Prof. Hans Peter Büchler SS 2011, 14th of December 2011

1. Harmonic oscillator and coherent states (Homework)

For any $\alpha \in \mathbb{C}$ we define the coherent state

$$|\alpha\rangle \equiv e^{-|\alpha|^2/2} \sum_{n \ge 0} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$
(1)

a) Show, that

$$|\alpha\rangle = e^{\alpha \hat{a}^{\dagger} - \bar{\alpha}\hat{a}} |0\rangle , \qquad (2)$$

and

$$\hat{a} \left| \alpha \right\rangle = \alpha \left| \alpha \right\rangle \tag{3}$$

where \hat{a} and \hat{a}^{\dagger} are the harmonic oscillator annihilation and creation operators seen in class.(Hint : $e^{-\bar{\alpha}\hat{a}} |0\rangle = |0\rangle$)

b) Calculate $\langle x \rangle_{\alpha} \equiv \langle \alpha | \hat{x} | \alpha \rangle$, $\langle p \rangle_{\alpha}$, Δx_{α} , Δp_{α} show, that for all $\alpha \in \mathbb{C}$,

$$\Delta x_{\alpha} \Delta p_{\alpha} = \frac{\hbar}{2},\tag{4}$$

applies, i.e that coherent states minimize the uncertainty. (Hint : $\hat{a}\left|\alpha\right>=\alpha\left|\alpha\right>$)

c) Show that coherent states are not orthogonal but we instead have the relation

$$\langle \alpha | \beta \rangle = e^{-\frac{1}{2} \left(|\alpha|^2 + |\beta|^2 - 2\bar{\alpha}\beta \right)}.$$
(5)

2. Quantized fields and coherent states (Homework)

The mode of the electric field with momentum **k** and polarization λ is occupied by a coherent state, i.e., $|\alpha_{\mathbf{k},\lambda}\rangle = e^{\alpha a_{\mathbf{k},\lambda}^{\dagger} - a_{\mathbf{k},\lambda} \alpha^*} |0\rangle$. Such a state describes a perfect laser.

- a) Calculate the expectation values of $\mathbf{E}(\mathbf{x}, t)$ and $\mathbf{B}(\mathbf{x}, t)$
- b) Determine the measured field intensity defined as $\langle \mathbf{E}^{-}(\mathbf{x}, t)\mathbf{E}^{+}(\mathbf{x}, t)\rangle$ at a detector at position \mathbf{x} and time t.

3. Single photon states (Oral)

We focus on a single photon state $|\mathbf{k}, \lambda\rangle = a^{\dagger}_{\mathbf{k},\lambda}|0\rangle$.

- a) Determine the expectation value of the single photon state with the electric $\mathbf{E}(\mathbf{x}, t)$ and magnetic field $\mathbf{B}(\mathbf{x}, t)$.
- b) What are the quadratic fluctuations of the electric field and magnetic field at position \mathbf{x} and time t? Is the situation different for coherent states?
- c) What are the measured field value $\langle \mathbf{E}^{-}(\mathbf{x},t)\mathbf{E}^{+}(\mathbf{x},t)\rangle$ for the single photon state?