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1. The Casimir Effect

Owing to quantum fluctuations of the electromagnetic field, there is an attractive
force between two parallel metalic plates separated by a distance d, even if the two
plates are located in a vaccum and are electrically neutral. This is known as the
Casimir effect. For two plates of area A seperated by a distance d, we have a shift
of energy, which we will prove later, being

U(d,A) = − π2
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It results that the force between the two plates is non zero and attractive

F = −∂U(d,A)

∂d
= − π2
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This has been confirmed experimentally in 1958 by Sparnaay (It was realized using
1cm2 Chrome-Steal plates ; at d = 0.5µ the attraction was 0.2dyn/cm2).

2. Preparations

We consider the electromagnetic oscillations between two plates in a rectangular
cavity (of dimensions L1×L2×L3) with conducting walls. We must have E perpen-
dicular and B tangential ( the transverse component of the electric field vanishes at
the surface of a perfect conductor). These boundary conditions are satisified for a
plane wave mode (∼ e−iωt) if the components of the electric field have the following
form

E1 = E0
1 cos k1x1 sin k2x2 sin k3x3e

−iωt (3)

E2 = E0
2 sin k1x1 cos k2x2 sin k3x3e

−iωt (4)

E3 = E0
3 sin k1x1 sin k2x2 cos k3x3e

−iωt , (5)

where ki = niπ/Li, ni an integer. It results that the possible frequencies ω for the
wave modes must be restricted by the following dispersion relation
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The magnetic field B is obtain by the induction law ∇ × E = iω
c
B and the corre-

sponding boundary conditions are fullfilled automatically.
The amplitudes E0

i are not arbritary, since ∇ · E = 0, ie we must have
∑

i

E0
i ki = 0. (7)

In general, equation( 7) has two linearly independent solutions (2 polarizations
states). Excluded the case where the ni vanish. If there is only one of the ni being
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zero, there is only one possible polarization mode. But if more ni vanish then there
is no solution.

We consider the following setup.

Both plates are contained in a parallelogram with conducting walls. And the plates
are parallel to the squared (L×L) ends of the box. One conducting plate is chosen
to be at the beginning of the box. Where the second place is chosen to be at a
distance d. In a another step this distance will be changed to R/η (e.g η = 2). Now
we construct

U(d, L,R) := EI + EII − (d → R/η) , (8)

where EI , EII are the zeropoint energy of the free electromagnetic field within the
subspaces of the box (see figure). The subspace with energy EII is only a tool to
avoid divergence. We are interested in

U(d, L) = lim
R→∞

U(d, L,R) . (9)

But each term in equation (8) are diverging separatly. Therefore we do a regular-
ization of the sums for the zeropoint energy. Afterwards we calculate equations (8)
and (9) and then undo the regularisations. A convenient regularization method is
the following :

EI,II → Ereg
I,II =

∑

ω
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3. The steps for the regularization

With equations (10) and (6) we have

Ereg
I =

1

2
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kl,m,n(d, L, L)e
−α

π
kl,m,n(d,L,L) , (11)

where

kl,m,n(d, L, L) = [(
lπ

d
)2 + (

mπ

L
)2 + (

nπ

L
)2]1/2 . (12)

Hence

U reg(d, L,R, α) = Ereg
I + (d → R− d)− {(d → R

η
) + (d → R− R

η
)} . (13)



Now we consider the sum in equation (11). For very large L we can replace the sums
overm and n by integrals. (A more precise way is to study U reg(d,R, L2, α)/L2 when
L goes to infinity). We obtain then

Ereg
I (d, L, α) = ~c

∞
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l=0

∫ ∞
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In equation (13) the term with l = 0 does not contribute to the sum. Therefore we
can neglect it in Ereg

I . At first transform equation (14) into

Ereg
I = −π2
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Afterwards perform the sum over l and then take the derivative with respect to α
and bring this result to the form

Ereg
I =

π2
~cL2

2d

d2

dα2

d/α

eα/d − 1
. (16)

Hint :
y

ey − 1
=

∞
∑

n=0

Bn

n!
yn , (17)

where the Bn are the Bernoulli numbers and show

U(d, L) := lim
R→∞

lim
α→0

U reg(d, L,R, α) = − π2
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which corresponds to equation (1).


