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Spin and statistics in d + 1 dimensions Spin

Spin in 3 + 1 dimensions [Kha05, Ler92]

In 3 + 1 (d + 1, d ≥ 3) dimensions the spin angular
momentum algebra is non-commutative:

[Si ,Sj ] = iεijkSk where i , j , k = 1, 2, 3

↪→ [Wik12a]

Since
[
S2,S3

]
= 0 we find for the spin eigenstates

S2 |s,m〉 = S(S + 1) |S ,m〉 and S3 |S ,m〉 = m |S ,m〉
By means of raising and lowering operators S± and demanding a positive
norm one finds

2S ∈ N0 ⇒ S = 0, 1
2 , 1,

3
2 , . . .
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Spin and statistics in d + 1 dimensions Spin

Spin in 2 + 1 dimensions: “Any” difference? [Kha05, Ler92]

There is only one rotational axis (perpendicular to the plane)
↪→ Only one component spin operator S ≡ S3

Obviously there are no commutation relations

Hence there is no restriction regarding the spin quantum number S :

S ∈ R

Motivation: Spin-statistics theorem

In 3 + 1 dimensions:

Integer spin particles ⇒ Bosonic statistics

Half-integer spin particles ⇒ Fermionic statistics

In 2 + 1 dimensions:

”Any” spin particles ⇒ ”Any” statistics (”Anyons”) ?
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Spin and statistics in d + 1 dimensions Mathematical preliminaries

The braid group BN [Kha05]

The braiding of strands motivates the definition of the braid group BN :

Informal definition: Braid group BN

I N strands attached to N start- and endpoints

I They may be braided arbitrarily

I Group operation = Concatenation of braids

I Isotopic strands are equivalent

I Generators σi = Crossing of adjacent strands

Example: B1 = {1}, B2
∼= Z

BN (N ≥ 3) is finitely generated, non-abelian and of infinite order

BN is a generalization of SN insofar as SN
∼= BN

/
(σ2

i = 1) , i.e. there is a

surjective group homomorphism BN → SN (“forget the strands”)
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Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy [Nak03]

Two continuous functions are homotopic if there is
a continuous deformation from one into the other

Most intuitive example: Deformation of a path
Γ : [0, 1] −→ Y with fixed endpoints →

↪→ [Wik12b]

Definition: Homotopy

Let X and Y be topological spaces and f , g : X → Y two continuous mappings.
A continuous function

H : X × [0, 1] −→ Y

is called homotopy if H(x , 0) = f (x) and H(x , 1) = g(x) for all x ∈ X .
In this case f and g are said to be homotopic, write f ' g .

↪→ Considering homotopies where X = Sp leads to the p-th homotopy group.
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Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Motivation [Nak03]

Consider ...

an oriented, compact 2-manifold Y

with basepoint y0 ∈ Y

and two loops Γ1, Γ2 with
common start- and endpoint
Γ1(0) = Γ1(1) = y0 = Γ2(0) = Γ2(1).

The product Γ1 ∗ Γ2 of two loops is their
composition:

(Γ1 ∗ Γ2)(t) :=

{
Γ1(2t) t ∈ [0, 1/2]

Γ2(2t − 1) t ∈ (1/2, 1]

This yields a new continuous loop in Y with
(Γ1 ∗ Γ2)(0) = y0 = (Γ1 ∗ Γ2)(1).
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Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Motivation [Nak03]

Define the set of all continuous loops

F = {Γ : [0, 1]→ Y | Γ(0) = y0 = Γ(1)}

Write Γ1 ' Γ2 for homotopic loops via H and
H(0, t) = y0 = H(1, t) for all t ∈ [0, 1].

A group operation • on F /' is defined as

[Γ1] • [Γ2] := [Γ1 ∗ Γ2]

This yields the first homotopy group or
fundamental group

π1(Y , y0) =
(
F /' , •

)
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Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Definition [Nak03]

A slightly more general approach leads to the p-th homotopy group:

Definition: Homotopy groups

Let Y be a topological space with basepoint y0 and Sp the p-sphere with
basepoint x0. The set

πp(Y , y0) :=
(
{Γ : Sp → Y | Γ(x0) = y0} /' , •

)
of all homotopy classes of maps that map x0 to y0 equipped with the composition
• of maps1 is called p-th homotopy group of Y .

Intuitive examples for homotopy groups:

π1

(
S1
) ∼= Z π1

(
S2
) ∼= {1} π2

(
S2
) ∼= Z

1Exact definition omitted.
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Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

Configuration space: Construction [Kha05, Ler92]

Configuration space of ...

N = 1 particle in d dimensions: Md
1 = Rd

N > 1 indistinguishable particles in d dimensions: Md
N =

(
Rd
)N

?

This is not correct! On a physical level permutations are identified:

(x1, . . . , xN ) ∼
(
xσ(1), . . . , xσ(N)

)
where σ ∈ SN

We assume hard-core particles (!), i.e. they cannot occupy the same position.
Therefore the diagonal

∆ := {(x1, . . . , x2) | xi = xj for some i 6= j}

is removed. Consequently we get:

Definition: Configuration space

Md
N :=

[(
Rd
)N \∆

] /
SN

� 7
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Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

Configuration space: Topology [Kha05, Ler92]

Md
N is not simply connected! Indeed, one can show:

Proposition: Fundamental group of Md
N

The fundamental group π1 of the configuration space Md
N in d + 1 dimensional

spacetime (d space dimensions) is

π1

(
Md

N

) ∼= {
SN for d ≥ 3

BN for d = 2

We immediately realize:

d ≥ 3: there are 2 1d-representations of SN ↪→ Fermions & Bosons

d = 2: there are ∞ 1d-representations of BN ↪→ Anyons
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Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

The path integral: Reminder [Kha05, Ler92]

Consider a system described by Md
N and configurations q1, q2 ∈Md

N .
The transition amplitude K is obtained via the path integral:

Reminder: Feynman path integral

K (q2, t2; q1, t1) = χ

∫
q(ti )=qi

D[q] exp

{
i

~

∫ t2

t1

dτL [q(τ), q̇(τ)]

}
Where χ is an arbitrary global phase:
independent of homotopic (!) paths ↪→ unobservable

We note: There is no rule (regarding the quantization) demanding χ to be the
same for non-homotopic paths:

χ −→ χ(α) where α ∈ π1

(
Md

N

)
(to do this, chose q := q1 = q2 ↪→ time evolution = closed loops)

� 9
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Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

The path integral: Topological aspects [Kha05, Ler92]

Thus we find the more general form

K (q, t2; q, t1) =
∑

α∈π1(Md
N)
χ(α)

∫
qα(ti )=q

D[qα] exp
{

i
~
∫ t2

t1
dτL [qα(τ), q̇α(τ)]

}
where qα ∈ α.

Let αi = [γi ] ∈ π1

(
Md

N

)
. Consider a propagation along ...

γ1 ⇒ χ(α1) · e i
~ S[γ1]

and subsequently γ2 ⇒ χ(α1) · e i
~ S[γ1] · χ(α2) · e i

~ S[γ2] ≡ C

or alternatively γ1 ∗ γ2 ⇒ χ(α1 • α2) · e i
~ S[γ1∗γ2] !

= C

where we used α1 • α2 = [γ1 ∗ γ2]. By S [γ1] + S [γ2] = S [γ1 ∗ γ2] we find

χ(α1 • α2) = χ(α1) · χ(α2)

↪→ χ : π1

(
Md

N

)
−→ C is a 1d-representation of π1

(
Md

N

)
� 10
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Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

The path integral: Statistics

The representation χ determines the statistics. We find:

d ≥ 3 dimensions d = 2 dimensions

π1

(
Md

N

) ∼= SN π1

(
Md

N

) ∼= BN

There are two 1d-irreps

χ1 : σ 7→ 1

χ2 : σ 7→ (−1)σ

for all σ ∈ SN .

There are ∞ many 1d-irreps

χθ : σj 7→ e iθ

for all 1 ≤ j ≤ N − 1.

There are two types of statistics:

χ1 ↔ Bosons

χ2 ↔ Fermions

There is any statistics:

χθ=0 ↔ Bosons

χθ 6=0,π ↔ Anyons

χθ=π ↔ Fermions
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The O(3) nonlinear σ-Model revisited Definition

The NLσM: Definition [Raj87, Pol75, BP75]

The NLσM emerges as a continuum theory for the 2d-Heisenberg model:

Definition: NLσM in 2+1 dimensions

Consider three real scalar fields Φi : R× R2 → R : (t,~x) 7→ Φi (t,~x), i = 1, 2, 3,
with the constraint

∑
i Φ2

i (t,~x) ≡ Φ ·Φ = 1 for all (t,~x).
The lagrangian density

L =
1

2

2∑
µ=0

3∑
i=1

(∂µΦi ) · (∂µΦi ) ≡
1

2
(∂µΦ) · (∂µΦ)

defines a field theory in 2+1 dimensional spacetime, namely the NLσM.
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The O(3) nonlinear σ-Model revisited Elementary excitations: Solitons

The NLσM: Action and energy [Raj87, Pol75, BP75]

From the Lagrangian density we find the action

S [Φ] =
1

2

∫
d2x

∫
dt (∂µΦ) · (∂µΦ)

with the constraint Φ ·Φ = 1 ↪→ Symmetry group: O(3)

A Legendre transform yields the energy functional

E =
1

2

∫
d2x(∂kΦ)2 ≡ 1

2

2∑
k=1

3∑
i=1

∫
d2x(∂k Φi )

2 ≥ 0

Ground state: E = 0 ⇔ Φ(~x) ≡ Φ0 = const., where |Φ0| = 1

↪→ Spontaneous symmetry breaking: O(3) −→ O(2)

� 13
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The O(3) nonlinear σ-Model revisited Elementary excitations: Solitons

Solitons with |Q| = 1: Skyrmions [Raj87, WZ83]

Skyrmion (Q = 1)

ΦS (r , ϕ) =
1

1 +
(

r
2λ

)2

 r
λ cosϕ
r
λ sinϕ(
r

2λ

)2 − 1



Antiskyrmion (Q = −1)

ΦS̄ (r , ϕ) =
1

1 +
(
λ
2r

)2

 λ
r cosϕ
−λr sinϕ(
λ
2r

)2 − 1


� 14



The O(3) nonlinear σ-Model revisited One step further: Dynamics

One step further: Dynamics

So far static solutions were considered:

Φ = Φ(~x), i.e. Φ : S2
(phy) −→ S2

(int)

π2(S2) ∼= Z ↪→ Pontryagin number Q

For spin & statistics of skyrmions the
dynamics is crucial:

Φ = Φ(t,~x), i.e. Φ : S3
(phy) −→ S2

(int)

π3(S2) ∼= Z ↪→ Hopf invariant H
↪→ [Wik12c]
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Overview: Hopf term and anyonic excitations
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4 Summary



Hopf term and anyonic excitations Time evolution and configuration space

Setting the scene [Fra98, WZ84, Wil70]

In the following, time-dependent solutions of the NLσM are considered:

Φ : RTime × R2
Space −→ S2

(int) where (t,~x) 7→ Φ(t,~x)

We demand lim
|~x|→∞

Φ(t,~x) = Φ0 and lim
|t|→∞

Φ(t,~x) = Φ0, therefore

Φ : R× R2 ∪ {∞} ∼= S3
(phy) −→ S2

(int) where (t,~x) 7→ Φ(t,~x), ∞ 7→ Φ0

The configuration space for the NLσM is Mσ = {Φ : S2 → S2}.
Since δQ[Φ] = 0, Mσ decomposes into disjoint, connected components MQ

σ :

Mσ =
⊔

Q∈Z
MQ

σ where MQ
σ = {Φ : S2 → S2 |Q[Φ] = Q}

The dynamics in the vacuum sector M0
σ is described by2

π1(M0
σ) ∼= π3(S2) ∼= Z

2For details see e.g. [Fra98, WZ84] and especially [Wil70].
� 16
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Hopf term and anyonic excitations Time evolution and configuration space

Setting the scene [Fra98, WZ84, Wil70]

In the following, time-dependent solutions of the NLσM are considered:

Φ : RTime × R2
Space −→ S2

(int) where (t,~x) 7→ Φ(t,~x)

We demand lim
|~x|→∞

Φ(t,~x) = Φ0 and lim
|t|→∞

Φ(t,~x) = Φ0, therefore
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Hopf term and anyonic excitations The Hopf term

Modifying the NLσM action [WZ83, Fra98, Hop31]

The skyrmion of the unmodified NLσM is a boson and has S = 0.

However, π1

(
M0

σ

) ∼= π3(S2) ∼= Z is non-trivial
↪→ Add topological term to the action:

S̃ [Φ] := S [Φ] + θH[Φ] where θ ∈ R

Note: Whether θ 6= 0 in S̃ depends on the microscopic theory.

H is called Hopf invariant:

H[Φ] ∈ Z for all Φ ∈Mσ

Homotopy invariant: δH[Φ] = 0 ⇒ H : π3(S2) −→ Z

Homomorphism: H[Φ1 ∗Φ2] = H ([Φ1] • [Φ2]) = H[Φ1] + H[Φ2]

Characterizes homotopy of mappings Φ : S3 −→ S2, i.e. π3(S2)
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Hopf term and anyonic excitations The Hopf term

The modified action and the path integral [WZ84]

Consider the propagator for initial and final state Φ0 (Vacuum):

K (Φ0,−∞; Φ0,+∞) =

∫
Paths Φ(t,~x) in M0

σ

D[Φ] exp {iS [Φ] + iθH[Φ]}

=
∑

α∈π3(S2)

∫
Φα∈α

D[Φα] exp {iS [Φα] + iθH[Φα]}

=
∑

α∈π3(S2)

e iθH[α]

∫
Φα∈α

D[Φα] e iS[Φα]

Note: Φ ∈M0
σ since Q[Φ0] = 0; we used δH[Φ] = 0 by H[Φα] ≡ H[α]

↪→ χ(α) = e iθH[α] , i.e. H implements a 1d-representation of π1(M0
σ) ∼= π3(S2):

χ(α1 • α2) = e iθH[α1•α2] = e iθH[α1]+iθH[α2] = e iθH[α1] · e iθH[α2] = χ(α1) · χ(α2)
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Hopf term and anyonic excitations The Hopf term

The topological current and the gauge potential [WZ83]

The topological current

Jµ := 1
8π ε

µνλεabc Φa∂νΦb∂λΦc

is automatically conserved: ∂µJ
µ = 0 (↪→ not a dynamically conserved quantity)

Reminder: Topological charge = Pontryagin number

The topological charge is the well-known Pontryagin number

Q =

∫
d2x J0 =

1

8π

∫
d2x εijεabc Φa∂i Φb∂j Φc

Since ∂µJ
µ = 0 there is a gauge potential Aµ such that

Jµ = εµνλ∂νAλ

and the gauge freedom Aµ → Aµ − ∂µΛ.
Note that Aµ = Aµ[Φ] depends nonlocally on Φ.
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Hopf term and anyonic excitations The Hopf term

An analytic expression for the Hopf invariant [WZ83]

We may now give an analytic expression for the Hopf invariant:

Definition: Hopf invariant

Let Φ : S3
(phy) −→ S2

(int). The Hopf invariant is defined by

H[Φ] := − 1

2π

∫
Spacetime

d3x JµAµ ∈ Z

From this expression we find easily

H is gauge invariant

H is homotopically invariant: δH[Φ] = 0

However, evaluating the above integral proves to be intricate!

⇒ Is there a more elegant procedure to obtain H[Φ]?
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

A side note: Linking numbers [Wik12d]

↪→ [Wik12d]

Proposition: Gauss integral representation

Link [γ1, γ2] =
1

4π

∮
γ1

∮
γ2

r1 − r2

|r1 − r2|3
· (dr1 × dr2)
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

Computing the Hopf invariant [Wil90, WZ83, Bae92]

Proposition: Preimage of points in S2

Let Φ : S3 −→ S2 be a differentiable map. Then
Φ−1(y) ⊂ S3 is a collection of nonintersecting
closed curves for almost every y ∈ S2.

↪→ [Ci12]

“There is a deep theorem which equates the Hopf invariant to the linking number

between two curves in R3”
[WZ83]

:

Proposition: Hopf invariant and linking numbers

Let Φ : S3 −→ S2 be a continuous mapping and Φ1,Φ2 ∈ S2 two arbitrary fixed
values. If γi denotes the closed curve given by Φ−1(Φi ), it holds

H[Φ] = Link[γ1, γ2] .

The γi are the world lines for Φi in RTime × R2
Space.
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

Computing the Hopf invariant [Wil90, WZ83, Bae92]
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:

Proposition: Hopf invariant and linking numbers

Let Φ : S3 −→ S2 be a continuous mapping and Φ1,Φ2 ∈ S2 two arbitrary fixed
values. If γi denotes the closed curve given by Φ−1(Φi ), it holds

H[Φ] = Link[γ1, γ2] .

The γi are the world lines for Φi in RTime × R2
Space.
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

Preparation: Creating Skyrmion-Antiskyrmion pairs

Recall: Q[Φ1] = Q[Φ2]⇔ Φ1 ' Φ2, Q[Φ1 ∗Φ2] = Q[Φ1] + Q[Φ2]

Vacuum: Q[Φ0] = 0

Skyrmion- and Antiskyrmion: Q[ΦS ] = +1, Q[ΦS̄ ] = −1

Thus we find

Q[ΦS ∗ΦS̄ ] = 1 + (−1) = 0 = Q[Φ0] ⇒ ΦS ∗ΦS̄ ' Φ0

↪→ ∃ Homotopy H : S3
(phy) −→ S2

(int) such that

H(~x , 0) = Φ0(~x) and H(~x , 1) = (ΦS ∗ΦS̄ )(~x)
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

The spin of skyrmions [WZ83]

To derive the spin of a skyrmion we employ the following procedure:

Create SS̄-pair ⇒ Rotate S through 2π ⇒ Annihilate SS̄-pair

and track two fixed field values Φ1 and Φ2 in spacetime.

↪→ The word lines γ1 and γ2 are linked once, thus

H[Φ] = Link[γ1, γ2] = 1

We note: Fractional spin

The rotation of a spin-S particle results in a phase e2πiS , therefore

e iθH[Φ] = e iθ !
= e2πiS ⇒ S =

θ

2π
+ k where k ∈ Z, 0 ≤ θ ≤ 2π

↪→ The Hopf term endows the skyrmions with fractional spin!

Recall: Sz = Generator of rotations in 2D ↪→ R(ω) = e−iωS/~ ω=−2πez= e2πiSz/~ = e2πiS
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

The statistics of skyrmions [WZ83]

To derive the statistics of skyrmions we employ the following procedure:

Create two SS̄-pairs ⇒ Interchange S1 and S2 ⇒ Annihilate S1S̄2 and S2S̄1

and track two fixed field values Φ1 and Φ2 in spacetime.

↪→ The word lines γ1 and γ2 are linked once, thus

H[Φ] = Link[γ1, γ2] = 1

We note: Fractional statistics

The interchange of two skyrmions results in a phase

e iθH[Φ] = e iθ where 0 ≤ θ ≤ 2π

↪→ The Hopf term endows the skyrmions with fractional statistics!
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Hopf term and anyonic excitations Spin & Statistics of skyrmions

The statistics of skyrmions [WZ83]

x1

t

x2

Antiskyrmion 1

Skyrmion 2

Creation 1

Annihilation 2-1

Interchange

Φ1 = (0, 0, 1)

|Link[γ1, γ2]| = 1

γ1 γ2

Homotopic deformation

Skyrmion 1

Creation 2

Antiskyrmion 2

Annihilation 1-2

Φ2 = (1, 0, 0)
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Summary

Summary

What you should remember ...



Summary

Summary: Spin and statistics in d + 1 dimensions

First hint: Spin in 2 + 1 dimensions not quantized ↪→ “Any” statistics?

The configuration space for N hard-core particles is not simply connected:

π1(Md
N ) ∼= SN for d ≥ 3 and π1(Md

N ) ∼= BN for d = 2

The quantization by path integrals is not uniquely determined unless we
choose a 1d-representation of π1(Md

N )

There are two 1d-representation for SN ↪→ Bosons, Fermions

There are ∞ many 1d-representations for BN ↪→ Anyons
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Summary

Summary: The O(3) nonlinear σ-Model revisited

We reviewed the NLσM: Action S [Φ]; Energy functional

Finite energy ↪→ One-point compactification: Φ : S2
(phy) −→ S2

(int)

Classification of static solutions by π2(S2) ∼= Z ↪→ Pontryagin number Q[Φ]

Static solutions with Q = ±1 are called Skyrmions and Antiskyrmions

In the unmodified NLσM they obey bosonic statistics and have S = 0
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Summary

Summary: Hopf term and anyonic excitations

Loop time evolution ↪→ One-point compactification: Φ : S3
(phy) −→ S2

(int)

We added a topological term to the action: S̃ [Φ] := S [Φ] + θH[Φ]

The Hopf term H : π3(S2) −→ Z classifies the homotopy sectors

H[Φ] may be computed via ...

the topological current Jµ

the linking number Link[γ1, γ2] of worldlines γi (easier!)

Rotating a skyrmion yields H[Φ] = 1 ↪→ Fractional spin: S = θ
2π + k

Permuting two skyrmions yields H[Φ] = 1 ↪→ Fractional statistics: e iθ

NLσM + Hopf term ⇒ Skyrmions = Anyons
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That’s it!

Thank you for your attention.
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Appendix The symmetric group SN

The symmetric group SN
Definition: Symmetric group SN

Let X = {1, 2, . . . ,N}. The set of all bijective functions X → X furnished with
the composition as product is called symmetric group on X

SN := Aut(X ) = ( {f : X → X | f bijective} , ◦ )

Example: σ = (132) →
SN (N ≥ 3) is finitely generated,
non-abelian and of finite order

There are two 1d-representations:

DB : SN 3 σ 7→ 1 ∈ C
DF : SN 3 σ 7→ (−1)σ ∈ C

1 2 3 4

1 2 3 4

σ =

(
1 2 3 4
3 1 2 4

)
= (1 3 2)(4) ≡ (1 3 2)
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Appendix The braid group BN

The braid group BN [Kha05]

σi σi+1 σi σi+1

We note:

σiσi+1 6= σi+1σi

but σiσj = σjσi for |i − j | ≥ 2
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Appendix The braid group BN

The braid group BN [Kha05]

σi

σi+1

σi

σi+1

σi

σi+1

We note:

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ N − 2
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Appendix The braid group BN

The braid group BN [Kha05]

This motivates the definition of the braid group BN :

Definition: Braid group BN

Let {σ1, . . . , σN−1} be a set of abstract generators, each representing the crossing
of two adjacent strands i and i + 1, 1 ≤ i ≤ N − 1. Then the braid group for N
strands is defined as

BN := 〈σ1, . . . , σN−1 |σiσi+1σi = σi+1σiσi+1; σiσj = σjσ1〉

where 1 ≤ i ≤ N − 2 in the first and |i − j | ≥ 2 in the second relation.

Example: B1 = {1}, B2
∼= Z

BN (N ≥ 3) is finitely generated, non-abelian and of infinite order

BN is a generalization of SN insofar as SN
∼= BN

/
(σ2

i = 1) , i.e. there is a

surjective group homomorphism BN → SN (“forget the strands”)
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Appendix Finite-energy solutions

The NLσM: Field equations and energy [Raj87, Pol75, BP75]

Introducing the lagrange multiplier λ(t,~x) yields the action

S [Φ] =

∫
d2x

∫
dt

{
1

2
(∂µΦ) · (∂µΦ) + λ(t,~x)(Φ ·Φ− 1)

}
Using δS [Φ] = 0 and Φ ·Φ = 1 we find the field equations

�Φ− (Φ ·�Φ)Φ = 0
static solutions−−−−−−−−→ ∆Φ− (Φ ·∆Φ)Φ = 0

A Legendre transform yields the energy functional

E =
1

2

∫
d2x(∂kΦ)2 ≡ 1

2

2∑
k=1

3∑
i=1

∫
d2x(∂k Φi )

2 ≥ 0

We note:

Ground state: E = 0 ⇔ Φ(~x) ≡ Φ0 = const., where |Φ0| = 1
↪→ Degeneracy
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The NLσM: Field equations and energy [Raj87, Pol75, BP75]

Introducing the lagrange multiplier λ(t,~x) yields the action

S [Φ] =

∫
d2x

∫
dt

{
1

2
(∂µΦ) · (∂µΦ) + λ(t,~x)(Φ ·Φ− 1)

}
Using δS [Φ] = 0 and Φ ·Φ = 1 we find the field equations

�Φ− (Φ ·�Φ)Φ = 0
static solutions−−−−−−−−→ ∆Φ− (Φ ·∆Φ)Φ = 0

A Legendre transform yields the energy functional

E =
1

2

∫
d2x(∂kΦ)2 ≡ 1

2

2∑
k=1

3∑
i=1

∫
d2x(∂k Φi )

2 ≥ 0
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Appendix Finite-energy solutions

The NLσM: Finite-energy solutions [Raj87, Wil90]

The finite energy solutions (0 < E <∞) are called solitons.
↪→ To ensure E <∞ we demand lim

|~x|→∞
Φ(~x) = Φ0 = const.

Definition: One-point compactification

R2 ∪ {∞} with an extended topology is called
one-point compactification of R2 and

R2 ∪ {∞} ∼= S2

via a stereographic projection. ↪→ [Wik12e]

In combination with the above boundary condition we may redefine Φ:

Φ : R2 ∪ {∞} ∼= S2
(phy) −→ S2

(int) where ~x 7→ Φ(~x), ∞ 7→ Φ0

↪→ The finite-energy solutions can be classified by π2(S2) ∼= Z.
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Appendix Finite-energy solutions

Topological aspects: The Pontryagin number [Raj87, WZ83]

To obtain and classify the solutions we employ a topological invariant:

Definition: Pontryagin number Q

The Pontryagin number (topological charge) is

Q[Φ] :=
1

8π

∫
d~x εk,l Φ · (∂kΦ× ∂l Φ)

=̂ how often S2
(phy) “wraps around” S2

(int)
↪→ [Wik12c]

Classification means: δQ[Φ] = 0 and Q[Φ1] = Q[Φ2]⇔ Φ1 ' Φ2

Any static configuration in a given Q-sector is bound by E ≥ 4π|Q|
Energy is minimised if E = 4π|Q| ⇒ ∂kΦ = ±εkl Φ× (∂l Φ)

The substitution ω1 = 2Φ1/(1− Φ3), ω2 = 2Φ2/(1− Φ3) yields the
Cauchy-Riemann eq. ↪→ ω(z = x1 + ix2) = ω1 + iω2 has to be analytic!
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Appendix Statistics of skyrmions

A straightforward approach

Wick rotation: t → τ , Minkowski metric → Euclidean metric
(t,~x) ∈ RTime × R2

Space → ~r = (τ, x , y) ∈ R3

Topological current: ∇ · J = 0 ⇒ ∃A : J = ∇× A

Coulomb-gauge: ∇ · A = 0 ⇒ ∇× J = ∇× (∇× A) = −∆A

Solution for A (cf. Electrodynamics):

A(~r) =
1

4π

∫
d3r ′
∇′ × J(~r ′)

|~r −~r ′|
I.b.P.
=

1

4π

∫
d3r ′J(~r ′)× ~r −~r ′

|~r −~r ′|3

↪→ A[J] = A[Φ] is a non-local functional of Φ.

Consider two skyrmions with world lines ~γ1,2(ϕ) parametrized by ϕ.
↪→ Jd3r ≈ J · d~γ1 + J · d~γ2 for skyrmions with negligible spatial extent.

It follows

A(~r) =
J

4π

∫
d~γ1 ×

~r −~r1

|~r −~r1|3
+

J

4π

∫
d~γ2 ×

~r −~r2

|~r −~r2|3
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Appendix Statistics of skyrmions

A straightforward approach

Since ~γi are closed curves, Stoke’s theorem implies

A(~r) =
J

4π
∇ ·

∫
Σ1

d~n1 ×
~r −~r1

|~r −~r1|3
+

J

4π
∇ ·

∫
Σ2

d~n2 ×
~r −~r2

|~r −~r2|3

=
J

4π
[∇Ω1(~r) +∇Ω2(~r)]

where Ωi (~r) denotes the solid angle of Σi viewed from ~r .

The Hopf invariant is

H = − 1

2π

∫
d3r A(~r)J(~r) ≈ − 1

2π

∑
i=1,2

∫
γi

d~γi A(~r) = − J

8π2

∑
i,j=1,2

∫
γi

d~γi ∇Ωj (~r)

Assume d~γi · ∇Ωi (~r) = 0 for i = 1, 2 and set J = π:

H = − J

8π2

∑
i 6=j

∫
γ1

∫
γ2

[(~ri −~rj )× d~γj ] · d~γi

|~ri −~rj |3
=

J

4π2

∫
γ1

∫
γ2

~r1 −~r2

|~r1 −~r2|3
(d~γ1 × d~γ2)

= Link[γ1, γ2] ⇒ Linking number of world lines
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