V2 8.06 MHz cm2/V2 [49]
Transition
dipole moment (n∗)−3/2 [49] - -0.0176 a.u. [49]

Natural lifetime (n∗)3 [150] - 99 µs [49]
C6-coefficient (n∗)11 [150] 5.23 ·10−8Hz µm6 189 MHz µm6 [49]

Table 6.1: Scaling properties of Rydberg atoms and exemplary values for the 87Rb
|5s⟩ ground-state compared to the 87Rb |43s⟩ Rydberg state.

Since alkali Rydberg atoms closely resemble a Hydrogen configuration, one can use
the analytic Hydrogen wave-function in order to calculate dipole matrix-elements.
If we reduce our discussion to s-states, the only non-vanishing dipole matrix-
element is given by ⟨n′p|d|ns⟩, where d is the dipole-operator. On the other hand,
this expression takes only significant values at the origin, and thus yields the scaling

⟨n′p|d|ns⟩ ∼ n∗−3/2
. (6.1)

The application of Fermi’s Golden rule allows us to calculate the natural lifetime
of a Rydberg-state as

γ = 2π
ℏ

∑
f

|⟨ψi|d|ψf⟩|2g(ψf) (6.2)

where g denotes the density of states. The dominating decay-channel is the one to
the lowest-energy state. The dipole-operator for this particular transition scales
as d ∼ (n∗)−3/2, resulting in a cubic scaling with the principle quantum-number
for the natural lifetime [49], that is τ ∼ (n∗)3. For a typical Rubidium Rydberg-
state like |43s⟩ we find a natural lifetime of τ ≈ 100 µs that, again, exceeds
the natural lifetime of lowly electronic excitations by several orders of magnitude.
Even so, blackbody-radiation increases the decay-rate from the Rydberg-state, and
ultimately results in a modified scaling behavior of the lifetime τ ∼ (n∗)2.
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6.A.2 Interactions

Under the assumption that the spatial separation x between the atoms is larger
than the LeRoy-radius, we can expand the interaction-potential V between the
atoms in a power-series, so that

V (x) =
∑
m

Cm
xm

. (6.3)

The first non-vanishing term of this expansion is the C3 coefficient, which can be
derived within quantum-defect theory [36]. Then, a two-level approximation of the
interaction Hamiltonian takes the form

H =

(
∆F V Y

V Y 0

)
, (6.4)

where ∆F is the Förster defect energy, V = C3/x
3 and Y is a geometry factor that

accounts for angular momentum properties [37]. A straightforward calculation
yields the energy eigenvalues

V±(x) = ∆F

2 ± 1
2
√

∆2
F + V 2Y 2. (6.5)

For small inter-atom separation x, the interaction term V = C3/x
3 dominates, and

results in a dipole-dipole interaction. Conversely, for large inter-atom separation,
the interaction is small as compared to the Förster defect-energy, and, as a result,
a leading order expansion leads to a van der Waals interaction-potential,

V− = V 2Y 2 ≈ C6

x6 . (6.6)

The resulting van der Waals coefficient exhibits a strong dependence on the princi-
pal quantum-number, in particular C6 ≈ (n∗)11. The crossover between these two
regimes takes place at xc ∼ |V Y/∆|3, and is usually smaller than the distance be-
tween Rydberg-excitations. Still, the longer range resonant dipole-dipole coupling
V ∼ 1/x3 can be realised by using an electric microwave-field.

6.A.3 Coherent Production

Most experiments use a two-photon transition in order to excite an atom to a
high-lying Rydberg-state. In the following, we assume that our atom is of the
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Figure 6.1: Setup for the coupling between ground and Rydberg-state |g⟩ and |r⟩,
respectively, via the intermediate p-state. The Rabi-frequency and
detuning driving the transition between ground and p-state are Ωp
and ∆p. Likewise, the Rabi-frequency and detuning for the transition
between p- and Rydberg-state are Ωr and ∆r. In addition, the decay
rates from the intermediate p-state is γp, whereas the decay rate from
the Rydberg-state is γr. For a strongly suppressed intermediate state,
the internal structure can be reduced to an effective two-state system
with two-photon Rabi-frequency Ω and total detuning ∆.

alkali type, or, more specifically, the species 87Rb, which in general is considered
to be the workhorse of atomic physics due to its convenient hyperfine-structure.
We therefore start from an initial low-lying s-state, and excite the atom via a red
laser to a low p-state, say |5s⟩ → |5p⟩. A second, blue laser then excites to the
final Rydberg-state, which we assume to be an s-state again. In order to avoid
inhomogeneous light intensities due to absorption [49], most experiments use a
far off-resonant coupling to the intermediate state, ∆p ≫ Ωp. The intermediate
p-state can then be adiabatically eliminated [51], and the resulting Hamiltonian
takes the form of an effective two-state system,

Hmicro = −ℏ∆
∑
i

Siz + ℏΩ
∑
i

Six, (6.7)

where Siz = (|r⟩⟨r| − |g⟩⟨g|)/2 and Six = (|r⟩⟨g| + |g⟩⟨r|)/2 are the spin operators
in the z and x direction, respectively. The two-photon Rabi-frequency Ω can
be expressed in terms of the initial Rabi-frequencies and the detuning from the
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intermediate state, so that

Ω = ΩpΩc
2|∆c|

. (6.8)

On the other hand, the total detuning ∆ takes the form

∆ = ∆c + ∆p + Ω2
c

4∆c
+

Ω2
p

4∆p
, (6.9)

where the last two terms are due to the ac-Stark-shift of the respective upper levels.
In most cases, one can neglect those Stark-shift terms, hence the total detuning
reduces to the compact form ∆ = ∆c + ∆p.

6.A.4 Blockade Mechanism and Collective States

Strong interaction between excitations gives rise to a so-called blockade-mechanism
for excitations [64, 153]. More specifically, the interaction-potential V between
excited states exceeds the excitation line-width W , and thus only allows for a
single excitation. To account for this effect, we can define a blockade-condition via

V > W. (6.10)

Here it is important to note that the blockade-mechanism is a general concept
and not limited to atomic physics. However, in the following we concentrate on
Rydberg-atoms, as this is the only application of the blockade-mechanism in this
work. Since the natural lifetime of Rydberg-atoms scales with the cube of the
principle quantum-number, the excitation line-width is dominated by the power-
broadening of the excitation laser and the detuning. Usually, the interaction is of
a van der Waals type, and reduces eq. (6.10) to the condition

C6

x6 > 2ℏ
√

∆2 + Ω2, (6.11)

and gives rise to the definition of the two-particle blockade-radius [41]

ξ0 =
(

C6

2ℏ
√

∆2 + Ω2

) 1
6

. (6.12)

The reduction of the Hilbert-space due to blockade of additional excitations has
further consequences for the dynamics of the system. Consider an ensemble of
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Figure 6.2: For large inter-atom separation, both atoms can acquire a Rydberg-
excitation. Conversely, for small separations, the van der Waals in-
teraction shifts the energy level of the state |r⟩|r⟩ out of resonance
and thus prevents a subsequent Rydberg-excitation. The two-particle
blockade-radius ξ0 is then determined by the interaction and the line-
width of the driving laser.

N atoms individually coupled via a coherent two-photon process to a Rydberg-
state, with two-photon Rabi-frequency Ω and total detuning ∆. The Hamiltonian
describing this system then takes the form of equation (6.7). If we further assume
that the spatial confinement of the whole atomic ensemble is smaller than the
blockade-volume ξ3

0 , the system can only support a single excitation. Thus, the
Hilbert-space is spanned by the ground state |g⟩ and N excited states |i⟩ defined
via

|G⟩ = ⊗i|gi⟩, |i⟩ = |ei⟩ ⊗j,i |gj⟩. (6.13)

Although in principle all states |i⟩ are accessible, the Hamiltonian (6.7) only couples
to the symmetric superposition of these excited states

|W ⟩ = 1√
N

N∑
i=1

|i⟩. (6.14)
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Figure 6.3: Excitation dynamics of a single atom (a), N non-interacting atoms (b),
and the collective state (c) as is defined in eq. (6.14). Since the super-
atom can only support a single excitation, it shows the same maximum
number of excitations as the single atom. Yet, the bosonic enhancement
yields the same quadratic increase in the number of excitations as in
the non-interacting case (b).

In consequence, the system again reduces to an effective two-level system described
by the Hamiltonian

H = ℏΩN2 (|W ⟩⟨G| + |G⟩⟨W |) + ℏ∆2 (|W ⟩⟨W | − |G⟩⟨G|) , (6.15)

where ΩN =
√
NΩ is the collective Rabi-frequency. It is this effective Hamiltonian

that coined the term super-atom [154], as the whole ensemble behaves again like
one of its constituents. The increase in the characteristic timescale by a factor of√
N is in analogy to the enhancement of the spontaneous decay-rate predicted in

ref. [59].

6.B Open Quantum-Systems

In the most general case, an open quantum-system is one that interacts with the
environment. By definition, the environment cannot be controlled on a quantum
level despite its time-evolution being governed by quantum-mechanics. There-
fore, the interaction with the quantum-system adds an unknown component to
the dynamics, which in turn cannot be described within coherent time-evolution
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predicted by the Schrödinger-equation, but has to be treated within a more gen-
eral approach. However, not being able to control the environment on a quantum
level does not mean not being able to control it at all: most often the nature of
the coupling together with macroscopic parameters such as the temperature are
known, and allow one to either limit the environmental influence or design it in a
fashion that benefits ones means [155].

6.B.1 Reduced Density-Matrix

One of the general principles of quantum mechanics is that every observable cor-
responds to an operator A [67,156]. The expectation value of this observable then
takes the form of a trace

⟨A⟩ = tr ρA, (6.16)

where ρ is the density-matrix of the system on which the measurement takes place.
In general, ρ describes both the system one in interested in and the lab including
the PhD-student performing the measurement. Yet one (or, more specifically, the
supervisor) is usually interested in the quantum-system S alone, not the macro-
scopic environment E. In turn, any operator corresponding to an observable on S
alone can be decomposed via A = AS ⊗ idE , where idE is the identity operator on
the environment E. Then, by defining the partial trace trS and trE over system
and bath degrees of freedom, respectively, we can write the expectation value of
an observable A = AS ⊗ idE as

⟨A⟩ = trS [AStrEρ] . (6.17)

The density-matrix ρS = trE ρ is called the reduced density-matrix, and allows to
describe the time-evolution of an open quantum-system in terms of system degrees
of freedom alone. Indeed, a measurement performed on the open system then takes
the form

⟨AS⟩ = trSASρS , (6.18)

in analogy to eq. (6.16). On the downside, the time-evolution of ρS is no longer
described within the Liouville-equation, but requires a more general approach,
which we discuss below.
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6.B.2 Master-Equation

The dynamics of the reduced density-matrix ρS can be described in terms of a
master-equation, where the individual environmental degrees of freedom are re-
moved from the equation of motion. The resulting equation then reads [156]

ρ̇ = − i

ℏ
[HS , ρS ] +

t∫
0

dt′ trE
[
K(t− t′)ρ(t′)

]
. (6.19)

The first term describes the coherent time-evolution of the quantum-system in
analogy to the Liouville-equation, whereas the second term accounts for processes
induced via system-environment interaction. It is the operator K(t − t′) that
encodes all information about the environment and its coupling to the quantum-
system. Integration over t′ results in the time-evolution of ρ that is influenced by
all prior states of both the system and the environment.

Despite this very general form of the master-equation, it can be reduced to a fairly
easy to handle differential form. This is based on two approximations that are both
well justified for a large variety of systems. First, under the Born-approximation
one assumes that the interaction between the system and individual environment
degrees of freedom is weak, so that the back-action from the system to the envi-
ronment is small. This allows us to replace the total density-matrix ρ by a product
ρE ⊗ ρS, where the environment density-matrix ρE does not change in time. Even
so, this does not necessarily mean that the influence of the environment is small.
Second, in the Markov-approximation one neglects any influence from previous
events at times t′. To put it another way, the environment is assumed to have no
memory, and thus forgets the quantum state of the system immediately. Under
these approximations it can be shown [156] that the master-equation (6.19) reduces
to the so called Lindblad-form

ρ̇ = − i

ℏ
[HS , ρS ] +

∑
i

Γi
2
[
2ciρc†

i − c†
i ciρ− ρc†

i ci
]
. (6.20)

Again, the first term accounts for the coherent time-evolution, whereas the second
describes non-coherent processes due coupling of the quantum-system to the en-
vironment. The operators ci are called jump-operators, and, true to their name,
incoherently jump the system from one state into the other with a rate Γi. The
precise form of the jump-operators ci and the rates Γi is subject to the environ-
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ment and its coupling. A major advantage of this master-equation over the first
one is its differential form and consequently its locality in time. Even if no analytic
solution exists, it can most often be treated numerically by standard routines for
solving systems of differential equations.

6.C Wigner Quasi-Probability Distribution

The Wigner-function or Wigner quasi-probability distribution is a phase space
representation of a density-matrix ρ [71]. To be more precise, it is a Weyl-Wigner
transformation [78] of the density-matrix, defined via

W (q, p) = 1
2πℏ

∫
dy
⟨
q + y

2

∣∣∣ ρ ∣∣∣q + y

2

⟩
e
ipy
ℏ , (6.21)

where |q±y/2⟩ are eigenkets of the position operator. For a pure state ρ = |ψ⟩⟨ψ|,
the Wigner-function takes the form

W (q, p) = 1
2πℏ

∫
dy ψ∗

(
q + y

2

)
ψ
(
q + y

2

)
e
ipy
ℏ . (6.22)

Integration over all momenta p gives the probability-density for the spatial coor-
dinate q, that is ∫

dp W (q, p) = |ψ(q)|2. (6.23)

Likewise, integration over the the spatial coordinate q yields∫
dq W (q, p) = |ψ(p)|2. (6.24)

It directly follows that the Wigner-function is normalized in the sense that∫
dq dp W (q, p) = 1. (6.25)

Here it is important to stress that despite its name, the Wigner quasi-probability
distribution is not a true probability-distribution since it can take negative val-
ues. In turn, a state with a negative Wigner-function is then called non-classical.
One of the most prominent non-classical states is a Fock-state containing a single
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Figure 6.4: Wigner-function for an odd cat-state |odd cat⟩ = |α = 2⟩ − |α = −2⟩

excitation. Its Wigner-function is easily calculated to be [78]

Wn=1 = 1
π
e−p2−q2

(2p2 + 2q2 − 1), (6.26)

and exhibits a negative dip in the middle, that is a clear telltale for its non-classical
nature. Likewise, the most classical state imaginable is a coherent state, that is
an eigenstate of the annihilation-operator a|α⟩ = α|α⟩. Its Wigner-function takes
the form of a Gaussian [78],

Wα = 1
π
e−2(q−α)2−2p2

, (6.27)

and is centered around α in the phase-space plane. In contrast to the Fock-state,
the Wigner-function for a coherent state stays positive for all values of p and q.

Fig. (6.4) shows the Wigner-function for a Schrödinger cat, meaning the quantum
superposition of two classically distinct states. In this particular example, the lat-
ter are two coherent states |α⟩ and | − α⟩. A statistical mixture of the coherent
states would only feature the two lumps representing the dead and living cat cen-
tered at α and −α, respectively. In contrast, the odd cat |odd cat⟩ = |α⟩ − | − α⟩
shown here exhibits oscillations around p = q = 0. For the sake of completeness,
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we give the explicit expression of the Wigner-function of this particular cat,

Woddcat = 1
π

e−2(q−α)2−2p2
+ e−2(q+α)2−2p2

− 2e−2p2−2q2
cos 4pα

1 + e−2α2 . (6.28)
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B: Atomic, Molecular and Optical Physics 38, S295 (2005).

[37] T. Walker and M. Saffman, Physical Review A 77, 032723 (2008).

[38] K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Wei-
demüller, Physical Review Letters 93, 163001 (2004).

[39] D. Tong et al., Physical Review Letters 93, 063001 (2004).

[40] T. Vogt et al., Physical Review Letters 97, 83003 (2006).

[41] R. Heidemann et al., Physical Review Letters 99, 163601 (2007).

[42] U. Raitzsch et al., Physical Review Letters 100, 13002 (2008).
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