Advanced Quantum Physics, Special Exercise

Prof. Hans Peter Büchler SS 2011, 21st of December 2011

1. The Casimir Effect

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force between two parallel metalic plates separated by a distance d, even if the two plates are located in a vaccum and are electrically neutral. This is known as the Casimir effect. For two plates of area A seperated by a distance d, we have a shift of energy, which we will prove later, being

$$
\begin{equation*}
U(d, A)=-\frac{\pi^{2}}{720} \frac{\hbar A}{d^{3}} \tag{1}
\end{equation*}
$$

It results that the force between the two plates is non zero and attractive

$$
\begin{equation*}
F=-\frac{\partial U(d, A)}{\partial d}=-\frac{\pi^{2}}{240} \frac{\hbar A}{d^{4}} \tag{2}
\end{equation*}
$$

This has been confirmed experimentally in 1958 by Sparnaay (It was realized using $1 \mathrm{~cm}^{2}$ Chrome-Steal plates; at $d=0.5 \mu$ the attraction was $\left.0.2 d y n / \mathrm{cm}^{2}\right)$.

2. Preparations

We consider the electromagnetic oscillations between two plates in a rectangular cavity (of dimensions $L_{1} \times L_{2} \times L_{3}$) with conducting walls. We must have \mathbf{E} perpendicular and \mathbf{B} tangential (the transverse component of the electric field vanishes at the surface of a perfect conductor). These boundary conditions are satisified for a plane wave mode $\left(\sim e^{-i \omega t}\right)$ if the components of the electric field have the following form

$$
\begin{gather*}
E_{1}=E_{1}^{0} \cos k_{1} x_{1} \sin k_{2} x_{2} \sin k_{3} x_{3} e^{-i \omega t} \tag{3}\\
E_{2}=E_{2}^{0} \sin k_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3} e^{-i \omega t} \tag{4}\\
E_{3}=E_{3}^{0} \sin k_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3} e^{-i \omega t} \tag{5}
\end{gather*}
$$

where $k_{i}=n_{i} \pi / L_{i}, n_{i}$ an integer. It results that the possible frequencies ω for the wave modes must be restricted by the following dispersion relation

$$
\begin{equation*}
\frac{1}{c^{2}} \omega^{2}\left(n_{1}, n_{2}, n_{3}\right)=\mathbf{k}^{2}=\pi^{2} \sum_{i}\left(n_{i}^{2} / L_{i}^{2}\right) \tag{6}
\end{equation*}
$$

The magnetic field \mathbf{B} is obtain by the induction law $\nabla \times \mathbf{E}=i \frac{\omega}{c} \mathbf{B}$ and the corresponding boundary conditions are fullfilled automatically.
The amplitudes E_{i}^{0} are not arbritary, since $\nabla \cdot \mathbf{E}=0$, ie we must have

$$
\begin{equation*}
\sum_{i} E_{i}^{0} k_{i}=0 \tag{7}
\end{equation*}
$$

In general, equation(7) has two linearly independent solutions (2 polarizations states). Excluded the case where the n_{i} vanish. If there is only one of the n_{i} being

zero, there is only one possible polarization mode. But if more n_{i} vanish then there is no solution.

We consider the following setup.
Both plates are contained in a parallelogram with conducting walls. And the plates are parallel to the squared $(L \times L)$ ends of the box. One conducting plate is chosen to be at the beginning of the box. Where the second place is chosen to be at a distance d. In a another step this distance will be changed to $R / \eta(e . g \eta=2)$. Now we construct

$$
\begin{equation*}
U(d, L, R):=E_{I}+E_{I I}-(d \rightarrow R / \eta) \tag{8}
\end{equation*}
$$

where $E_{I}, E_{I I}$ are the zeropoint energy of the free electromagnetic field within the subspaces of the box (see figure). The subspace with energy $E_{I I}$ is only a tool to avoid divergence. We are interested in

$$
\begin{equation*}
U(d, L)=\lim _{R \rightarrow \infty} U(d, L, R) . \tag{9}
\end{equation*}
$$

But each term in equation (8) are diverging separatly. Therefore we do a regularization of the sums for the zeropoint energy. Afterwards we calculate equations (8) and (9) and then undo the regularisations. A convenient regularization method is the following :

$$
\begin{equation*}
E_{I, I I} \rightarrow E_{I, I I}^{r e g}=\sum_{\omega} \frac{1}{2} \hbar \omega e^{-\frac{\alpha}{\pi} \frac{\omega}{c}} . \tag{10}
\end{equation*}
$$

3. The steps for the regularization

With equations (10) and (6) we have

$$
\begin{equation*}
E_{I}^{r e g}=\frac{1}{2} \hbar c 2 \sum_{l, m, n} k_{l, m, n}(d, L, L) e^{-\frac{\alpha}{\pi} k_{l, m, n}(d, L, L)} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{l, m, n}(d, L, L)=\left[\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}\right]^{1 / 2} \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U^{r e g}(d, L, R, \alpha)=E_{I}^{r e g}+(d \rightarrow R-d)-\left\{\left(d \rightarrow \frac{R}{\eta}\right)+\left(d \rightarrow R-\frac{R}{\eta}\right)\right\} \tag{13}
\end{equation*}
$$

Now we consider the sum in equation (11). For very large L we can replace the sums over m and n by integrals. (A more precise way is to study $U^{\text {reg }}\left(d, R, L^{2}, \alpha\right) / L^{2}$ when L goes to infinity). We obtain then
$E_{I}^{r e g}(d, L, \alpha)=\hbar c \sum_{l=0}^{\infty} \int_{0}^{\infty} d m \int_{0}^{\infty} d n \sqrt{\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}} e^{-\frac{\alpha}{\pi} \sqrt{\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}}}$.
In equation (13) the term with $l=0$ does not contribute to the sum. Therefore we can neglect it in $E_{I}^{\text {reg }}$. At first transform equation (14) into

$$
\begin{equation*}
E_{I}^{r e g}=-\frac{\pi^{2}}{4} \hbar c L^{2} \frac{d^{3}}{d \alpha^{3}} \sum_{l=1}^{\infty} \int_{0}^{\infty} \frac{d z}{1+z} e^{-\frac{l}{d} \alpha \sqrt{1+z}} \tag{15}
\end{equation*}
$$

Afterwards perform the sum over l and then take the derivative with respect to α and bring this result to the form

$$
\begin{equation*}
E_{I}^{r e g}=\frac{\pi^{2} \hbar c L^{2}}{2 d} \frac{d^{2}}{d \alpha^{2}} \frac{d / \alpha}{e^{\alpha / d}-1} . \tag{16}
\end{equation*}
$$

Hint :

$$
\begin{equation*}
\frac{y}{e^{y}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} y^{n} \tag{17}
\end{equation*}
$$

where the B_{n} are the Bernoulli numbers and show

$$
\begin{equation*}
U(d, L):=\lim _{R \rightarrow \infty} \lim _{\alpha \rightarrow 0} U^{\text {reg }}(d, L, R, \alpha)=-\frac{\pi^{2}}{720} \frac{\hbar c L^{2}}{d^{3}} \tag{18}
\end{equation*}
$$

which corresponds to equation (1).

