Prof. Hans Peter Büchler SS 2011, 19 October 2011

1. Free propagator

The propagator K(x, x', t) for the Hamiltonian H is defined through the solution of the Schrödinger equation

$$[i\hbar\partial_t - H(p,x)] K(x,x',t) = 0$$
(1)

with the initial condition $K(x, x', 0) = \delta(x - x')$. Show that for an arbitrary initial condition $\psi_0(x)$ at t = 0 the solution of the Schrödinger solution is given by

$$\psi(x,t) = \int dx' K(x,x',t) \ \psi_0(x') \ . \tag{2}$$

Show, by using Fourier Transformation (plane waves expansion), that the propagator for free particles with $H = p^2/2m$ is given by

$$K(x, x', t) = \left(\frac{m}{2\pi \hbar i t}\right)^{1/2} \exp\left[\frac{im(x - x')^2}{2\hbar t}\right].$$
 (3)

Let now consider the following initial condition

$$\psi_0(x) = A \, e^{ik_0 x} e^{-\frac{(x-x_0)^2}{4\sigma}} \,. \tag{4}$$

- (a) Calculate the norm A.
- (b) Compute $\psi(x, t)$ using Eq.2
- (c) Find the expectation values $\langle x \rangle$ and $\langle p \rangle$