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Spin and statistics in d + 1 dimensions Spin

[Kha05, Ler92]
S

Spin in 3 + 1 dimension

m In3+1(d+1, d>3) dimensions the spin angular
momentum algebra is non-commutative:

[S,‘,Sj] = iE,'J'kSk where I',j,k = 1,2,3

< [Wik12a]

m Since [52, 53] = 0 we find for the spin eigenstates
S?%|s,m) =S(S+1)|S,m) and S3|S,m)=m|S, m)
m By means of raising and lowering operators S1 and demanding a positive

norm one finds

25eNy, = §=0,3,1,3, ...



Spin in 2 + 1 dimensions: “Any” difference?

[Kha05, Ler92]

m There is only one rotational axis (perpendicular to the plane)
< Only one component spin operator S = S3

m Obviously there are no commutation relations

m Hence there is no restriction regarding the spin quantum number S:

SeR



Spin and statistics in d + 1 dimensions Spin

Spin in 2 + 1 dimensions: “Any” difference? """ "

m There is only one rotational axis (perpendicular to the plane)
< Only one component spin operator S = S3

m Obviously there are no commutation relations

m Hence there is no restriction regarding the spin quantum number S:

SeR

Motivation: Spin-statistics theorem

In 3+ 1 dimensions:

Integer spin particles = Bosonic statistics
Half-integer spin particles = Fermionic statistics

In 2 + 1 dimensions:

"Any" spin particles = "Any" statistics ("Anyons") ?



Spin and statistics in d + 1 dimensions Mathematical preliminaries
H [Kha05]
The braid group By

The braiding of strands motivates the definition of the braid group By:

Informal definition: Braid group By

» N strands attached to N start- and endpoints ‘

» They may be braided arbitrarily

» Group operation = Concatenation of braids i

» lIsotopic strands are equivalent

» Generators o; = Crossing of adjacent strands 7 \



Spin and statistics in d + 1 dimensions Mathematical preliminaries
H [Kha05]
The braid group By

The braiding of strands motivates the definition of the braid group By:

Informal definition: Braid group By

» N strands attached to N start- and endpoints ‘

» They may be braided arbitrarily \\
» Group operation = Concatenation of braids i

» lIsotopic strands are equivalent

» Generators o; = Crossing of adjacent strands 7 \

m Example: By = {1}, B, = Z

m By (N > 3) is finitely generated, non-abelian and of infinite order

m By is a generalization of Sy insofar as Sy & By /(0',.2 =1). i.e. thereis a

surjective group homomorphism By — Sy (“forget the strands™)



Spin and statistics in d + 1 dimensions Mathematical preliminaries

ak03
Homotopy "
., —
. . . . .I' ‘\‘\\
m Two continuous functions are homotopic if there is ; \
a continuous deformation from one into the other .~
® Most intuitive example: Deformation of a path
I : [0,1] — Y with fixed endpoints —
< [Wik12b]

m4



Spin and statistics in d + 1 dimensions Mathematical preliminaries

[Nak03]

Homotopy

m Two continuous functions are homotopic if there is : \
a continuous deformation from one into the other

® Most intuitive example: Deformation of a path
I :[0,1] — Y with fixed endpoints —

s [Wik12b]

Definition: Homotopy

Let X and Y be topological spaces and f,g : X — Y two continuous mappings.

A continuous function
H:Xx[0,1] — Y

is called homotopy if H(x,0) = f(x) and H(x,1) = g(x) for all x € X.
In this case f and g are said to be homotopic, write f ~ g.

— Considering homotopies where X = 5P leads to the p-th homotopy group.
H4



Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Motivation "
Consider ...
® an oriented, compact 2-manifold Y
m with basepoint yp € Y

m and two loops N1, > with
common start- and endpoint
F1(0) = M1(1) = yo = '2(0) = I'>(1).

m>5



Homotopy groups: Motivation "

Consider ...
® an oriented, compact 2-manifold Y
m with basepoint yp € Y

m and two loops N1, > with
common start- and endpoint
F1(0) = M1(1) = yo = '2(0) = I'>(1).

The product 'y * > of two loops is their
composition:
(2t te[0,1/2
(P Fa)(2) o= { 120 10,1/2]
M(2t—1) te(1/2,1]

This yields a new continuous loop in Y with
(F1 * rz)(O) =Y = (F1 * rz)(l)

m>5



Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Motivation ™"

Define the set of all continuous loops
F=A{T:[0,1] = Y|T(0) = yo =T(1)} i
Write ['; ~ [, for homotopic loops via H and - @ )

H(0,t) = yo = H(1,t) for all t € [0,1]. Q

(] o 1)) = [y + )

m>5



Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Motivation ™"

Define the set of all continuous loops
F=AT:[0,1]] > Y|T(0)=y=T(1)} ")

Write ['; ~ [, for homotopic loops via H and - @ )

H(0,t) = yo = H(1,t) for all t € [0,1].

A group operation e on F /~ is defined as

[r]_] (] [F2] = [r]_ * r2]

(] o 1) = [y + T3]

This yields the first homotopy group or
fundamental group

(Y, 5) = (F/~, )

m>5



Spin and statistics in d + 1 dimensions Mathematical preliminaries

Homotopy groups: Definition "

A slightly more general approach leads to the p-th homotopy group:

Definition: Homotopy groups

Let Y be a topological space with basepoint yo and SP the p-sphere with
basepoint xp. The set

(Y, y0) == ({F 1 SP = Y [T (x) =y} /~, o)

of all homotopy classes of maps that map xp to yp equipped with the composition
e of maps! is called p-th homotopy group of Y.

'Exact definition omitted.
Ho6
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[Nak03]

Homotopy groups: Definition

A slightly more general approach leads to the p-th homotopy group:

Definition: Homotopy groups

Let Y be a topological space with basepoint yo and SP the p-sphere with
basepoint xp. The set

(Y, y0) == ({F 1 SP = Y [T (x) =y} /~, o)

of all homotopy classes of maps that map xp to yp equipped with the composition
e of maps! is called p-th homotopy group of Y.

Intuitive examples for homotopy groups:

U (Sl) =7 1 (52) = {]1} T2 (52) =7

'Exact definition omitted.
Ho6



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

[Kha05, Ler92]

Configuration space: Construction

Configuration space of ...
m N =1 particle in d dimensions: M¢ = R?

m N > 1 indistinguishable particles in d dimensions: M¢, = (R4)" 2

m7



Configuration space, path integrals and statistics
Configuration space: Construction " "
Configuration space of ...

m N =1 particle in d dimensions: M¢ = R¢
m N > 1 indistinguishable particles in d dimensions: M¢, = (R4)" 2
This is not correct! On a physical level permutations are identified:
(X1, XN) ~ (Xo(1)s-- -+ Xo(n))  Where o € Sy

We assume hard-core particles (1), i.e. they cannot occupy the same position.
Therefore the diagonal

A= {(xq,...,%2) | x; = x; for some i # j}

is removed.

m7



Configuration space, path integrals and statistics
Configuration space: Construction " "

Configuration space of ...
m N =1 particle in d dimensions: M¢ = R¢
m N > 1 indistinguishable particles in d dimensions: M¢, = (R4)" 2
This is not correct! On a physical level permutations are identified:
(X1, XN) ~ (Xo(1)s-- -+ Xo(n))  Where o € Sy

We assume hard-core particles (1), i.e. they cannot occupy the same position.
Therefore the diagonal

A= {(xq,...,%2) | x; = x; for some i # j}

is removed. Consequently we get:

Definition: Configuration space

M = [®)"\4] /s,

m7



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

Configuration space: Topology """

M, is not simply connected! Indeed, one can show:

Proposition: Fundamental group of M¢,

The fundamental group 1 of the configuration space M, in d + 1 dimensional
spacetime (d space dimensions) is

Sy for d>3
M§) = -
™ (M) {BN for d =2

]



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

Configuration space: Topology """

M, is not simply connected! Indeed, one can show:

Proposition: Fundamental group of M¢,

The fundamental group 1 of the configuration space M, in d + 1 dimensional
spacetime (d space dimensions) is

Sy for d>3
M§) = -
™ (M) {BN for d =2

We immediately realize:
m d > 3: there are 2 1d-representations of Sy < Fermions & Bosons

B d = 2: there are oo ld-representations of By < Anyons

]



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

[Kha05, Ler92]

The path integral: Reminder

Consider a system described by M, and configurations g1, g2 € M4,
The transition amplitude K is obtained via the path integral:

Reminder: Feynman path integral

K(an t2: . 1) / D[q]exp{ / arc fa(r), 7)1}
q(ti)= '

Where x is an arbitrary global phase'
independent of homotopic (!) paths < unobservable

m9



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

[Kha05, Ler92]

The path integral: Reminder

Consider a system described by M, and configurations g1, g2 € M4,
The transition amplitude K is obtained via the path integral:

Reminder: Feynman path integral

K(an t2: . 1) / D[q]exp{ / arc fa(r), 7)1}
q(ti)= '

Where x is an arbitrary global phase'
independent of homotopic (!) paths < unobservable

We note: There is no rule (regarding the quantization) demanding x to be the
same for non-homotopic paths:

x — x(@) where  a € m (M)

(to do this, chose g := g1 = g» < time evolution = closed loops)

m9



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

[Kha05, Ler92]

The path integral: Topological aspects

Thus we find the more general form

K@ tigt)= 5 x@ [ Dlglen{s [ drLlga(r), dalr)]}
aem (M) qa(ti)=q

where g, € .



Spin and statistics in d + 1 dimensions Configuration space, path integrals and statistics

The path integral: Topological aspects "
Thus we find the more general form
K(q’ 2; 9, tl) = Z X(Oé) f D[qa] exp {% ftiz drL [qa(T)a C.la (7')]}
aem (M) qa(t)=q

where g, € a.

Let a; =[] € m1 (M$,). Consider a propagation along ...

Y1 = X(al) . e%s[')/l]
and subsequently v» = x(az)-enMl . y(ap) - en = ¢
or alternatively v * ¥o = x(ogeap)-enSil L ¢

where we used a; ® ap = [y1 * 72].



The path integral: Topological aspects "

Thus we find the more general form

Kamat)= ¥ x@) [ Daadew{t [2drLlu(r), (]}
aem (M) qa(ti)=q

where g, € a.
Let a; =[] € m1 (M$,). Consider a propagation along ...
get = (o) - e Sbnl
and subsequently v» = x(az)-enMl . y(ap) - en = ¢
or alternatively v * ¥o = x(ogeap)-enSil L ¢
where we used oy @ az = [y1%72]. By S[n] + S[y2] = S[n * 72] we find
X(a1 @ az) = x(a1) - x(c2)

D s (/\/lj\’,) — C is a 1d-representation of my (/\/l‘,(,)



Spin and statistics in d + 1 dimensions

The path integral: Statistics

Configuration space, path integrals and statistics

The representation y determines the statistics. We find:

d > 3 dimensions

d = 2 dimensions

m1 (M) = Su

™ (M) = By

There are two 1d-irreps
x1:0 +— 1
X2 0 — (=1)°

for all o € Sy.

There are co many 1d-irreps

Xo i oj > e’

forall 1<j < N-1.

There are two types of statistics:

X1 <> Bosons

X2 ~ Fermions

There is any statistics:

X6=0 > Bosons
X040, > Anyons
X0=r > Fermions



The O(3) nonlinear o-Model revisited

Overview: The O(3) nonlinear o-Model revisited

The O(3) nonlinear o-Model revisited
m Definition
m Elementary excitations: Solitons
m One step further: Dynamics



The NLoM: Definition ®" " &7l

The NLoM emerges as a continuum theory for the 2d-Heisenberg model:

Definition: NLoM in 241 dimensions

Consider three real scalar fields ®; : R x R2 = R : (t,X) = ®,(t,X), i = 1,2,3,
t

with the constraint Y, ®?(t,X) = ® - ® =1 for all (
The lagrangian density

1 2 3
:EZZ () =

defines a field theory in 2+1 dimensional spacetime, namely the NLoM.

t,X) —
%),

(0.®) - (0"®)

N~



The NLoM: Action and energy " ™" "

From the Lagrangian density we find the action

S[o] = %/d&/dt(aﬂ)-(am)

with the constraint ® - ® =1 < Symmetry group: O(3)



The NLoM: Action and energy " ™" "

From the Lagrangian density we find the action
1
S[o] = E/dzx/dt(autb)-(a”tb)
with the constraint ® - ® =1 < Symmetry group: O(3)

A Legendre transform yields the energy functional

£ 1 d2 B 1 2 3
2/ x(8k¢' = ZZ/ 8k<1>

k=1 i=1
Ground state: E =0 < ®(X) = & = const., where |®g| =1

— Spontaneous symmetry breaking: O(3) — O(2)

Y



The O(3) nonlinear o-Model revisited Elementary excitations: Solitons

Solitons with ’Q‘ =E Skyrmions [Raj87, WZz83]

Antiskyrmion (Q = —1)

Skyrmion (Q = 1)

1 §rC9s<p ) %/\co.sgo
¢S(r7%0) - r\2 XSI2n<p ¢§(I’,QO) = —k 5 _7§In(p
G L) - 1+ ()" [(2) -1



The O(3) nonlinear o-Model revisited One step further: Dynamics

One step further: Dynamics

SO
sl
SZ
53

54

N

N

— [Wik12c]



One step further: Dynamics

Classifying static solutions

m So far static solutions were considered: (Pontryagin number)
= ¢()_('), ie. ® : S(2phy) — S(2int) m ny T3 ng m

s° o 0 0 0

m m(5%) = Z — Pontryagin number Q

— [Wik12c]



One step further: Dynamics

m So far static solutions were considered:

B d=0>(X), ie

m m(5?)

LD Sph

2
y) " int)

& 7Z — Pontryagin number @

m For spin & statistics of skyrmions the
dynamics is crucial:

B O =0>(t,X)ie & S(Phy)—>5mt

| 7T3(52)

= 7Z — Hopf invariant H

Classifying static solutions
(Pontryagin number)

s° o 0 0 0

Classifying dynamics
(Hopf invariant)

> [Wik12c]



Hopf term and anyonic excitations

Overview: Hopf term and anyonic excitations

Hopf term and anyonic excitations
m Time evolution and configuration space
m The Hopf term
m Spin & Statistics of skyrmions



Hopf term and anyonic excitations Time evolution and configuration space

[Fra98, WZ84, Wil70]
e

Setting the scen

In the following, time-dependent solutions of the NLoM are considered:

® : Ryime X R%pace — S(zint) where  (t,X) — ®(t,X)

We demand lim ®(t,X) = ®g and lim ®(t,X) = ®, therefore
—00

[X|—o00 It]

<D:R><R2U{oo}%$(3phy) — S

(inty Where (t,X) — ®(t,X), 0o — ®qg



. [Fra98, WZz84, Wil70]
Setting the scene

In the following, time-dependent solutions of the NLoM are considered:
® : Ryime X R%pace — S(zint) where  (t,X) — ®(t,X)

We demand lim ®(t,X) = ®g and lim ®(t,X) = ®, therefore
—00

|X| =00 t|

®:RxR*U{co} =S} — S,y where (t,X) = ®(t,X), 00 = @

int)
The configuration space for the NLoM is M, = {® : S? — S2}.
Since 6Q[®] = 0, M, decomposes into disjoint, connected components MQ:

Mo =| | MZ where MZ ={®:S*>— S?|Q[o] = Q}

QEZ




Hopf term and anyonic excitations Time evolution and configuration space

[Fra98, WZ84, Wil70]
e

Setting the scen

In the following, time-dependent solutions of the NLoM are considered:
® : Ryime X R%pace — S(zint) where  (t,X) — ®(t,X)

We demand lim ®(t,X) = ®g and lim ®(t,X) = ®, therefore
—00

[X|—o00 It]

®:RxR*U{co} =S} — S,y where (t,X) = ®(t,X), 00 = @

The configuration space for the NLoM is M, = {® : S? — S2}.
Since 6Q[®] = 0, M, decomposes into disjoint, connected components MQ:

Mo =| | MZ where MZ ={®:S*>— S?|Q[o] = Q}
QEZ

The dynamics in the vacuum sector MY is described by?

m(MG) = m3(5%) = Z

2For details see e.g. [Fra98, WZ84] and especially [Wil70].



Hopf term and anyonic excitations The Hopf term

Modifying the NLoM action " f fortl

The skyrmion of the unmodified NLoM is a boson and has S = 0.

However, m; (M%) = 73(52) = Z is non-trivial
— Add topological term to the action:

S[®] := S[®] + OH[®] where 6 R

Note: Whether 6 # 0 in S depends on the microscopic theory.
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Modifying the NLoM action " f fortl

The skyrmion of the unmodified NLoM is a boson and has S = 0.

However, m; (M%) = 73(52) = Z is non-trivial
— Add topological term to the action:

S[®] := S[®] + OH[®] where 6 R

Note: Whether 6 # 0 in S depends on the microscopic theory.



Modifying the NLoM action " ™ el

The skyrmion of the unmodified NLoM is a boson and has S = 0.

However, m; (M%) = 73(52) = Z is non-trivial
— Add topological term to the action:

S[®] := S[®] + OH[®] where 6 R

Note: Whether 6 # 0 in S depends on the microscopic theory.

H is called Hopf invariant:

H[®] € Z for all ® € M,
Homotopy invariant: SH[®] =0 = H : 73(5%) — Z
Homomorphism: H[®; x @3] = H ([®1] e [®2]) = H[®4] + H[P]

Characterizes homotopy of mappings ® : S — 52, ie. 73(5?)



The modified action and the path integral

[wzs4]

Consider the propagator for initial and final state ®y (Vacuum):

K(®g, —00; ®g, +00) = / D[®] exp {iS[®] + iOH[®]}

Paths ®(t, %) in M2

. / _ DI®Jexp {iS[0] + 0[]}

a€ems(S?)

_ Z eiGH[a]/ D[®,] £519]
b, ca

a€em3(S?)

Note: ® € MY since Q[®¢] = 0; we used §H[®] = 0 by H[®,] = H|q]



Hopf term and anyonic excitations The Hopf term

The modified action and the path integral "
Consider the propagator for initial and final state ®y (Vacuum):
K(®g, —00; ®g, +00) = / D[®] exp {iS[®] + iOH[®]}

Paths ®(t, %) in M2

. / _ DI®Jexp {iS[0] + 0[]}

a€ems(S?)

_ Z eiGH[oc] / D[ma] ei5[¢a]
b ca

a€em3(S?)
Note: ® € MY since Q[®¢] = 0; we used §H[®] = 0 by H[®,] = H|q]
— x(a) = €Ml ie Himplements a 1d-representation of (M) = m3(S?):

iOH[c o] ei9H[oq]+i9H[a2] _ ei9H[a1] . ei0H[a2] _

(o) =e x(a1) - x(a2)



iz sz
The topological current and the gauge potential "

The topological current
JH = %5“”)‘53bc¢a8y¢b6>\¢c

is automatically conserved: 9,J* = 0 (< not a dynamically conserved quantity)

Reminder: Topological charge = Pontryagin number

The topological charge is the well-known Pontryagin number

1 ,
Q= / xS = o / d?x ele?bcd,0,0,0;0,

Since 9, J* = 0 there is a gauge potential A* such that
JH = e, Ay

and the gauge freedom A, — A, — 0, A.
Note that A* = A#[®] depends nonlocally on ®.



Hopf term and anyonic excitations The Hopf term

An analytic expression for the Hopf invariant """

We may now give an analytic expression for the Hopf invariant

Definition: Hopf invariant

Let @ : S(phy — S(mt) The Hopf invariant is defined by
1 3
H[®] .= —— d*x JFA, eZ
™

Spacetime

| 20



Hopf term and anyonic excitations The Hopf term

An analytic expression for the Hopf invariant """

We may now give an analytic expression for the Hopf invariant

Definition: Hopf invariant

Let @ : S(phy — S(mt) The Hopf invariant is defined by
1 3
H[®] .= —— d*x JFA, eZ
™

Spacetime
From this expression we find easily

m H is gauge invariant

m H is homotopically invariant: H[®] =0

However, evaluating the above integral proves to be intricate!

= s there a more elegant procedure to obtain H[®]?

| 20



Hopf term and anyonic excitations Spin & Statistics of skyrmions

A side note: Linking numbers ""*!

DO
@D D

Proposition: Gauss integral representation

< [Wik12d]

: 1 rL—r
Link _ —74 T2 e xd
ink [v1,72] mf - np (dry x drp)

m 21



Hopf term and anyonic excitations Spin & Statistics of skyrmions

[Wil90, WZ83, Bae92]

Computing the Hopf invariant

Proposition: Preimage of points in S

Let ® : S® — S? be a differentiable map. Then
®~1(y) C $3%is a collection of nonintersecting
closed curves for almost every y € S2.

m 22



Hopf term and anyonic excitations Spin & Statistics of skyrmions

[Wil90, WZ83, Bae92]

Computing the Hopf invariant

Proposition: Preimage of points in S

Let ® : S® — S? be a differentiable map. Then
®—1(y) C 53 is a collection of nonintersecting
closed curves for almost every y € S2.

“There is a deep theorem which equates the Hopf invariant to the linking number
between two curves in R3” """

Proposition: Hopf invariant and linking numbers

Let ® : S3 — S? be a continuous mapping and ®1, ®, € S? two arbitrary fixed
values. If ; denotes the closed curve given by ®~1(®;), it holds

H[®] = Link[v1,72] -

The ; are the world lines for ®; in Ryime X Rgpace.



Preparation: Creating Skyrmion-Antiskyrmion pairs

B Recall: Q[@1] = Q[®;] & &) ~ &y, Q[®; * ;] = Q[®;] + Q[P,]
m Vacuum: Q[®o] =0
m Skyrmion- and Antiskyrmion: Q[®s] = +1, Q[®z] = —1



Preparation: Creating Skyrmion-Antiskyrmion pairs

B Recall: Q1] = Q[®,] & &1 ~ &y, Q[d; x dy] = Q[®1] + Q2]
m Vacuum: Q[®g] =0
m Skyrmion- and Antiskyrmion: Q[®s] = +1, Q[®z] =

Thus we find
Q[¢5*¢;] :1+(—1):O: Q[¢o] = ¢5*¢§2¢0

— 3 Homotopy H : Sph — 5

v (int) Such that

H(%,0) = ®o(%) and H(%,1) = (®s * ®z)(X)

m 23



Hopf term and anyonic excitations Spin & Statistics of skyrmions

[wzs3]

The spin of skyrmions

To derive the spin of a skyrmion we employ the following procedure:

Create SS-pair = Rotate S through27 = Annihilate SS-pair

and track two fixed field values ®; and @, in spacetime.



Hopf term and anyonic excitations Spin & Statistics of skyrmions

[wzs3]

The spin of skyrmions

)\ Homotopic deformation
Annihilation

t s /’_\
&, =(0,0,1)

Rotation

Antiskyrmion 4= ]~

>+ Skyrmion

|Link[y1, ]| =1

2

0y

7
Creation
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[WZ83, Bec12]

The spin of skyrmions
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S [WZ83, Bec12]

The spin of skyrmion




Hopf term and anyonic excitations Spin & Statistics of skyrmions

[wzs3]

The spin of skyrmions

)\ Homotopic deformation
Annihilation

t s /’_\
&, =(0,0,1)

Rotation

Antiskyrmion 4= ]~

>+ Skyrmion

|Link[y1, ]| =1

2

0y

7
Creation




Hopf term and anyonic excitations Spin & Statistics of skyrmions

[wzs3]

The spin of skyrmions

To derive the spin of a skyrmion we employ the following procedure:
Create SS-pair = Rotate S through27 = Annihilate SS-pair
and track two fixed field values ®; and @, in spacetime.

— The word lines 71 and 7, are linked once, thus

H[‘b] = Link[’yl,’)/z] =1



Hopf term and anyonic excitations Spin & Statistics of skyrmions

The spin of skyrmions "

To derive the spin of a skyrmion we employ the following procedure:

Create SS-pair = Rotate S through27 = Annihilate SS-pair

and track two fixed field values ®; and @, in spacetime.

— The word lines 71 and 7, are linked once, thus

H[‘b] = Link['yl,’yg] =1

We note: Fractional spin

The rotation of a spin-S particle results in a phase €™ therefore

e/OHI®] — oi6 = 27iS 5:2i+k where ke€Z,0<60<2r
T

— The Hopf term endows the skyrmions with fractional spin!

. . : =_2 . .
Recall: S, = Generator of rotations in 2D < R(w) = e~ iwS/h YT =70 g2mis; /h — g27iS
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[wzs3]

The statistics of skyrmions

To derive the statistics of skyrmions we employ the following procedure:

Create two Sg—pairs = Interchange S; and S, = Annihilate 5.5, and S,5;

and track two fixed field values ®; and @, in spacetime.
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[wzs3]

The statistics of skyrmions

Annihilation 2-1 S
. Annihilation 1-2 Homotopic deformation

t . .-

Skyrmion 1 .
|Link[y1,72]| = 1

b St
Creation1 * Creation 2

Ra



Hopf term and anyonic excitations Spin & Statistics of skyrmions

The statistics of skyrmions "

To derive the statistics of skyrmions we employ the following procedure:
Create two SS-pairs = Interchange S; and S, = Annihilate $;5, and S,5;
and track two fixed field values ®; and @, in spacetime.
— The word lines 71 and 7, are linked once, thus
H[®] = Link[y1,72] =1

We note: Fractional statistics

The interchange of two skyrmions results in a phase
eHI®l — ¢/ \where 0<6 <27

— The Hopf term endows the skyrmions with fractional statistics!



Summary

What you should remember ...



Summary: Spin and statistics in d + 1 dimensions

m First hint: Spin in 2 + 1 dimensions not quantized < “Any" statistics?

m The configuration space for N hard-core particles is not simply connected:

m(M§) =Sy for d>3 and m(MY) =By for d=2

m The quantization by path integrals is not uniquely determined unless we
choose a 1d-representation of (M)

m There are two 1d-representation for Sy < Bosons, Fermions

m There are co many ld-representations for By < Anyons
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Summary: The O(3) nonlinear o-Model revisited

m We reviewed the NLoM: Action S[®]; Energy functional

m Finite energy < One-point compactification: ® : S(thy) — 5(2int)

m Classification of static solutions by m(5?) 22 Z < Pontryagin number Q[®]
m Static solutions with @ = 41 are called Skyrmions and Antiskyrmions

® In the unmodified NLoM they obey bosonic statistics and have S =0



Summary: Hopf term and anyonic excitations

3

m Loop time evolution < One-point compactification: @ : 5(phy) — 5(2

m We added a topological term to the action: S[®] := S[®] + OH[®]

The Hopf term H : m3(5?) — Z classifies the homotopy sectors

H[®] may be computed via ...

m the topological current J#
m the linking number Link[v1, 72] of worldlines ~; (easier!)

m Rotating a skyrmion yields H[®] = 1 < Fractional spin: S = % + k
i0

Permuting two skyrmions yields H[®] = 1 < Fractional statistics: e

NLcM + Hopfterm = Skyrmions = Anyons

int)

H 26



-]
That’s it!

Thank you for your attention.
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The symmetric group Sy
The symmetric group Sy
Definition: Symmetric group Sy

Let X ={1,2,..., N}. The set of all bijective functions X — X furnished with
the composition as product is called symmetric group on X

Sy = Aut(X) = ({f : X — X| f bijective}, o)

m 27



The symmetric group Sy

Definition: Symmetric group Sy

Let X ={1,2,..., N}. The set of all bijective functions X — X furnished with
the composition as product is called symmetric group on X

Sy = Aut(X) = ({f : X — X| f bijective}, o)

1 2 3 4
m Example: 0 = (132) — Y ® ® °
m Sy (N > 3) is finitely generated, ‘ :
non-abelian and of finite order ST
m There are two 1d-representations: ‘-" .-' "-.. é
Dg:Sy>0 — 1leC 1 2 3 4
De:Sy30 — (1) €eC o G 2 3 i) — (132)) = (132)



Appendix The braid group By

The braid group By "

KK

Oj+1 Oi+1

We note:

0i0i41 7 Oit10i
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Appendix The braid group By

The braid group By "

N KT

Oj42 Oj42

0’,‘0’,‘+1750','+10',' but 0j0j = 0j0; for |I—_j|22

m 28



Appendix The braid group By

The braid group By "

g; K Ji+1 K

Oit1 gi
; \ Oi+1
We note:

0i0i410; = 0jr10i0j+1  forall 1</i<N-—-2

m 29



Appendix The braid group By

The braid group By "

This motivates the definition of the braid group By:

Definition: Braid group By
Let {o1,...,0n—1} be a set of abstract generators, each representing the crossing

of two adjacent strands j and i +1, 1 </ < N — 1. Then the braid group for N
strands is defined as

By = (01,...,0n-1|0i0i}10/ = 0i110i0i41; 0i0j = 0jo1)

where 1 </ < N — 2 in the first and |/ — j| > 2 in the second relation.
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Appendix The braid group By

The braid group By "

This motivates the definition of the braid group By:

Definition: Braid group By

Let {o1,...,0n—1} be a set of abstract generators, each representing the crossing
of two adjacent strands j and i +1, 1 </ < N — 1. Then the braid group for N
strands is defined as

By = (01,...,0n-1|0i0i}10/ = 0i110i0i41; 0i0j = 0jo1)

where 1 </ < N — 2 in the first and |/ — j| > 2 in the second relation.

m Example: By = {1}, B, =2 Z
m By (N > 3) is finitely generated, non-abelian and of infinite order
m By is a generalization of Sy insofar as Sy = Bn /(01'2 =1), i.e. thereisa

surjective group homomorphism By — Sy (“forget the strands”™)
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The NLoM: Field equations and energy

[Raj87, Pol75, BP75]
Introducing the lagrange multiplier A(t,X) yields the action

S[®] = /dzx/dt{;(aﬂtb) (0" D) + \(t,X) (P - & — 1)}
Using 0S[®] =0 and ® - ® =1 we find the field equations

06 — (- Od)p =0 Besohtion,  Ap_ (¢ Ad)d =0
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The NLoM: Field equations and energy

[Raj87, Pol75, BP75]

Introducing the lagrange multiplier A(t,X) yields the action

S[o] = /dzx/dt {;(aﬂm) (0" ®) £ (£, %) (@ & — 1)}
Using 0S[®] =0 and ® - ® =1 we find the field equations

06 — (- Od)p =0 Besohtion,  Ap_ (¢ Ad)d =0

A Legendre transform vyields the energy functional

2 3
1 1
E= 2/d2x(ak¢ = ZZ/ x(0k®;)> > 0

k=1 i=1
We note:

m Ground state: E =0 < ®(X) = &y = const., where |®y| =1
— Degeneracy

m 31



Appendix Finite-energy solutions

The NLoM: Finite-energy solutions """

The finite energy solutions (0 < E < c0) are called solitons.

— To ensure E < co we demand lim ®(X) = &y = const.
|X] =00

Definition: One-point compactification

R2 U {oo} with an extended topology is called
one-point compactification of R? and

R? U {0} = §?

via a stereographic projection. < [Wiki2e]
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Appendix Finite-energy solutions

The NLoM: Finite-energy solutions """

The finite energy solutions (0 < E < c0) are called solitons.

— To ensure E < co we demand lim ®(X) = &y = const.
|X] =00

Definition: One-point compactification

R2 U {oo} with an extended topology is called
one-point compactification of R? and

R? U {0} = §?

via a stereographic projection. < [Wiki2e]

In combination with the above boundary condition we may redefine ®:

®:R*U {00} =S, ) — Sl Where X = ®(X), 00 — &

< The finite-energy solutions can be classified by m,(5?) = 7Z.
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Topological aspects: The Pontryagin number "
To obtain and classify the solutions we employ a topological invariant

Definition: Pontryagin number Q

The Pontryagin number (topological charge) is

Q[‘D] 1 /dXEk P - (8kd> X 8/@)

= how often 5(ph ) “wraps around” 5mt)

< [Wik12d]

Classification means: §Q[®] = 0 and Q[®4] = Q[®2] & 1 ~ b,
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Appendix Finite-energy solutions

Topological aspects: The Pontryagin number "

To obtain and classify the solutions we employ a topological invariant

Definition: Pontryagin number Q

The Pontryagin number (topological charge) is

Q[‘D] 1 /dXEk P - (8kd> X 8/¢)

= how often 5(ph ) “wraps around” 5""_.)

< [Wik12d]
Classification means: §Q[®] = 0 and Q[®4] = Q[®2] & 1 ~ b,

m Any static configuration in a given Q-sector is bound by E > 47|Q)|

m Energy is minimised if E = 47|Q| = 0x® = te® x (0,P)

m The substitution w; = 2¢; /(1 — @3), wr = 2P, /(1 — $3) yields the

Cauchy-Riemann eq. — w(z = x1 + ixo) = w1 + iw; has to be analytic!
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A straightforward approach

m Wick rotation: t — 7, Minkowski metric — Euclidean metric
(t,)?) € Rijme X R%pace —F= (T,X7y) cR3

m Topological current: V-J=0= 3A : J=V xA
m Coulomb-gauge: V-A=0 = VxJ=Vx(VxA)=-AA
m Solution for A (cf. Electrodynamics):

/
A(7) = i/d%/vr“ op L /d3r’J(r x I

am — 7
— A[J] = A[®] is a non-local functional of ®.

m Consider two skyrmions with world lines 43 2(¢) parametrized by .
s Jd3r =~ J-d¥y; + J - d¥, for skyrmions with negligible spatial extent.

It follows

s J . r—n J - r—n
A(r) = — ~ - - 4
(7) /d 1 X o7 ; /d72 X E
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A straightforward approach

m Since 7; are closed curves, Stoke's theorem implies

1

S J - F—n J S r—n
A(r) = —V- dii X ————~+ —V - dr, X ——
(") Am 5 ! [F—rA)3  4n % 2 |F — B3

= [VQl( ) + VQ(7)]

where Q;(7) denotes the solid angle of ¥; viewed from 7.

m The Hopf invariant is

H:—%/d%A(F)J(F)%—%Z/ a7, A(F) ; [{dy,VQ(

i=1,27 i

m Assume d¥; - VQ;(F) =0 for i =1,2 and set J = 7:

[(Fi—7)xdy]l-d% _ J / / n—r
H = dy: x d
871'2 Z/ /y2 |rl — rj|3 471_2 - |3 ( Y1 X 72)

= Link[y1,72] = Linking number of world lines
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