1. **Harmonic Oscillator**

We consider a one-dimensional harmonic oscillator

\[H = \frac{p^2}{2m} + \frac{m\omega^2}{2} x^2. \]

(a) Write the definition of the creation operator \(a^\dagger \) and the annihilation operator \(a \) in terms of the position operator \(x \) and the momentum operator \(p \). What is the form of the hamiltonian using those new operators?

(b) Calculate the following commutation relation:

\[[a, a^\dagger] \quad [x, a^\dagger] \quad [(a)^n, a^\dagger] \quad [H, x] \quad [H, p] \]

with \(n \) being a natural integer.

(c) We continue now with the Heisenberg picture. Estimate those operators

\[a_H(t) \quad a_H^\dagger(t) \quad x_H(t) \quad p_H(t) \]

in Heisenberg picture.

(d) Find the groundstate wave function \(\psi_0(x) \). Calculate the wave function \(\psi_1(x) \) of the first excited state by applying the creation operator.

2. **Heisenberg Uncertainty Relation**

(a) Show, for the momentum and position operators \(p \) and \(x \), this uncertainty relation

\[\Delta p \cdot \Delta x \geq \frac{\hbar}{2}. \]

Where for an operator \(A \) we define the variance as \(\Delta A = \sqrt{\langle (\Delta A)^2 \rangle} \) and the deviation from the expectation value as \(\Delta A = A - \langle A \rangle \).

(b) Given two hermitian operators \(A \) and \(B \), prove that the generalized uncertainty principle

\[\Delta^2(A) \cdot \Delta^2(B) \geq \frac{|i[A, B]|^2}{4} \]

is fulfilled, where \(\langle A \rangle \) is the expectation value and \(\Delta^2(A) = \langle (A - \langle A \rangle)^2 \rangle \) the standard deviation of \(A \) in a given state. Then show that this result is consistent with part (a).