Prof. Hans Peter Büchler SS 2011, 9th of November 2011

1. Harmonic Oscillator in the Heisenberg picture (Oral)

The operators in the Heisenberg picture are linked to the Schrödinger picture operators via the relation

$$A_H(t) = U^{-1}(t)A_S U(t), \qquad U(t) = e^{-\frac{i}{\hbar}Ht}.$$
 (1)

Where U(t) is the time evolution operator, and fulfills the Schrödinger equation $i\hbar\partial_t U(t) = HU(t)$. We define the states in Heisenberg picture as $|\psi_H\rangle := |\psi_S(t=0)\rangle$. The subscript H stands for *Heisenberg*, S for Schrödinger. In this context the operators $A_H(t)$ and A_S are arbitrary operators in Heisenberg and Schrödinger picture respectively.

(a) Derive from eq. (1) the Heisenberg equation of motion for the operators

$$\partial_t A_H(t) = \frac{i}{\hbar} [H, A_H(t)].$$
(2)

(b) We now consider the Hamiltonian for the Harmonic Oscillator

$$H = \frac{P^2}{2m} + \frac{m\omega^2}{2}Q^2 = \hbar\omega \left(a_S^{\dagger}a_S + \frac{1}{2}\right), \qquad [a_S, a_S^{\dagger}] = 1.$$
(3)

Show

$$a_H(t) = e^{-i\omega t} a_S, \qquad \qquad a_H^{\dagger}(t) = e^{+i\omega t} a_S^{\dagger}. \tag{4}$$

Where the operators a_S and a_S^{\dagger} are the annihilation and creation operators of the Harmonic Oscillator in Schrödinger picture.

(c) Prove the following relations

$$Q_H(t) = Q_H(t; P_S, Q_S), \qquad P_H(t) = P_H(t; P_S, Q_S).$$
 (5)

Hint : $0 = e^{-i\omega t}a_S - e^{-i\omega t}a_S$ and $0 = e^{i\omega t}a_S^{\dagger} - e^{i\omega t}a_S^{\dagger}$.

- (d) Show, that the Heisenberg equation of motion (eq 2) leads to the classical Hamilton equations for the operators $Q_H(t)$ and $P_H(t)$ for the harmonic oscillator.
- (e) We define at time t = 0 the state $|\psi_S(t = 0)\rangle = |\psi_H\rangle = |1\rangle + |2\rangle =: |\gamma\rangle$ $(N|n\rangle = n|n\rangle)$. Calculate the expectation values

$$\langle Q_H(t) \rangle_{\gamma} = \langle \gamma | Q_H(t) | \gamma \rangle, \qquad \langle P_H(t) \rangle_{\gamma} = \langle \gamma | P_H(t) | \gamma \rangle, \qquad (6)$$

for arbitrary times t.

2. Free particles in Heisenberg picture (Homework)

Consider the one dimensional Hamiltonian for free particles of mass m :

$$H = \frac{1}{2m}p^2.$$
(7)

- (a) Solve the equation of motion for the position operator $q_H(t)$ and the momentum operator $p_H(t)$ in the Heisenberg picture.
- (b) Calculate the following commutators :

$$[q_H(t_1), q_H(t_2)]$$
(8)

$$[p_H(t_1), p_H(t_2)] \tag{9}$$

$$[q_H(t_1), p_H(t_2)] \tag{10}$$