Advanced Quantum Physics, Exercises II

Prof. Hans Peter Büchler SS 2011, 26 October 2011

1. Harmonic Oscillator

We consider a one-dimensional harmonic oscillator

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2}}{2} x^{2} . \tag{1}
\end{equation*}
$$

(a) Write the definition of the creation operator a^{\dagger} and the annihilation operator a in terms of the position operator x and the momentum operator p. What is the form of the hamiltonian using those new operators?
(b) Calcultate the following commutation relation:

$$
\left[\begin{array}{cccc}
{\left[a, a^{\dagger}\right]} & {\left[x, a^{\dagger}\right]} & {\left[(a)^{n}, a^{\dagger}\right]} & {[H, x]} \tag{2}
\end{array}[H, p]\right.
$$

with n being a natural integer.
(c) We continue now with the Heisenberg picture. Estimate those operators

$$
\begin{equation*}
a_{\mathrm{H}}(t) \quad a_{\mathrm{H}}^{\dagger}(t) \quad x_{\mathrm{H}}(t) \quad p_{\mathrm{H}}(t) \tag{3}
\end{equation*}
$$

in Heisenberg picture.
(d) Find the groundstate wave function $\psi_{0}(x)$. Calculate the wave function $\psi_{1}(x)$ of the first excited state by applying the creation operator.

2. Heisenberg Uncertainity Relation

(a) Show, for the momentum and position operators p and x, this uncertainty relation

$$
\overline{\Delta p} \cdot \overline{\Delta x} \geq \frac{\hbar}{2}
$$

Where for an operator A we define the variance as $\overline{\Delta A}=\sqrt{\left\langle(\Delta A)^{2}\right\rangle}$ and the deviation from the expectation value as $\Delta A=A-\langle A\rangle$.
(b) Given two hermitian operators A and B, prove that the generalized uncertainty principle

$$
\Delta^{2}(A) \cdot \Delta^{2}(B) \geq \frac{\langle i[A, B]\rangle^{2}}{4}
$$

is fulfilled, where $\langle A\rangle$ is the expectation value and $\Delta^{2}(A)=\left\langle(A-\langle A\rangle)^{2}\right\rangle$ the standard deviation of A in a given state. Then show that this result is consistent with part (a).

