Theoretische Physik: Fortgeschrittene Vielteilchentheorie Weihnachtsaufgabe

Prof. Hans Peter Büchler WS 2012/13, 18. Dezember 2012

The Casimir Effect

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force between two parallel metallic plates separated by a distance d, even if the two plates are located in a vacuum and are electrically neutral. This is known as the Casimir effect. For two plates of area A separated by a distance d, we have a shift of energy, which we will prove later, being

$$
\begin{equation*}
U(d, A)=-\frac{\pi^{2}}{720} \frac{\hbar A}{d^{3}} \tag{1}
\end{equation*}
$$

It results that the force between the two plates is non zero and attractive

$$
\begin{equation*}
F=-\frac{\partial U(d, A)}{\partial d}=-\frac{\pi^{2}}{240} \frac{\hbar A}{d^{4}} . \tag{2}
\end{equation*}
$$

This has been confirmed experimentally in 1958 by Sparnaay (It was realized using $1 \mathrm{~cm}^{2}$ Chrome-Steal plates; at $d=0.5 \mu$ the attraction was $\left.0.2 d y n / \mathrm{cm}^{2}\right)$.

1. Preparations

We consider the electromagnetic oscillations between two plates in a rectangular cavity (of dimensions $L_{1} \times L_{2} \times L_{3}$) with conducting walls. We must have \mathbf{E} perpendicular and \mathbf{B} tangential (the transverse component of the electric field vanishes at the surface of a perfect conductor). These boundary conditions are satisfied for a plane wave mode ($\sim e^{-i \omega t}$) if the components of the electric field have the following form

$$
\begin{align*}
& E_{1}=E_{1}^{0} \cos k_{1} x_{1} \sin k_{2} x_{2} \sin k_{3} x_{3} e^{-i \omega t} \tag{3}\\
& E_{2}=E_{2}^{0} \sin k_{1} x_{1} \cos k_{2} x_{2} \sin k_{3} x_{3} e^{-i \omega t} \tag{4}\\
& E_{3}=E_{3}^{0} \sin k_{1} x_{1} \sin k_{2} x_{2} \cos k_{3} x_{3} e^{-i \omega t} \tag{5}
\end{align*}
$$

where $k_{i}=n_{i} \pi / L_{i}$ and n_{i} being an integer. It results that the possible frequencies ω for the wave modes must be restricted by the following dispersion relation

$$
\begin{equation*}
\frac{1}{c^{2}} \omega^{2}\left(n_{1}, n_{2}, n_{3}\right)=\mathbf{k}^{2}=\pi^{2} \sum_{i}\left(n_{i}^{2} / L_{i}^{2}\right) . \tag{6}
\end{equation*}
$$

The magnetic field \mathbf{B} is obtain by the induction law $\nabla \times \mathbf{E}=i(\omega / c) \mathbf{B}$ and the corresponding boundary conditions are fulfilled automatically.
The amplitudes E_{i}^{0} are not arbitrary, since $\nabla \cdot \mathbf{E}=0$, i.e. we must have

$$
\begin{equation*}
\sum_{i} E_{i}^{0} k_{i}=0 \tag{7}
\end{equation*}
$$

In general, equation (7) has two linearly independent solutions (2 polarizations states). Excluded the case where the n_{i} vanish. If there is only one of the n_{i} being zero, there is only one possible polarization mode. But if more n_{i} vanish then there is no solution.

We consider the following setup.

Both plates are contained in a parallelogram with conducting walls. The plates are parallel to the squared $(L \times L)$ ends of the box. One conducting plate is chosen to be at the beginning of the box. Where the second plate is chosen to be at a distance d. In another step the distance will be changed to $R / \eta(e . g \eta=2)$. Now we construct

$$
\begin{equation*}
U(d, L, R):=E_{I}(d)+E_{I I}(R-d)-\left(E_{I I I}(R / \eta)+E_{I V}(R-R / \eta)\right), \tag{8}
\end{equation*}
$$

where $E_{I}, E_{I I}$ are the zero point energy of the free electromagnetic field within the subspaces of the box (see figure). The subspace with energy $E_{I I}$ is only a tool to avoid divergence. We are interested in

$$
\begin{equation*}
U(d, L)=\lim _{R \rightarrow \infty} U(d, L, R) \tag{9}
\end{equation*}
$$

But each term in equation (8) are diverging separately. Therefore we do a regularization of the sums for the zero point energy. Afterwards we calculate equations (8) and (9) and then undo the regularisations. A convenient regularization method is the following

$$
\begin{equation*}
E_{I, I I} \rightarrow E_{I, I I}^{r e g}=\sum_{\omega} \frac{1}{2} \hbar \omega \exp [-\alpha \omega / \pi c] . \tag{10}
\end{equation*}
$$

2. The steps for the regularization

With equations (10) and (6) we have

$$
\begin{equation*}
\left.E_{I}^{r e g}=\hbar c \sum_{l, m, n} k_{l, m, n}(d, L, L) \exp \left[-(\alpha / \pi) k_{l, m, n}(d, L, L)\right)\right] \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
k_{l, m, n}(d, L, L)=\sqrt{\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}} . \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U^{\text {reg }}(d, L, R, \alpha)=E_{I}^{\text {reg }}(d)+E_{I I}^{r e g}(R-d)-\left\{E_{I I I}^{r e g}(R / \eta)+E_{I V}^{r e g}(R-R / \eta)\right\} . \tag{13}
\end{equation*}
$$

Now we consider the sum in equation (11). For very large L we can replace the sums over m and n by integrals. (A more precise way is to study $U^{\text {reg }}\left(d, R, L^{2}, \alpha\right) / L^{2}$ when L goes to infinity). We obtain then

$$
\begin{align*}
E_{I}^{r e g}(d, L, \alpha)= & \hbar c \sum_{l=0}^{\infty} \int_{0}^{\infty} d m \int_{0}^{\infty} d n \sqrt{\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}} \times \\
& \exp \left[-\frac{\alpha}{\pi} \sqrt{\left(\frac{l \pi}{d}\right)^{2}+\left(\frac{m \pi}{L}\right)^{2}+\left(\frac{n \pi}{L}\right)^{2}}\right] \tag{14}
\end{align*}
$$

In equation (13) the term with $l=0$ does not contribute to the sum. Therefore we can neglect it in $E_{I}^{\text {reg }}$. At first transform equation (14) into

$$
\begin{equation*}
E_{I}^{r e g}=-\frac{\pi^{2}}{4} \hbar c L^{2} \frac{d^{3}}{d \alpha^{3}} \sum_{l=1}^{\infty} \int_{0}^{\infty} \frac{d z}{1+z} \exp \left[-\frac{l}{d} \alpha \sqrt{1+z}\right] \tag{15}
\end{equation*}
$$

Afterwards perform the sum over l and then take the derivative with respect to α and bring this result to the form

$$
\begin{equation*}
E_{I}^{r e g}=\frac{\pi^{2} \hbar c L^{2}}{2 d} \frac{d^{2}}{d \alpha^{2}} \frac{d / \alpha}{\exp [\alpha / d]-1} \tag{16}
\end{equation*}
$$

Hint:

$$
\begin{equation*}
\frac{y}{e^{y}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} y^{n} \tag{17}
\end{equation*}
$$

where the B_{n} are the Bernoulli numbers and show

$$
\begin{equation*}
U(d, L):=\lim _{R \rightarrow \infty} \lim _{\alpha \rightarrow 0} U^{r e g}(d, L, R, \alpha)=-\frac{\pi^{2}}{720} \frac{\hbar c L^{2}}{d^{3}} \tag{18}
\end{equation*}
$$

which corresponds to equation (1).

