Topological Excitations II: Hopf terms and Anyons

ITP-III Seminar: Quantum Field Theory of low-dimensional Systems

Nicolai Lang

Institute for Theoretical Physics III

July 17, 2012

University of Stuttgart

- **1** Spin and statistics in d + 1 dimensions
- **2** The O(3) nonlinear σ -Model revisited
- **B** Hopf term and anyonic excitations
- 4 Summary

Overview: Spin and statistics in d + 1 dimensions

1 Spin and statistics in d+1 dimensions

- Spin
- Mathematical preliminaries
- Configuration space, path integrals and statistics
- **2** The O(3) nonlinear σ -Model revisited
- **B** Hopf term and anyonic excitations
- 4 Summary

Spin

Spin in 3+1 dimensions ^[Kha05, Ler92]

■ In 3 + 1 (d + 1, d ≥ 3) dimensions the spin angular momentum algebra is non-commutative:

 $[S_i, S_j] = i\varepsilon_{ijk}S_k$ where i, j, k = 1, 2, 3

Since
$$[\mathbf{S}^2, S_3] = 0$$
 we find for the spin eigenstates
 $\mathbf{S}^2 | s, m \rangle = S(S+1) | S, m \rangle$ and $S_3 | S, m \rangle = m | S, m \rangle$

By means of raising and lowering operators S_{\pm} and demanding a positive norm one finds

$$2S \in \mathbb{N}_0 \quad \Rightarrow \quad S = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$$

Spin in 2 + 1 dimensions: "Any" difference? [Kha05, Ler92]

- There is only one rotational axis (perpendicular to the plane) \hookrightarrow Only one component spin operator $\mathbf{S} \equiv S_3$
- Obviously there are no commutation relations
- Hence there is no restriction regarding the spin quantum number *S*:

 $S \in \mathbb{R}$

Motivation: Spin-statistics theorem

In 3 + 1 dimensions:

- Integer spin particles \Rightarrow Bosonic statistics
- Half-integer spin particles \Rightarrow Fermionic statistics

In 2 + 1 dimensions:

"Any" spin particles \Rightarrow "Any" statistics ("Anyons")?

Spin in 2 + 1 dimensions: "Any" difference? [Kha05, Ler92]

- There is only one rotational axis (perpendicular to the plane) \hookrightarrow Only one component spin operator $\mathbf{S} \equiv S_3$
- Obviously there are no commutation relations
- Hence there is no restriction regarding the spin quantum number *S*:

 $S \in \mathbb{R}$

Motivation: Spin-statistics theorem

ln 3 + 1 dimensions:

- Integer spin particles \Rightarrow Bosonic statistics
- ${\sf Half}{-}{\sf integer \ spin \ particles} \quad \Rightarrow \quad {\sf Fermionic \ statistics}$

In 2 + 1 dimensions:

"Any" spin particles \Rightarrow "Any" statistics ("Anyons")?

The braid group \mathcal{B}_N [Kha05]

The braiding of strands motivates the definition of the braid group \mathcal{B}_N :

Informal definition: Braid group \mathcal{B}_N

- N strands attached to N start- and endpoints
- They may be braided arbitrarily
- Group operation = Concatenation of braids
- Isotopic strands are equivalent
- Generators σ_i = Crossing of adjacent strands

- Example: $\mathcal{B}_1 = \{1\}, \ \mathcal{B}_2 \cong \mathbb{Z}$
- \mathcal{B}_N ($N \ge 3$) is finitely generated, non-abelian and of infinite order
- \mathcal{B}_N is a generalization of \mathcal{S}_N insofar as $\mathcal{S}_N \cong \mathcal{B}_N / (\sigma_i^2 = 1)$, i.e. there is a surjective group homomorphism $\mathcal{B}_N \to \mathcal{S}_N$ ("forget the strands")

The braid group \mathcal{B}_N [Kha05]

The braiding of strands motivates the definition of the braid group \mathcal{B}_N :

Informal definition: Braid group \mathcal{B}_N

- ▶ N strands attached to N start- and endpoints
- ▶ They may be braided arbitrarily
- Group operation = Concatenation of braids
- Isotopic strands are equivalent
- Generators σ_i = Crossing of adjacent strands

 σ_i σ_{i+1} σ_i

- \mathcal{B}_N ($N \ge 3$) is finitely generated, non-abelian and of infinite order
- \mathcal{B}_N is a generalization of \mathcal{S}_N insofar as $\mathcal{S}_N \cong \mathcal{B}_N / (\sigma_i^2 = 1)$, i.e. there is a surjective group homomorphism $\mathcal{B}_N \to \mathcal{S}_N$ ("forget the strands")

Homotopy [Nak03]

- Two continuous functions are homotopic if there is a continuous deformation from one into the other
- $\blacksquare \text{ Most intuitive example: Deformation of a path } \Gamma \ : \ [0,1] \longrightarrow Y \text{ with fixed endpoints } \rightarrow$

 $\hookrightarrow [\mathsf{Wik12b}]$

Definition: Homotopy

Let X and Y be topological spaces and $f, g : X \to Y$ two continuous mappings. A continuous function

$$H \,:\, X imes [0,1] \longrightarrow Y$$

is called homotopy if H(x,0) = f(x) and H(x,1) = g(x) for all $x \in X$. In this case f and g are said to be homotopic, write $f \simeq g$.

 \hookrightarrow Considering homotopies where $X = S^{p}$ leads to the *p*-th homotopy group.

Homotopy [Nak03]

- Two continuous functions are homotopic if there is a continuous deformation from one into the other
- Most intuitive example: Deformation of a path $\Gamma : [0, 1] \longrightarrow Y$ with fixed endpoints \rightarrow

 $\hookrightarrow [\mathsf{Wik12b}]$

Definition: Homotopy

Let X and Y be topological spaces and $f,g: X \to Y$ two continuous mappings. A continuous function

$$H: X \times [0,1] \longrightarrow Y$$

is called homotopy if H(x,0) = f(x) and H(x,1) = g(x) for all $x \in X$. In this case f and g are said to be homotopic, write $f \simeq g$.

 \hookrightarrow Considering homotopies where $X = S^p$ leads to the *p*-th homotopy group.

Homotopy groups: Motivation [Nak03]

Consider ...

- an oriented, compact 2-manifold Y
- with basepoint $y_0 \in Y$
- and two loops Γ_1 , Γ_2 with common start- and endpoint $\Gamma_1(0) = \Gamma_1(1) = y_0 = \Gamma_2(0) = \Gamma_2(1)$.

The product $\Gamma_1 * \Gamma_2$ of two loops is their composition:

$$(\Gamma_1 * \Gamma_2)(t) := egin{cases} \Gamma_1(2t) & t \in [0, 1/2] \ \Gamma_2(2t-1) & t \in (1/2, 1] \end{cases}$$

This yields a new continuous loop in Y with $(\Gamma_1 * \Gamma_2)(0) = y_0 = (\Gamma_1 * \Gamma_2)(1).$

Mathematical preliminaries

[Nak03] Homotopy groups: Motivation

Consider

- an oriented, compact 2-manifold Y
- with basepoint $y_0 \in Y$
- \blacksquare and two loops Γ_1 , Γ_2 with common start- and endpoint $\Gamma_1(0) = \Gamma_1(1) = v_0 = \Gamma_2(0) = \Gamma_2(1).$

The product $\Gamma_1 * \Gamma_2$ of two loops is their composition:

$$(\Gamma_1*\Gamma_2)(t):=egin{cases} \Gamma_1(2t) & t\in [0,1/2]\ \Gamma_2(2t-1) & t\in (1/2,1] \end{cases}$$

This yields a new continuous loop in Y with $(\Gamma_1 * \Gamma_2)(0) = y_0 = (\Gamma_1 * \Gamma_2)(1).$

Homotopy groups: Motivation [Nak03]

Define the set of all continuous loops

$$F = \{ \Gamma : [0,1] \to Y \, | \, \Gamma(0) = y_0 = \Gamma(1) \}$$

Write $\Gamma_1 \simeq \Gamma_2$ for homotopic loops via H and $H(0, t) = y_0 = H(1, t)$ for all $t \in [0, 1]$.

A group operation \bullet on $F/_{\simeq}$ is defined as

 $[\Gamma_1] \bullet [\Gamma_2] := [\Gamma_1 * \Gamma_2]$

This yields the first homotopy group or fundamental group

$$\pi_1(Y,y_0)=\left({}^{\mathsf{F}}/_{\simeq},\,\bullet\right)$$

Homotopy groups: Motivation [Nak03]

Define the set of all continuous loops

$$F = \{ \Gamma \, : \, [0,1] \to Y \, | \, \Gamma(0) = y_0 = \Gamma(1) \}$$

Write $\Gamma_1 \simeq \Gamma_2$ for homotopic loops via H and $H(0, t) = y_0 = H(1, t)$ for all $t \in [0, 1]$.

A group operation \bullet on $F/_{\simeq}$ is defined as

 $[\Gamma_1]\bullet[\Gamma_2]:=[\Gamma_1*\Gamma_2]$

This yields the first homotopy group or fundamental group

$$\pi_1(Y,y_0)=\left({F} /_{\simeq},\, \bullet \, \right)$$

PD PD

 $[\Gamma_1]$

 $[\Gamma_2]$

Homotopy groups: Definition [Nak03]

A slightly more general approach leads to the *p*-th homotopy group:

Definition: Homotopy groups

Let Y be a topological space with basepoint y_0 and S^p the *p*-sphere with basepoint x_0 . The set

$$\pi_{p}(Y, y_{0}) := \left(\left\{ \Gamma \, : \, S^{p} \to Y \, | \, \Gamma(x_{0}) = y_{0} \right\} /_{\simeq}, \, \bullet \right)$$

of all homotopy classes of maps that map x_0 to y_0 equipped with the composition • of maps¹ is called *p*-th homotopy group of *Y*.

Intuitive examples for homotopy groups:

$$\pi_1\left(S^1
ight)\cong\mathbb{Z}$$
 $\pi_1\left(S^2
ight)\cong\{1\}$ $\pi_2\left(S^2
ight)\cong\mathbb{Z}$

¹Exact definition omitted.

Homotopy groups: Definition [Nak03]

A slightly more general approach leads to the *p*-th homotopy group:

Definition: Homotopy groups

Let Y be a topological space with basepoint y_0 and S^p the *p*-sphere with basepoint x_0 . The set

$$\pi_{p}(Y, y_{0}) := \left(\left\{ \Gamma \, : \, S^{p} \to Y \, | \, \Gamma(x_{0}) = y_{0} \right\} /_{\simeq}, \, \bullet \right)$$

of all homotopy classes of maps that map x_0 to y_0 equipped with the composition • of maps¹ is called *p*-th homotopy group of *Y*.

Intuitive examples for homotopy groups:

$$\pi_1\left(S^1
ight)\cong\mathbb{Z}\qquad \pi_1\left(S^2
ight)\cong\{1\!\!\!1\}\qquad \pi_2\left(S^2
ight)\cong\mathbb{Z}$$

¹Exact definition omitted.

Configuration space: Construction [Kha05, Ler92]

Configuration space of ...

- \blacksquare $\mathit{N}=1$ particle in d dimensions: $\mathcal{M}_1^d=\mathbb{R}^d$
- N > 1 indistinguishable particles in *d* dimensions: $\mathcal{M}_N^d = (\mathbb{R}^d)^N$?

This is not correct! On a physical level permutations are identified:

 $(\mathbf{x}_1, \dots, \mathbf{x}_N) \sim (\mathbf{x}_{\sigma(1)}, \dots, \mathbf{x}_{\sigma(N)})$ where $\sigma \in \mathcal{S}_N$

We assume hard-core particles (!), i.e. they cannot occupy the same position. Therefore the diagonal

$$\Delta := \{ (\mathbf{x}_1, \dots, \mathbf{x}_2) \, | \, \mathbf{x}_i = \mathbf{x}_j \text{ for some } i \neq j \}$$

is removed. Consequently we get:

Definition: Configuration space

$$\mathcal{M}_{N}^{d} := \left[\left(\mathbb{R}^{d}
ight)^{N} \setminus \Delta \right] / \mathcal{S}_{N}$$

Configuration space: Construction [Kha05, Ler92]

Configuration space of ...

- N = 1 particle in d dimensions: $\mathcal{M}_1^d = \mathbb{R}^d$
- N > 1 indistinguishable particles in d dimensions: $\mathcal{M}_N^d = (\mathbb{R}^d)^N$?

This is not correct! On a physical level permutations are identified:

$$(\mathbf{x}_1,\ldots,\mathbf{x}_N)\simig(\mathbf{x}_{\sigma(1)},\ldots,\mathbf{x}_{\sigma(N)}ig)$$
 where $\sigma\in\mathcal{S}_N$

We assume hard-core particles (!), i.e. they cannot occupy the same position. Therefore the diagonal

$$\Delta := \{ (\mathbf{x}_1, \dots, \mathbf{x}_2) \, | \, \mathbf{x}_i = \mathbf{x}_j \text{ for some } i \neq j \}$$

is removed. Consequently we get:

Definition: Configuration space

$$\mathcal{M}_{N}^{d} := \left[\left(\mathbb{R}^{d}
ight)^{N} \setminus \Delta \right] /_{\mathcal{S}_{N}}$$

Configuration space: Construction [Kha05, Ler92]

Configuration space of ...

- \blacksquare $\mathit{N}=1$ particle in d dimensions: $\mathcal{M}_1^d=\mathbb{R}^d$
- N > 1 indistinguishable particles in *d* dimensions: $\mathcal{M}_N^d = (\mathbb{R}^d)^N$?

This is not correct! On a physical level permutations are identified:

$$(\mathbf{x}_1,\ldots,\mathbf{x}_N)\simig(\mathbf{x}_{\sigma(1)},\ldots,\mathbf{x}_{\sigma(N)}ig)$$
 where $\sigma\in\mathcal{S}_N$

We assume hard-core particles (!), i.e. they cannot occupy the same position. Therefore the diagonal

$$\Delta := \{ (\mathbf{x}_1, \dots, \mathbf{x}_2) \, | \, \mathbf{x}_i = \mathbf{x}_j \text{ for some } i \neq j \}$$

is removed. Consequently we get:

Definition: Configuration space

$$\mathcal{M}_{N}^{d}$$
 := $\left[\left(\mathbb{R}^{d}\right)^{N}\setminus\Delta\right]/_{\mathcal{S}_{N}}$

Configuration space: Topology [Kha05, Ler92]

 \mathcal{M}_N^d is not simply connected! Indeed, one can show:

Proposition: Fundamental group of \mathcal{M}_N^d

The fundamental group π_1 of the configuration space \mathcal{M}_N^d in d + 1 dimensional spacetime (*d* space dimensions) is

$$\pi_1\left(\mathcal{M}_N^d
ight)\cong egin{cases} \mathcal{S}_N & ext{ for } d\geq 3\ \mathcal{B}_N & ext{ for } d=2 \end{cases}$$

We immediately realize:

- $d \ge 3$: there are 2 1d-representations of $S_N \hookrightarrow$ Fermions & Bosons
- d = 2: there are ∞ 1d-representations of $\mathcal{B}_N \hookrightarrow$ Anyons

Configuration space: Topology [Kha05, Ler92]

 \mathcal{M}_{N}^{d} is not simply connected! Indeed, one can show:

Proposition: Fundamental group of \mathcal{M}_N^d

The fundamental group π_1 of the configuration space \mathcal{M}_N^d in d + 1 dimensional spacetime (*d* space dimensions) is

$$\pi_1\left(\mathcal{M}_N^d
ight)\cong egin{cases} \mathcal{S}_N & ext{ for } d\geq 3\ \mathcal{B}_N & ext{ for } d=2 \end{cases}$$

We immediately realize:

- $d \geq 3$: there are 2 1d-representations of $S_N \hookrightarrow$ Fermions & Bosons
- d = 2: there are ∞ 1d-representations of $\mathcal{B}_N \hookrightarrow Anyons$

The path integral: Reminder [Kha05, Ler92]

Consider a system described by \mathcal{M}_N^d and configurations $q_1, q_2 \in \mathcal{M}_N^d$. The transition amplitude K is obtained via the path integral:

Reminder: Feynman path integral

$$\mathcal{K}(q_2, t_2; q_1, t_1) = \chi \int_{q(t_i)=q_i} \mathcal{D}[q] \exp\left\{\frac{i}{\hbar} \int_{t_1}^{t_2} \mathrm{d}\tau \mathcal{L}\left[q(\tau), \dot{q}(\tau)\right]\right\}$$

Where χ is an arbitrary global phase: independent of homotopic (!) paths \hookrightarrow unobservable

We note: There is no rule (regarding the quantization) demanding χ to be the same for non-homotopic paths:

$$\chi \longrightarrow \chi(\alpha)$$
 where $\alpha \in \pi_1(\mathcal{M}_N^d)$

(to do this, chose $q := q_1 = q_2 \hookrightarrow$ time evolution = closed loops)

The path integral: Reminder [Kha05, Ler92]

Consider a system described by \mathcal{M}_N^d and configurations $q_1, q_2 \in \mathcal{M}_N^d$. The transition amplitude K is obtained via the path integral:

Reminder: Feynman path integral

$$\mathcal{K}(q_2, t_2; q_1, t_1) = \chi \int_{q(t_i)=q_i} \mathcal{D}[q] \exp\left\{\frac{i}{\hbar} \int_{t_1}^{t_2} \mathrm{d}\tau \mathcal{L}\left[q(\tau), \dot{q}(\tau)\right]\right\}$$

Where χ is an arbitrary global phase: independent of homotopic (!) paths \hookrightarrow unobservable

<u>We note</u>: There is no rule (regarding the quantization) demanding χ to be the same for non-homotopic paths:

$$\chi \longrightarrow \chi(\alpha)$$
 where $\alpha \in \pi_1(\mathcal{M}_N^d)$

(to do this, chose $q := q_1 = q_2 \hookrightarrow$ time evolution = closed loops)

The path integral: Topological aspects [Kha05, Ler92]

Thus we find the more general form

$$\mathcal{K}(\boldsymbol{q}, \boldsymbol{t}_{2}; \boldsymbol{q}, \boldsymbol{t}_{1}) = \sum_{\alpha \in \pi_{1}\left(\mathcal{M}_{N}^{d}\right)} \chi(\alpha) \int_{\boldsymbol{q}_{\alpha}(\boldsymbol{t}_{i}) = \boldsymbol{q}} \mathcal{D}[\boldsymbol{q}_{\alpha}] \exp\left\{\frac{i}{\hbar} \int_{\boldsymbol{t}_{1}}^{\boldsymbol{t}_{2}} \mathrm{d}\tau \mathcal{L}\left[\boldsymbol{q}_{\alpha}(\tau), \dot{\boldsymbol{q}}_{\alpha}(\tau)\right]\right\}$$

where $q_{\alpha} \in \alpha$.

Let $\alpha_i = [\gamma_i] \in \pi_1(\mathcal{M}_N^d)$. Consider a propagation along ...

 $\begin{array}{rcl} \gamma_{1} & \Rightarrow & \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]} \\ \text{and subsequently } \gamma_{2} & \Rightarrow & \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]} \cdot \chi(\alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{2}]} \equiv C \\ \text{or alternatively } \gamma_{1} * \gamma_{2} & \Rightarrow & \chi(\alpha_{1} \bullet \alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}*\gamma_{2}]} \stackrel{!}{=} C \end{array}$ where we used $\alpha_{1} \bullet \alpha_{2} = [\gamma_{1} * \gamma_{2}]$. By $S[\gamma_{1}] + S[\gamma_{2}] = S[\gamma_{1} * \gamma_{2}]$ we find

 $\chi(\alpha_1 \bullet \alpha_2) = \chi(\alpha_1) \cdot \chi(\alpha_2)$

 $\hookrightarrow \chi$: $\pi_1(\mathcal{M}_N^d) \longrightarrow \mathbb{C}$ is a 1d-representation of $\pi_1(\mathcal{M}_N^d)$

The path integral: Topological aspects [Kha05, Ler92]

Thus we find the more general form

$$\mathcal{K}(\boldsymbol{q}, \boldsymbol{t}_{2}; \boldsymbol{q}, \boldsymbol{t}_{1}) = \sum_{\alpha \in \pi_{1}\left(\mathcal{M}_{N}^{d}\right)} \chi(\alpha) \int_{\boldsymbol{q}_{\alpha}(\boldsymbol{t}_{i}) = \boldsymbol{q}} \mathcal{D}[\boldsymbol{q}_{\alpha}] \exp\left\{\frac{i}{\hbar} \int_{\boldsymbol{t}_{1}}^{\boldsymbol{t}_{2}} \mathrm{d}\tau \mathcal{L}\left[\boldsymbol{q}_{\alpha}(\tau), \dot{\boldsymbol{q}}_{\alpha}(\tau)\right]\right\}$$

where $q_{\alpha} \in \alpha$.

Let $\alpha_i = [\gamma_i] \in \pi_1(\mathcal{M}_N^d)$. Consider a propagation along ...

$$\begin{array}{ll} \gamma_{1} & \Rightarrow & \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]} \\ \text{and subsequently } \gamma_{2} & \Rightarrow & \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]} \cdot \chi(\alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{2}]} \equiv C \\ \text{or alternatively } \gamma_{1} * \gamma_{2} & \Rightarrow & \chi(\alpha_{1} \bullet \alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}*\gamma_{2}]} \stackrel{!}{=} C \end{array}$$

where we used $\alpha_1 \bullet \alpha_2 = [\gamma_1 * \gamma_2]$. By $S[\gamma_1] + S[\gamma_2] = S[\gamma_1 * \gamma_2]$ we find

 $\chi(\alpha_1 \bullet \alpha_2) = \chi(\alpha_1) \cdot \chi(\alpha_2)$

 $\hookrightarrow \chi$: $\pi_1(\mathcal{M}^d_N) \longrightarrow \mathbb{C}$ is a 1d-representation of $\pi_1(\mathcal{M}^d_N)$

The path integral: Topological aspects [Kha05, Ler92]

Thus we find the more general form

$$\mathcal{K}(\boldsymbol{q}, \boldsymbol{t}_{2}; \boldsymbol{q}, \boldsymbol{t}_{1}) = \sum_{\alpha \in \pi_{1}\left(\mathcal{M}_{N}^{d}\right)} \chi(\alpha) \int_{\boldsymbol{q}_{\alpha}(\boldsymbol{t}_{i}) = \boldsymbol{q}} \mathcal{D}[\boldsymbol{q}_{\alpha}] \exp\left\{\frac{i}{\hbar} \int_{\boldsymbol{t}_{1}}^{\boldsymbol{t}_{2}} \mathrm{d}\tau \mathcal{L}\left[\boldsymbol{q}_{\alpha}(\tau), \dot{\boldsymbol{q}}_{\alpha}(\tau)\right]\right\}$$

where $q_{\alpha} \in \alpha$.

Let $\alpha_i = [\gamma_i] \in \pi_1(\mathcal{M}_N^d)$. Consider a propagation along ...

$$\gamma_{1} \Rightarrow \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]}$$
and subsequently $\gamma_{2} \Rightarrow \chi(\alpha_{1}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}]} \cdot \chi(\alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{2}]} \equiv C$
or alternatively $\gamma_{1} * \gamma_{2} \Rightarrow \chi(\alpha_{1} \bullet \alpha_{2}) \cdot e^{\frac{i}{\hbar}S[\gamma_{1}*\gamma_{2}]} \stackrel{!}{=} C$

where we used $\alpha_1 \bullet \alpha_2 = [\gamma_1 * \gamma_2]$. By $S[\gamma_1] + S[\gamma_2] = S[\gamma_1 * \gamma_2]$ we find

$$\chi(\alpha_1 \bullet \alpha_2) = \chi(\alpha_1) \cdot \chi(\alpha_2)$$

 $\hookrightarrow \chi \,:\, \pi_1\left(\mathcal{M}^d_N\right) \longrightarrow \mathbb{C} \text{ is a 1d-representation of } \pi_1\left(\mathcal{M}^d_N\right)$

The path integral: Statistics

The representation χ determines the statistics. We find:

$d \ge 3$ dimensions	d = 2 dimensions
$\pi_1\left(\mathcal{M}_N^d\right)\cong\mathcal{S}_N$	$\pi_1\left(\mathcal{M}_{N}^{d} ight)\cong\mathcal{B}_{N}$
There are two 1d-irreps $\chi_1 : \sigma \mapsto 1$ $\chi_2 : \sigma \mapsto (-1)^{\sigma}$	There are ∞ many 1d-irreps $\chi_{ heta}$: $\sigma_j \mapsto e^{i\theta}$ for all $1 \leq j \leq N - 1$.
for all $\sigma \in S_N$.	

There are two types of statistics:					
χ_1	\leftrightarrow	Bosons			
		E anna i a ma			

 $\chi_2 \leftrightarrow \text{Fermions}$

There is any statistics:

$\chi_{\theta=0}$	\leftrightarrow	Bosons
$\chi_{\theta \neq 0,\pi}$	\leftrightarrow	Anyons
$\chi_{\theta=\pi}$	\leftrightarrow	Fermions

Overview: The O(3) nonlinear σ -Model revisited

1 Spin and statistics in d + 1 dimensions

2 The O(3) nonlinear σ -Model revisited

- Definition
- Elementary excitations: Solitons
- One step further: Dynamics

B Hopf term and anyonic excitations

4 Summary

The NL σ M: Definition [Raj87, Pol75, BP75]

The NL σ M emerges as a continuum theory for the 2d-Heisenberg model:

Definition: NL σ M in 2+1 dimensions

Consider three real scalar fields $\Phi_i : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R} : (t, \vec{x}) \mapsto \Phi_i(t, \vec{x}), i = 1, 2, 3$, with the constraint $\sum_i \Phi_i^2(t, \vec{x}) \equiv \mathbf{\Phi} \cdot \mathbf{\Phi} = 1$ for all (t, \vec{x}) . The lagrangian density

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=0}^{2} \sum_{i=1}^{3} (\partial_{\mu} \Phi_{i}) \cdot (\partial^{\mu} \Phi_{i}) \equiv \frac{1}{2} (\partial_{\mu} \Phi) \cdot (\partial^{\mu} \Phi)$$

defines a field theory in 2+1 dimensional spacetime, namely the NL σ M.

The NL σ M: Action and energy [Raj87, Pol75, BP75]

From the Lagrangian density we find the action

$$S[\mathbf{\Phi}] = \frac{1}{2} \int \mathrm{d}^2 x \int \mathrm{d} t \left(\partial_\mu \mathbf{\Phi} \right) \cdot \left(\partial^\mu \mathbf{\Phi} \right)$$

with the constraint $\mathbf{\Phi} \cdot \mathbf{\Phi} = 1 \hookrightarrow \text{Symmetry group: } O(3)$

A Legendre transform yields the energy functional

$$E = \frac{1}{2} \int \mathrm{d}^2 x (\partial_k \mathbf{\Phi})^2 \equiv \frac{1}{2} \sum_{k=1}^2 \sum_{i=1}^3 \int \mathrm{d}^2 x (\partial_k \Phi_i)^2 \ge 0$$

Ground state: $E = 0 \Leftrightarrow \mathbf{\Phi}(\vec{x}) \equiv \mathbf{\Phi}_0 = \text{const.}$, where $|\mathbf{\Phi}_0| = 1$

 \hookrightarrow Spontaneous symmetry breaking: $O(3) \longrightarrow O(2)$

The NL σ M: Action and energy [Raj87, Pol75, BP75]

From the Lagrangian density we find the action

$$S[\mathbf{\Phi}] = \frac{1}{2} \int \mathrm{d}^2 x \int \mathrm{d}t \left(\partial_\mu \mathbf{\Phi} \right) \cdot \left(\partial^\mu \mathbf{\Phi} \right)$$

with the constraint $\mathbf{\Phi} \cdot \mathbf{\Phi} = 1 \hookrightarrow \text{Symmetry group: } O(3)$

A Legendre transform yields the energy functional

$$E = \frac{1}{2} \int \mathrm{d}^2 x (\partial_k \mathbf{\Phi})^2 \equiv \frac{1}{2} \sum_{k=1}^2 \sum_{i=1}^3 \int \mathrm{d}^2 x (\partial_k \Phi_i)^2 \ge 0$$

Ground state: $E=0 \, \Leftrightarrow \, {f \Phi}(ec x) \equiv {f \Phi}_0 = {
m const.}$, where $|{f \Phi}_0|=1$

 \hookrightarrow Spontaneous symmetry breaking: $O(3) \longrightarrow O(2)$

Solitons with |Q| = 1: Skyrmions ^[Raj87, WZ83]

Skyrmion (Q = 1)

Antiskyrmion (Q = -1)

$$\mathbf{\Phi}_{\mathcal{S}}(r,\varphi) = \frac{1}{1 + \left(\frac{r}{2\lambda}\right)^2} \begin{bmatrix} \frac{r}{\lambda}\cos\varphi \\ \frac{r}{\lambda}\sin\varphi \\ \left(\frac{r}{2\lambda}\right)^2 - 1 \end{bmatrix} \qquad \mathbf{\Phi}_{\bar{\mathcal{S}}}(r,\varphi) = \frac{1}{1 + \left(\frac{\lambda}{2r}\right)^2} \begin{bmatrix} \frac{\lambda}{r}\cos\varphi \\ -\frac{\lambda}{r}\sin\varphi \\ \left(\frac{\lambda}{2r}\right)^2 - 1 \end{bmatrix}$$

One step further: Dynamics

So far static solutions were considered:

$$\Phi = \Phi(\vec{x}), \text{ i.e. } \Phi : S^2_{(phy)} \longrightarrow S^2_{(int)}$$

• $\pi_2(S^2)\cong\mathbb{Z}\hookrightarrow \mathsf{Pontryagin}$ number G

For spin & statistics of skyrmions the dynamics is crucial:

$$\mathbf{\Phi} = \mathbf{\Phi}(t, \vec{x})$$
, i.e. $\mathbf{\Phi} : S^3_{(phy)} \longrightarrow S^2_{(int)}$

• $\pi_3(S^2) \cong \mathbb{Z} \hookrightarrow \mathsf{Hopf} \mathsf{ invariant } H$

	π_1	π_2	π_3	π 4	π_5	π_6
S ⁰	0	0	0	0	0	
S^1	z	0	0	0	0	
S ²	0	z	z	Z 2	Z 2	Z 12
s ³	0	0	z	Z 2	Z 2	Z 12
s ⁴	0	0	0	Z	Z 2	

 \hookrightarrow [Wik12c]

One step further: Dynamics

■ So far static solutions were considered:

$$\Phi = \Phi(\vec{x}), \text{ i.e. } \Phi : S^2_{(phy)} \longrightarrow S^2_{(int)}$$

• $\pi_2(S^2) \cong \mathbb{Z} \hookrightarrow \text{Pontryagin number } Q$

For spin & statistics of skyrmions the dynamics is crucial:

$$\mathbf{\Phi} = \mathbf{\Phi}(t, \vec{x})$$
, i.e. $\mathbf{\Phi} : S^3_{(phy)} \longrightarrow S^2_{(int)}$

• $\pi_3(S^2) \cong \mathbb{Z} \hookrightarrow \mathsf{Hopf} \text{ invariant } H$

Classifying static solutions (Pontryagin number)

 $\hookrightarrow [\mathsf{Wik12c}]$

One step further: Dynamics

■ So far static solutions were considered:

$$\Phi = \Phi(\vec{x}), \text{ i.e. } \Phi : S^2_{(phy)} \longrightarrow S^2_{(int)}$$

- $\pi_2(S^2) \cong \mathbb{Z} \hookrightarrow$ Pontryagin number Q
- For spin & statistics of skyrmions the dynamics is crucial:

$$\bullet \Phi = \Phi(t, \vec{x}), \text{ i.e. } \Phi : S^3_{(phy)} \longrightarrow S^2_{(int)}$$

• $\pi_3(S^2) \cong \mathbb{Z} \hookrightarrow \mathsf{Hopf} \text{ invariant } H$

Classifying static solutions (Pontryagin number)

Classifying dynamics (Hopf invariant)

 \hookrightarrow [Wik12c]

Overview: Hopf term and anyonic excitations

1 Spin and statistics in d + 1 dimensions

2 The O(3) nonlinear σ -Model revisited

3 Hopf term and anyonic excitations

- Time evolution and configuration space
- The Hopf term
- Spin & Statistics of skyrmions
- **4** Summary
Setting the scene [Fra98, WZ84, Wil70]

In the following, time-dependent solutions of the NL σM are considered:

$$\Phi : \mathbb{R}_{\mathsf{Time}} \times \mathbb{R}^2_{\mathsf{Space}} \longrightarrow S^2_{(int)} \text{ where } (t, \vec{x}) \mapsto \Phi(t, \vec{x})$$

We demand $\lim_{|\vec{x}| \to \infty} \Phi(t, \vec{x}) = \Phi_0$ and $\lim_{|t| \to \infty} \Phi(t, \vec{x}) = \Phi_0$, therefore

 $\boldsymbol{\Phi}\,:\,\mathbb{R}\times\mathbb{R}^2\,\cup\,\{\infty\}\cong S^3_{(\textit{phy})}\,\longrightarrow\,S^2_{(\textit{int})}\quad\text{where}\quad(t,\vec{x})\,\mapsto\,\boldsymbol{\Phi}(t,\vec{x}),\,\infty\,\mapsto\,\boldsymbol{\Phi}_0$

The configuration space for the NL σ M is $\mathcal{M}_{\sigma} = \{ \mathbf{\Phi} : S^2 \to S^2 \}$. Since $\delta Q[\mathbf{\Phi}] = 0$, \mathcal{M}_{σ} decomposes into disjoint, connected components \mathcal{M}_{σ}^Q :

$$\mathcal{M}_{\sigma} = \bigsqcup_{Q \in \mathbb{Z}} \mathcal{M}_{\sigma}^{Q} \quad ext{where} \quad \mathcal{M}_{\sigma}^{Q} = \{ \mathbf{\Phi} \, : \, S^{2} o S^{2} \, | \, Q[\mathbf{\Phi}] = Q \}$$

The dynamics in the vacuum sector \mathcal{M}^0_σ is described by 2

$$\pi_1(\mathcal{M}^0_\sigma)\cong\pi_3(S^2)\cong\mathbb{Z}$$

²For details see e.g. [Fra98, WZ84] and especially [Wil70].

Setting the scene [Fra98, WZ84, Wil70]

In the following, time-dependent solutions of the NL σ M are considered:

$$\begin{split} \Phi &: \mathbb{R}_{\mathsf{Time}} \times \mathbb{R}^2_{\mathsf{Space}} \longrightarrow S^2_{(int)} \quad \text{where} \quad (t, \vec{x}) \mapsto \Phi(t, \vec{x}) \\ \text{We demand} \lim_{|\vec{x}| \to \infty} \Phi(t, \vec{x}) = \Phi_0 \text{ and} \lim_{|t| \to \infty} \Phi(t, \vec{x}) = \Phi_0, \text{ therefore} \end{split}$$

 $\boldsymbol{\Phi}\,:\,\mathbb{R}\times\mathbb{R}^2\,\cup\,\{\infty\}\cong S^3_{(\textit{phy})}\,\longrightarrow\,S^2_{(\textit{int})}\quad\text{where}\quad(t,\vec{x})\,\mapsto\,\boldsymbol{\Phi}(t,\vec{x}),\,\infty\,\mapsto\,\boldsymbol{\Phi}_0$

The configuration space for the NL σ M is $\mathcal{M}_{\sigma} = \{ \Phi : S^2 \to S^2 \}$. Since $\delta Q[\Phi] = 0$, \mathcal{M}_{σ} decomposes into disjoint, connected components \mathcal{M}_{σ}^Q :

$$\mathcal{M}_{\sigma} = \bigsqcup_{Q \in \mathbb{Z}} \mathcal{M}_{\sigma}^{Q} \quad \text{where} \quad \mathcal{M}_{\sigma}^{Q} = \{ \mathbf{\Phi} \, : \, S^{2} \to S^{2} \, | \, Q[\mathbf{\Phi}] = Q \}$$

The dynamics in the vacuum sector \mathcal{M}_{σ}^{0} is described by 2

 $\pi_1(\mathcal{M}^0_\sigma)\cong\pi_3(S^2)\cong\mathbb{Z}$

²For details see e.g. [Fra98, WZ84] and especially [Wil70].

Setting the scene [Fra98, WZ84, Wil70]

In the following, time-dependent solutions of the NL σM are considered:

$$\Phi : \mathbb{R}_{\mathsf{Time}} \times \mathbb{R}^2_{\mathsf{Space}} \longrightarrow S^2_{(int)} \quad \text{where} \quad (t, \vec{x}) \mapsto \Phi(t, \vec{x})$$

We demand $\lim_{|\vec{x}| \to \infty} \Phi(t, \vec{x}) = \Phi_0$ and $\lim_{|t| \to \infty} \Phi(t, \vec{x}) = \Phi_0$, therefore

 $\boldsymbol{\Phi}\,:\,\mathbb{R}\times\mathbb{R}^2\,\cup\,\{\infty\}\cong S^3_{(\textit{phy})}\,\longrightarrow\,S^2_{(\textit{int})}\quad\text{where}\quad(t,\vec{x})\,\mapsto\,\boldsymbol{\Phi}(t,\vec{x}),\,\infty\,\mapsto\,\boldsymbol{\Phi}_0$

The configuration space for the NL σ M is $\mathcal{M}_{\sigma} = \{ \mathbf{\Phi} : S^2 \to S^2 \}$. Since $\delta Q[\mathbf{\Phi}] = 0$, \mathcal{M}_{σ} decomposes into disjoint, connected components \mathcal{M}_{σ}^Q :

$$\mathcal{M}_{\sigma} = \bigsqcup_{Q \in \mathbb{Z}} \mathcal{M}_{\sigma}^{Q} \quad \text{where} \quad \mathcal{M}_{\sigma}^{Q} = \{ \mathbf{\Phi} \, : \, S^{2} \to S^{2} \, | \, Q[\mathbf{\Phi}] = Q \}$$

The dynamics in the vacuum sector \mathcal{M}_{σ}^{0} is described by^2

$$\pi_1(\mathcal{M}^0_\sigma)\cong\pi_3(S^2)\cong\mathbb{Z}$$

²For details see e.g. [Fra98, WZ84] and especially [Wil70].

Modifying the NL σ M action ^[WZ83, Fra98, Hop31]

The skyrmion of the unmodified NL σ M is a boson and has S = 0.

However, $\pi_1(\mathcal{M}^0_{\sigma}) \cong \pi_3(S^2) \cong \mathbb{Z}$ is non-trivial \hookrightarrow Add topological term to the action:

$$ilde{S}[oldsymbol{\Phi}] := S[oldsymbol{\Phi}] + heta H[oldsymbol{\Phi}] \quad ext{where} \quad heta \in \mathbb{R}$$

<u>Note:</u> Whether $\theta \neq 0$ in \tilde{S} depends on the microscopic theory.

H is called Hopf invariant:

- $H[\mathbf{\Phi}] \in \mathbb{Z}$ for all $\mathbf{\Phi} \in \mathcal{M}_{\sigma}$
- Homotopy invariant: $\delta H[\Phi] = 0 \Rightarrow H : \pi_3(S^2) \longrightarrow \mathbb{Z}$
- Homomorphism: $H[\Phi_1 * \Phi_2] = H([\Phi_1] \bullet [\Phi_2]) = H[\Phi_1] + H[\Phi_2]$
- Characterizes homotopy of mappings $oldsymbol{\Phi}$: $S^3 \longrightarrow S^2$, i.e. $\pi_3(S^2)$

Modifying the NL σ M action ^[WZ83, Fra98, Hop31]

The skyrmion of the unmodified NL σ M is a boson and has S = 0.

However, $\pi_1(\mathcal{M}^0_{\sigma}) \cong \pi_3(S^2) \cong \mathbb{Z}$ is non-trivial \hookrightarrow Add topological term to the action:

 $\tilde{S}[\mathbf{\Phi}] := S[\mathbf{\Phi}] + \frac{\theta H[\mathbf{\Phi}]}{\theta}$ where $\theta \in \mathbb{R}$

<u>Note:</u> Whether $\theta \neq 0$ in \tilde{S} depends on the microscopic theory.

H is called Hopf invariant:

• $H[\mathbf{\Phi}] \in \mathbb{Z}$ for all $\mathbf{\Phi} \in \mathcal{M}_{\sigma}$

- Homotopy invariant: $\delta H[\Phi] = 0 \Rightarrow H : \pi_3(S^2) \longrightarrow \mathbb{Z}$
- Homomorphism: $H[\Phi_1 * \Phi_2] = H([\Phi_1] \bullet [\Phi_2]) = H[\Phi_1] + H[\Phi_2]$

• Characterizes homotopy of mappings $\mathbf{\Phi}$: $S^3 \longrightarrow S^2$, i.e. $\pi_3(S^2)$

Modifying the NL σ M action ^[WZ83, Fra98, Hop31]

The skyrmion of the unmodified NL σ M is a boson and has S = 0.

However, $\pi_1(\mathcal{M}^0_{\sigma}) \cong \pi_3(S^2) \cong \mathbb{Z}$ is non-trivial \hookrightarrow Add topological term to the action:

$$ilde{S}[\mathbf{\Phi}] := S[\mathbf{\Phi}] + heta H[\mathbf{\Phi}] \quad ext{where} \quad heta \in \mathbb{R}$$

<u>Note:</u> Whether $\theta \neq 0$ in \tilde{S} depends on the microscopic theory.

H is called Hopf invariant:

- $H[\mathbf{\Phi}] \in \mathbb{Z}$ for all $\mathbf{\Phi} \in \mathcal{M}_{\sigma}$
- Homotopy invariant: $\delta H[\Phi] = 0 \Rightarrow H : \pi_3(S^2) \longrightarrow \mathbb{Z}$
- Homomorphism: $H[\Phi_1 * \Phi_2] = H([\Phi_1] \bullet [\Phi_2]) = H[\Phi_1] + H[\Phi_2]$

• Characterizes homotopy of mappings $\mathbf{\Phi}$: $S^3 \longrightarrow S^2$, i.e. $\pi_3(S^2)$

The Hopf term

[WZ84] The modified action and the path integral

Consider the propagator for initial and final state Φ_0 (Vacuum):

$$\begin{split} \mathcal{K}(\mathbf{\Phi}_{0}, -\infty; \mathbf{\Phi}_{0}, +\infty) &= \int \mathcal{D}[\mathbf{\Phi}] \exp\left\{iS[\mathbf{\Phi}] + i\theta H[\mathbf{\Phi}]\right\} \\ &= \sum_{\alpha \in \pi_{3}(S^{2})} \int_{\mathbf{\Phi}_{\alpha} \in \alpha} \mathcal{D}[\mathbf{\Phi}_{\alpha}] \exp\left\{iS[\mathbf{\Phi}_{\alpha}] + i\theta H[\mathbf{\Phi}_{\alpha}]\right\} \\ &= \sum_{\alpha \in \pi_{3}(S^{2})} e^{i\theta H[\alpha]} \int_{\mathbf{\Phi}_{\alpha} \in \alpha} \mathcal{D}[\mathbf{\Phi}_{\alpha}] e^{iS[\mathbf{\Phi}_{\alpha}]} \end{split}$$

Note: $\mathbf{\Phi} \in \mathcal{M}^0_{\sigma}$ since $Q[\mathbf{\Phi}_0] = 0$; we used $\delta H[\mathbf{\Phi}] = 0$ by $H[\mathbf{\Phi}_{\alpha}] \equiv H[\alpha]$

 $\chi(\alpha_1 \bullet \alpha_2) = e^{i\theta H[\alpha_1 \bullet \alpha_2]} = e^{i\theta H[\alpha_1] + i\theta H[\alpha_2]} = e^{i\theta H[\alpha_1]} \cdot e^{i\theta H[\alpha_2]} = \chi(\alpha_1) \cdot \chi(\alpha_2)$

The Hopf term

[WZ84] The modified action and the path integral

Consider the propagator for initial and final state Φ_0 (Vacuum):

$$\begin{split} \mathcal{K}(\mathbf{\Phi}_{0}, -\infty; \mathbf{\Phi}_{0}, +\infty) &= \int \mathcal{D}[\mathbf{\Phi}] \exp\left\{iS[\mathbf{\Phi}] + i\theta H[\mathbf{\Phi}]\right\} \\ &= \sum_{\alpha \in \pi_{3}(S^{2})} \int_{\mathbf{\Phi}_{\alpha} \in \alpha} \mathcal{D}[\mathbf{\Phi}_{\alpha}] \exp\left\{iS[\mathbf{\Phi}_{\alpha}] + i\theta H[\mathbf{\Phi}_{\alpha}]\right\} \\ &= \sum_{\alpha \in \pi_{3}(S^{2})} e^{i\theta H[\alpha]} \int_{\mathbf{\Phi}_{\alpha} \in \alpha} \mathcal{D}[\mathbf{\Phi}_{\alpha}] e^{iS[\mathbf{\Phi}_{\alpha}]} \end{split}$$

<u>Note</u>: $\mathbf{\Phi} \in \mathcal{M}^0_{\sigma}$ since $Q[\mathbf{\Phi}_0] = 0$; we used $\delta H[\mathbf{\Phi}] = 0$ by $H[\mathbf{\Phi}_{\alpha}] \equiv H[\alpha]$

 $\hookrightarrow \chi(\alpha) = e^{i\theta H[\alpha]}$, i.e. *H* implements a 1d-representation of $\pi_1(\mathcal{M}^0_\sigma) \cong \pi_3(S^2)$:

$$\chi(\alpha_1 \bullet \alpha_2) = e^{i\theta H[\alpha_1 \bullet \alpha_2]} = e^{i\theta H[\alpha_1] + i\theta H[\alpha_2]} = e^{i\theta H[\alpha_1]} \cdot e^{i\theta H[\alpha_2]} = \chi(\alpha_1) \cdot \chi(\alpha_2)$$

The topological current and the gauge potential [WZ83]

The topological current

$$J^{\mu} := \frac{1}{8\pi} \varepsilon^{\mu\nu\lambda} \varepsilon^{abc} \Phi_{a} \partial_{\nu} \Phi_{b} \partial_{\lambda} \Phi_{c}$$

is automatically conserved: $\partial_{\mu}J^{\mu} = 0$ (\hookrightarrow <u>not</u> a dynamically conserved quantity)

Reminder: Topological charge = Pontryagin number

The topological charge is the well-known Pontryagin number

$$Q = \int \mathrm{d}^2 x \, J^0 = \frac{1}{8\pi} \int \mathrm{d}^2 x \, \varepsilon^{ij} \varepsilon^{abc} \Phi_a \partial_i \Phi_b \partial_j \Phi_c$$

Since $\partial_{\mu}J^{\mu} = 0$ there is a gauge potential A^{μ} such that

$$J^{\mu} = \varepsilon^{\mu\nu\lambda} \partial_{\nu} A_{\lambda}$$

and the gauge freedom $A_{\mu} \rightarrow A_{\mu} - \partial_{\mu}\Lambda$. Note that $A^{\mu} = A^{\mu}[\mathbf{\Phi}]$ depends nonlocally on $\mathbf{\Phi}$.

The Hopf term

[WZ83] An analytic expression for the Hopf invariant

We may now give an analytic expression for the Hopf invariant:

Definition: Hopf invariant

Let Φ : $S^3_{(phy)} \longrightarrow S^2_{(int)}$. The Hopf invariant is defined by

$$\mathcal{H}[\mathbf{\Phi}] := -rac{1}{2\pi} \int_{ ext{Spacetime}} \mathrm{d}^3 x \, J^\mu A_\mu \qquad \in \mathbb{Z} \, .$$

The Hopf term

[WZ83] An analytic expression for the Hopf invariant

We may now give an analytic expression for the Hopf invariant:

Definition: Hopf invariant

Let $\Phi : S^3_{(phv)} \longrightarrow S^2_{(int)}$. The Hopf invariant is defined by

$$\mathcal{H}[\mathbf{\Phi}] := -rac{1}{2\pi} \int_{ ext{Spacetime}} \mathrm{d}^3 x \, J^\mu A_\mu \qquad \in \mathbb{Z} \, .$$

From this expression we find easily

- H is gauge invariant
- H is homotopically invariant: $\delta H[\mathbf{\Phi}] = 0$

However, evaluating the above integral proves to be intricate!

Is there a more elegant procedure to obtain $H[\mathbf{\Phi}]$? \Rightarrow

A side note: Linking numbers [Wik12d]

 \hookrightarrow [Wik12d]

Proposition: Gauss integral representation

$$\mathsf{Link}\left[\gamma_{1},\gamma_{2}\right] = \frac{1}{4\pi} \oint_{\gamma_{1}} \oint_{\gamma_{2}} \frac{\mathsf{r}_{1}-\mathsf{r}_{2}}{|\mathsf{r}_{1}-\mathsf{r}_{2}|^{3}} \cdot \left(\mathrm{d}\mathsf{r}_{1} \times \mathrm{d}\mathsf{r}_{2}\right)$$

Computing the Hopf invariant [Wil90, WZ83, Bae92]

Proposition: Preimage of points in S^2

Let $\Phi : S^3 \longrightarrow S^2$ be a differentiable map. Then $\Phi^{-1}(\mathbf{y}) \subset S^3$ is a collection of nonintersecting closed curves for almost every $\mathbf{y} \in S^2$.

 \hookrightarrow [Ci12]

"There is a deep theorem which equates the Hopf invariant to the linking number between two curves in $\mathbb{R}^{3, \text{m}[WZ83]}$:

Proposition: Hopf invariant and linking numbers

Let $\Phi : S^3 \longrightarrow S^2$ be a continuous mapping and $\Phi_1, \Phi_2 \in S^2$ two arbitrary fixed values. If γ_i denotes the closed curve given by $\Phi^{-1}(\Phi_i)$, it holds

 $H[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2]$.

The γ_i are the world lines for $\mathbf{\Phi}_i$ in $\mathbb{R}_{\text{Time}} \times \mathbb{R}^2_{\text{Space}}$.

Computing the Hopf invariant [Wil90, WZ83, Bae92]

Proposition: Preimage of points in S^2

Let $\Phi : S^3 \longrightarrow S^2$ be a differentiable map. Then $\Phi^{-1}(\mathbf{y}) \subset S^3$ is a collection of nonintersecting closed curves for almost every $\mathbf{y} \in S^2$.

"There is a deep theorem which equates the Hopf invariant to the linking number between two curves in \mathbb{R}^{3} " [WZ83]:

Proposition: Hopf invariant and linking numbers

Let $\Phi : S^3 \longrightarrow S^2$ be a continuous mapping and $\Phi_1, \Phi_2 \in S^2$ two arbitrary fixed values. If γ_i denotes the closed curve given by $\Phi^{-1}(\Phi_i)$, it holds

$$H[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2]$$
.

The γ_i are the world lines for $\mathbf{\Phi}_i$ in $\mathbb{R}_{\text{Time}} \times \mathbb{R}^2_{\text{Space}}$.

Preparation: Creating Skyrmion-Antiskyrmion pairs

$$\blacksquare \quad \mathsf{Recall:} \ Q[\mathbf{\Phi}_1] = Q[\mathbf{\Phi}_2] \Leftrightarrow \mathbf{\Phi}_1 \simeq \mathbf{\Phi}_2, \ Q[\mathbf{\Phi}_1 * \mathbf{\Phi}_2] = Q[\mathbf{\Phi}_1] + Q[\mathbf{\Phi}_2]$$

• Vacuum: $Q[\mathbf{\Phi}_0] = 0$

Skyrmion- and Antiskyrmion: $Q[\Phi_S] = +1$, $Q[\Phi_{\bar{S}}] = -1$

Thus we find

$$Q[\mathbf{\Phi}_{S} * \mathbf{\Phi}_{\bar{S}}] = 1 + (-1) = 0 = Q[\mathbf{\Phi}_{0}] \quad \Rightarrow \quad \mathbf{\Phi}_{S} * \mathbf{\Phi}_{\bar{S}} \simeq \mathbf{\Phi}_{0}$$

 $\hookrightarrow \exists$ Homotopy $H : S^3_{(phy)} \longrightarrow S^2_{(int)}$ such that

 $H(\vec{x},0) = \mathbf{\Phi}_0(\vec{x})$ and $H(\vec{x},1) = (\mathbf{\Phi}_S * \mathbf{\Phi}_{\bar{S}})(\vec{x})$

Preparation: Creating Skyrmion-Antiskyrmion pairs

$$\blacksquare \quad \mathsf{Recall:} \ Q[\mathbf{\Phi}_1] = Q[\mathbf{\Phi}_2] \Leftrightarrow \mathbf{\Phi}_1 \simeq \mathbf{\Phi}_2, \ Q[\mathbf{\Phi}_1 * \mathbf{\Phi}_2] = Q[\mathbf{\Phi}_1] + Q[\mathbf{\Phi}_2]$$

• Vacuum:
$$Q[\mathbf{\Phi}_0] = 0$$

Skyrmion- and Antiskyrmion: $Q[\Phi_S] = +1$, $Q[\Phi_{\bar{S}}] = -1$

Thus we find

$$Q[\mathbf{\Phi}_{S} * \mathbf{\Phi}_{\bar{S}}] = 1 + (-1) = 0 = Q[\mathbf{\Phi}_{0}] \quad \Rightarrow \quad \mathbf{\Phi}_{S} * \mathbf{\Phi}_{\bar{S}} \simeq \mathbf{\Phi}_{0}$$

 $\hookrightarrow \exists \text{ Homotopy } H : S^3_{(phy)} \longrightarrow S^2_{(int)} \text{ such that}$

 $H(\vec{x},0) = \mathbf{\Phi}_0(\vec{x})$ and $H(\vec{x},1) = (\mathbf{\Phi}_S * \mathbf{\Phi}_{\bar{S}})(\vec{x})$

To derive the spin of a skyrmion we employ the following procedure:

Create $S\bar{S}$ -pair \Rightarrow Rotate S through $2\pi \Rightarrow$ Annihilate $S\bar{S}$ -pair

and track two fixed field values $\pmb{\Phi}_1$ and $\pmb{\Phi}_2$ in spacetime.

 \hookrightarrow The word lines γ_1 and γ_2 are linked once, thus

 $H[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2] = 1$

We note: Fractional spin

The rotation of a spin-S particle results in a phase $e^{2\pi i S}$, therefore

$$e^{i heta H[m{\Phi}]}=e^{i heta}\stackrel{!}{=}e^{2\pi iS} \quad \Rightarrow \quad S=rac{ heta}{2\pi}+k \quad ext{where} \quad k\in\mathbb{Z}, \ 0\leq heta\leq2\pi$$

 \hookrightarrow The Hopf term endows the skyrmions with fractional spin!

Recall: $S_z =$ Generator of rotations in 2D $\hookrightarrow R(\omega) = e^{-i\omega S/\hbar} \stackrel{\omega = -2\pi e_z}{=} e^{2\pi i S_z/\hbar} = e^{2\pi i S}$

The spin of skyrmions ^[WZ83, Bec12]

The spin of skyrmions [WZ83, Bec12]

To derive the spin of a skyrmion we employ the following procedure:

Create $S\bar{S}$ -pair \Rightarrow Rotate S through $2\pi \Rightarrow$ Annihilate $S\bar{S}$ -pair

and track two fixed field values $\pmb{\Phi}_1$ and $\pmb{\Phi}_2$ in spacetime.

 \hookrightarrow The word lines γ_1 and γ_2 are linked once, thus

 $\mathit{H}[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2] = 1$

We note: Fractional spin

The rotation of a spin-S particle results in a phase $e^{2\pi i S}$, therefore

$$e^{i heta H[m{\Phi}]}=e^{i heta}\stackrel{!}{=}e^{2\pi iS} \quad \Rightarrow \quad S=rac{ heta}{2\pi}+k \quad ext{where} \quad k\in\mathbb{Z}, \ 0\leq heta\leq2\pi$$

 \hookrightarrow The Hopf term endows the skyrmions with fractional spin!

Recall: $S_z =$ Generator of rotations in 2D $\hookrightarrow R(\omega) = e^{-i\omega S/\hbar} \stackrel{\omega = -2\pi e_z}{=} e^{2\pi i S_z/\hbar} = e^{2\pi i S}$

To derive the spin of a skyrmion we employ the following procedure:

Create $S\bar{S}$ -pair \Rightarrow Rotate S through $2\pi \Rightarrow$ Annihilate $S\bar{S}$ -pair

and track two fixed field values $\pmb{\Phi}_1$ and $\pmb{\Phi}_2$ in spacetime.

 \hookrightarrow The word lines γ_1 and γ_2 are linked once, thus

 $H[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2] = 1$

We note: Fractional spin

The rotation of a spin-S particle results in a phase $e^{2\pi i S}$, therefore

$$e^{i\theta H[\Phi]} = e^{i\theta} \stackrel{!}{=} e^{2\pi iS} \quad \Rightarrow \quad S = \frac{\theta}{2\pi} + k \quad \text{where} \quad k \in \mathbb{Z}, \ 0 \le \theta \le 2\pi$$

 \hookrightarrow The Hopf term endows the skyrmions with fractional spin!

Recall: S_z = Generator of rotations in 2D $\hookrightarrow R(\omega) = e^{-i\omega S/\hbar} \stackrel{\omega = -2\pi e_z}{=} e^{2\pi i S_z/\hbar} = e^{2\pi i S_z}$

The statistics of skyrmions ^[WZ83]

To derive the statistics of skyrmions we employ the following procedure:

Create two $S\bar{S}$ -pairs \Rightarrow Interchange S_1 and $S_2 \Rightarrow$ Annihilate $S_1\bar{S}_2$ and $S_2\bar{S}_1$

and track two fixed field values $\pmb{\Phi}_1$ and $\pmb{\Phi}_2$ in spacetime.

 \rightarrow The word lines γ_1 and γ_2 are linked once, thus

 $H[\mathbf{\Phi}] = \operatorname{Link}[\gamma_1, \gamma_2] = 1$

We note: Fractional statistics

The interchange of two skyrmions results in a phase

 $e^{i heta H[\mathbf{\Phi}]} = e^{i heta}$ where $0 \le heta \le 2\pi$

 \hookrightarrow The Hopf term endows the skyrmions with fractional statistics!

The statistics of skyrmions [WZ83]

The statistics of skyrmions [WZ83]

To derive the statistics of skyrmions we employ the following procedure:

Create two $S\bar{S}$ -pairs \Rightarrow Interchange S_1 and $S_2 \Rightarrow$ Annihilate $S_1\bar{S}_2$ and $S_2\bar{S}_1$

and track two fixed field values $\mathbf{\Phi}_1$ and $\mathbf{\Phi}_2$ in spacetime.

 \hookrightarrow The word lines γ_1 and γ_2 are linked once, thus

 $\mathit{H}[\mathbf{\Phi}] = \mathsf{Link}[\gamma_1, \gamma_2] = 1$

We note: Fractional statistics

The interchange of two skyrmions results in a phase

$$e^{i\theta H[\mathbf{\Phi}]} = e^{i\theta}$$
 where $0 \le \theta \le 2\pi$

 \hookrightarrow The Hopf term endows the skyrmions with fractional statistics!

Summary

Summary

What you should remember ...

Summary: Spin and statistics in d + 1 dimensions

- First hint: Spin in 2 + 1 dimensions not quantized \hookrightarrow "Any" statistics?
- The configuration space for *N* hard-core particles is not simply connected:

 $\pi_1(\mathcal{M}_N^d)\cong\mathcal{S}_N$ for $d\geq 3$ and $\pi_1(\mathcal{M}_N^d)\cong\mathcal{B}_N$ for d=2

- The quantization by path integrals is not uniquely determined unless we choose a 1d-representation of $\pi_1(\mathcal{M}_N^d)$
- There are two 1d-representation for $\mathcal{S}_N \hookrightarrow \text{Bosons}$, Fermions
- There are ∞ many 1d-representations for $\mathcal{B}_N \hookrightarrow Anyons$

Summary: The O(3) nonlinear σ -Model revisited

- We reviewed the NL σ M: Action $S[\Phi]$; Energy functional
- Finite energy \hookrightarrow One-point compactification: Φ : $S^2_{(phy)} \longrightarrow S^2_{(int)}$
- Classification of static solutions by $\pi_2(S^2) \cong \mathbb{Z} \hookrightarrow \text{Pontryagin number } Q[\Phi]$
- Static solutions with $Q = \pm 1$ are called Skyrmions and Antiskyrmions
- In the unmodified NL σ M they obey bosonic statistics and have S = 0

Summary

Summary: Hopf term and anyonic excitations

- Loop time evolution \hookrightarrow One-point compactification: Φ : $S^3_{(phy)} \longrightarrow S^2_{(int)}$
- We added a topological term to the action: $\tilde{S}[\Phi] := S[\Phi] + \theta H[\Phi]$
- The Hopf term H : $\pi_3(S^2) \longrightarrow \mathbb{Z}$ classifies the homotopy sectors
- *H*[**Φ**] may be computed via ...
 - the topological current J^{μ}
 - the linking number $Link[\gamma_1, \gamma_2]$ of worldlines γ_i (easier!)
- Rotating a skyrmion yields $H[\Phi] = 1 \hookrightarrow$ Fractional spin: $S = \frac{\theta}{2\pi} + k$
- Permuting two skyrmions yields $H[\Phi] = 1 \hookrightarrow$ Fractional statistics: $e^{i\theta}$

$NL\sigma M$ + Hopf term \Rightarrow Skyrmions = Anyons

That's it!

Thank you for your attention.

References

References & Further Reading

- [Bae92] John C. Baez, Braids and quantization, 1992.
- [Bec12] Thorsten Beck, (to be published), Ph.D. thesis, Universität Stuttgart, 2012.
- [BP75] A. A. Belavin and A. M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, Soviet Journal of Experimental and Theoretical Physics Letters 22 (1975), 245.
- [Ci12] Yongfei Ci, http://www.math.uiuc.edu/ ci1/, 2012.
- [Fra98] Eduardo Fradkin, Field theories of condensed matter systems, Advanced Books Classics Series, Perseus Books, 1998.
- [Hop31] Heinz Hopf, Über die abbildungen der dreidimensionalen sphäre auf die kugelfläche, Mathematische Annalen 104 (1931), 637–665, 10.1007/BF01457962.
- [Kha05] A. Khare, Fractional Statistics And Quantum Theory, World Scientific, 2005.
- [Ler92] A. Lerda, Anyons: Quantum Mechanics of Particles with Fractional Statistics, Lecture notes in physics: Monographs, Springer-Verlag, 1992.
- [Nak03] M. Nakahara, Geometry, topology, and physics, Graduate Student Series in Physics, Institute of Physics Publishing, 2003.
- [Pol75] A.M. Polyakov, Interaction of goldstone particles in two dimensions. applications to ferromagnets and massive yang-mills fields, Physics Letters B 59 (1975), no. 1, 79 – 81.
- [Raj87] R. Rajaraman, Solitons and instantons: An introduction to solitons and instantons in quantum field theory, North-Holland Personal Library, North-Holland, 1987.
- [Wik12a] Wikipedia, Angular momentum operator, 2012, [Online; accessed 9-July-2012].
- [Wik12b] _____, Homotopy, 2012, [Online; accessed 9-July-2012].
- [Wik12c] _____, Homotopy groups of spheres, 2012, [Online; accessed 9-July-2012].
- [Wik12d] _____, Linking number, 2012, [Online; accessed 9-July-2012].
- [Wik12e] _____, Stereographic projection, 2012, [Online; accessed 9-July-2012].
- [Wil70] J. G. Williams, Topological analysis of a nonlinear field theory, Journal of Mathematical Physics 11 (1970), no. 8, 2611–2616.
- [Wil90] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, 1990.
- [WZ83] Frank Wilczek and A. Zee, Linking Numbers, Spin, and Statistics of Solitons, Phys. Rev. Lett. 51 (1983), 2250–2252.
- [WZ84] Yong-Shi Wu and A. Zee, Comments on the hopf lagrangian and fractional statistics of solitons, Physics Letters B 147 (1984), no. 4–5, 325 – 329.

The symmetric group S_N

The symmetric group S_N

Definition: Symmetric group S_N

Let $X = \{1, 2, ..., N\}$. The set of all bijective functions $X \to X$ furnished with the composition as product is called symmetric group on X

$$\mathcal{S}_N := \operatorname{Aut}(X) = (\{f : X \to X \mid f \text{ bijective}\}, \circ)$$

- Example: $\sigma = (132) \rightarrow$
- S_N ($N \ge 3$) is finitely generated, non-abelian and of finite order
- There are two 1d-representations:

 $D_B : S_N \ni \sigma \quad \mapsto \quad 1 \in \mathbb{C}$ $D_F : S_N \ni \sigma \quad \mapsto \quad (-1)^{\sigma} \in \mathbb{C}$

The symmetric group S_N

The symmetric group S_N

Definition: Symmetric group S_N

Let $X = \{1, 2, ..., N\}$. The set of all bijective functions $X \to X$ furnished with the composition as product is called symmetric group on X

$$\mathcal{S}_N := \operatorname{Aut}(X) = (\{f \ : \ X \to X \mid f \text{ bijective}\}, \circ)$$

- Example: $\sigma = (132) \rightarrow$
- *S_N* (*N* ≥ 3) is finitely generated, non-abelian and of finite order
- There are two 1d-representations:

$$\begin{array}{lll} D_B : \ \mathcal{S}_N \ni \sigma & \mapsto & 1 \in \mathbb{C} \\ D_F : \ \mathcal{S}_N \ni \sigma & \mapsto & (-1)^\sigma \in \mathbb{C} \end{array}$$

The braid group \mathcal{B}_N

The braid group \mathcal{B}_N ^{II}

We note:

$$\sigma_i \sigma_{i+1} \neq \sigma_{i+1} \sigma_i$$

The braid group \mathcal{B}_N

The braid group \mathcal{B}_N [Kha05]

We note:

 $\sigma_i \sigma_{i+1} \neq \sigma_{i+1} \sigma_i$ but $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $|i-j| \ge 2$
Appendix

The braid group \mathcal{B}_N

The braid group \mathcal{B}_N [Kha05]

We note:

 $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ for all $1 \le i \le N-2$

The braid group \mathcal{B}_N [Kha05]

This motivates the definition of the braid group \mathcal{B}_N :

Definition: Braid group \mathcal{B}_N

Let $\{\sigma_1, \ldots, \sigma_{N-1}\}$ be a set of abstract generators, each representing the crossing of two adjacent strands *i* and *i* + 1, $1 \le i \le N - 1$. Then the braid group for *N* strands is defined as

$$\mathcal{B}_{N} := \langle \sigma_{1}, \ldots, \sigma_{N-1} | \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}; \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{1} \rangle$$

where $1 \le i \le N - 2$ in the first and $|i - j| \ge 2$ in the second relation.

• Example: $\mathcal{B}_1 = \{1\}, \mathcal{B}_2 \cong \mathbb{Z}$

- \mathcal{B}_N ($N \ge 3$) is finitely generated, non-abelian and of infinite order
- \mathcal{B}_N is a generalization of \mathcal{S}_N insofar as $\mathcal{S}_N \cong \mathcal{B}_N / (\sigma_i^2 = 1)$, i.e. there is a surjective group homomorphism $\mathcal{B}_N \to \mathcal{S}_N$ ("forget the strands")

The braid group \mathcal{B}_N [Kha05]

This motivates the definition of the braid group \mathcal{B}_N :

Definition: Braid group \mathcal{B}_N

Let $\{\sigma_1, \ldots, \sigma_{N-1}\}$ be a set of abstract generators, each representing the crossing of two adjacent strands *i* and *i* + 1, $1 \le i \le N - 1$. Then the braid group for *N* strands is defined as

$$\mathcal{B}_{N} := \langle \sigma_{1}, \ldots, \sigma_{N-1} | \sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}; \sigma_{i} \sigma_{j} = \sigma_{j} \sigma_{1} \rangle$$

where $1 \le i \le N - 2$ in the first and $|i - j| \ge 2$ in the second relation.

- Example: $\mathcal{B}_1 = \{1\}, \mathcal{B}_2 \cong \mathbb{Z}$
- \mathcal{B}_N ($N \ge 3$) is finitely generated, non-abelian and of infinite order
- \mathcal{B}_N is a generalization of \mathcal{S}_N insofar as $\mathcal{S}_N \cong \mathcal{B}_N / (\sigma_i^2 = 1)$, i.e. there is a surjective group homomorphism $\mathcal{B}_N \to \mathcal{S}_N$ ("forget the strands")

[Raj87, Pol75, BP75]

The NL σ M: Field equations and energy

Introducing the lagrange multiplier $\lambda(t, \vec{x})$ yields the action

$$S[\mathbf{\Phi}] = \int \mathrm{d}^2 x \int \mathrm{d}t \left\{ \frac{1}{2} (\partial_{\mu} \mathbf{\Phi}) \cdot (\partial^{\mu} \mathbf{\Phi}) + \lambda(t, \vec{x}) (\mathbf{\Phi} \cdot \mathbf{\Phi} - 1) \right\}$$

Using $\delta S[\Phi] = 0$ and $\Phi \cdot \Phi = 1$ we find the field equations

$$\Box \Phi - (\Phi \cdot \Box \Phi) \Phi = 0 \quad \xrightarrow{\text{static solutions}} \quad \Delta \Phi - (\Phi \cdot \Delta \Phi) \Phi = 0$$

A Legendre transform yields the energy functional

$$E = \frac{1}{2} \int \mathrm{d}^2 x (\partial_k \mathbf{\Phi})^2 \equiv \frac{1}{2} \sum_{k=1}^2 \sum_{i=1}^3 \int \mathrm{d}^2 x (\partial_k \Phi_i)^2 \ge 0$$

We note:

Ground state: $E = 0 \Leftrightarrow \Phi(\vec{x}) \equiv \Phi_0 = \text{const.}$, where $|\Phi_0| = 1$ \hookrightarrow Degeneracy

[Raj87, Pol75, BP75]

The NL σ M: Field equations and energy

Introducing the lagrange multiplier $\lambda(t, \vec{x})$ yields the action

$$S[\mathbf{\Phi}] = \int \mathrm{d}^2 x \int \mathrm{d}t \left\{ \frac{1}{2} (\partial_\mu \mathbf{\Phi}) \cdot (\partial^\mu \mathbf{\Phi}) + \lambda(t, \vec{x}) (\mathbf{\Phi} \cdot \mathbf{\Phi} - 1) \right\}$$

Using $\delta S[\Phi] = 0$ and $\Phi \cdot \Phi = 1$ we find the field equations

$$\Box \boldsymbol{\Phi} - (\boldsymbol{\Phi} \cdot \Box \boldsymbol{\Phi}) \boldsymbol{\Phi} = 0 \quad \xrightarrow{\text{static solutions}} \quad \Delta \boldsymbol{\Phi} - (\boldsymbol{\Phi} \cdot \Delta \boldsymbol{\Phi}) \boldsymbol{\Phi} = 0$$

A Legendre transform yields the energy functional

$$E = \frac{1}{2} \int \mathrm{d}^2 x (\partial_k \mathbf{\Phi})^2 \equiv \frac{1}{2} \sum_{k=1}^2 \sum_{i=1}^3 \int \mathrm{d}^2 x (\partial_k \Phi_i)^2 \ge 0$$

<u>We note:</u>

Ground state: $E = 0 \Leftrightarrow \Phi(\vec{x}) \equiv \Phi_0 = \text{const.}$, where $|\Phi_0| = 1$ \hookrightarrow Degeneracy

The NL σ M: Finite-energy solutions [Raj87, Wil90]

The finite energy solutions $(0 < E < \infty)$ are called solitons. \hookrightarrow To ensure $E < \infty$ we demand $\lim_{|\vec{x}| \to \infty} \Phi(\vec{x}) = \Phi_0 = \text{const.}$

Definition: One-point compactification

 $\mathbb{R}^2 \cup \{\infty\}$ with an extended topology is called one-point compactification of \mathbb{R}^2 and

$$\mathbb{R}^2 \cup \{\infty\} \cong S^2$$

via a stereographic projection.

In combination with the above boundary condition we may redefine Φ :

$$\mathbf{\Phi} : \mathbb{R}^2 \cup \{\infty\} \cong S^2_{(phy)} \longrightarrow S^2_{(int)}$$
 where $\vec{x} \mapsto \mathbf{\Phi}(\vec{x}), \infty \mapsto \mathbf{\Phi}_0$

 \hookrightarrow The finite-energy solutions can be classified by $\pi_2(S^2) \cong \mathbb{Z}$.

The NL σ M: Finite-energy solutions [Raj87, Wil90]

The finite energy solutions $(0 < E < \infty)$ are called solitons. \hookrightarrow To ensure $E < \infty$ we demand $\lim_{|\vec{x}| \to \infty} \Phi(\vec{x}) = \Phi_0 = \text{const.}$

Definition: One-point compactification

 $\mathbb{R}^2\cup\{\infty\}$ with an extended topology is called one-point compactification of \mathbb{R}^2 and

$$\mathbb{R}^2 \cup \{\infty\} \cong S^2$$

via a stereographic projection.

In combination with the above boundary condition we may redefine Φ :

$$\Phi : \mathbb{R}^2 \cup \{\infty\} \cong S^2_{(phy)} \longrightarrow S^2_{(int)} \text{ where } \vec{x} \mapsto \Phi(\vec{x}), \infty \mapsto \Phi_0$$

 \hookrightarrow The finite-energy solutions can be classified by $\pi_2(S^2) \cong \mathbb{Z}$.

Topological aspects: The Pontryagin number [Raj87, WZ83]

To obtain and classify the solutions we employ a topological invariant:

Definition: Pontryagin number Q

The Pontryagin number (topological charge) is

$$Q[\mathbf{\Phi}] := rac{1}{8\pi}\int \mathrm{d}ec{x}\,arepsilon_{k,l}\mathbf{\Phi}\cdotig(\partial_k\mathbf{\Phi} imes\partial_l\mathbf{\Phi}ig)$$

$$\hat{=}$$
 how often $S^2_{(phy)}$ "wraps around" $S^2_{(int)}$

 \hookrightarrow [Wik12c]

Classification means: $\delta Q[\Phi] = 0$ and $Q[\Phi_1] = Q[\Phi_2] \Leftrightarrow \Phi_1 \simeq \Phi_2$

- Any static configuration in a given Q-sector is bound by $E \ge 4\pi |Q|$
- Energy is minimised if $E = 4\pi |Q| \Rightarrow \partial_k \Phi = \pm \varepsilon_{kl} \Phi \times (\partial_l \Phi)$
- The substitution $\omega_1 = 2\Phi_1/(1 \Phi_3)$, $\omega_2 = 2\Phi_2/(1 \Phi_3)$ yields the Cauchy-Riemann eq. $\hookrightarrow \omega(z = x_1 + ix_2) = \omega_1 + i\omega_2$ has to be analytic!

Topological aspects: The Pontryagin number [Raj87, WZ83]

To obtain and classify the solutions we employ a topological invariant:

Definition: Pontryagin number Q

The Pontryagin number (topological charge) is

$$Q[\mathbf{\Phi}] := \frac{1}{8\pi} \int \mathrm{d}\vec{x} \, \varepsilon_{k,l} \mathbf{\Phi} \cdot (\partial_k \mathbf{\Phi} \times \partial_l \mathbf{\Phi})$$

 $\hat{=}$ how often $S^2_{(phy)}$ "wraps around" $S^2_{(int)}$

 \hookrightarrow [Wik12c]

Classification means: $\delta Q[\Phi] = 0$ and $Q[\Phi_1] = Q[\Phi_2] \Leftrightarrow \Phi_1 \simeq \Phi_2$

- Any static configuration in a given *Q*-sector is bound by $E \ge 4\pi |Q|$
- Energy is minimised if $E = 4\pi |Q| \Rightarrow \partial_k \Phi = \pm \varepsilon_{kl} \Phi \times (\partial_l \Phi)$
- The substitution $\omega_1 = 2\Phi_1/(1-\Phi_3)$, $\omega_2 = 2\Phi_2/(1-\Phi_3)$ yields the Cauchy-Riemann eq. $\hookrightarrow \omega(z = x_1 + ix_2) = \omega_1 + i\omega_2$ has to be analytic!

A straightforward approach

- Wick rotation: $t \to \tau$, Minkowski metric \to Euclidean metric $(t, \vec{x}) \in \mathbb{R}_{\text{Time}} \times \mathbb{R}^2_{\text{Space}} \to \vec{r} = (\tau, x, y) \in \mathbb{R}^3$
- **Topological current**: $\nabla \cdot \mathbf{J} = \mathbf{0} \Rightarrow \exists \mathbf{A} : \mathbf{J} = \nabla \times \mathbf{A}$
- Coulomb-gauge: $\nabla \cdot \mathbf{A} = 0 \Rightarrow \nabla \times \mathbf{J} = \nabla \times (\nabla \times \mathbf{A}) = -\Delta \mathbf{A}$

■ Solution for A (cf. Electrodynamics):

$$\mathbf{A}(\vec{r}) = \frac{1}{4\pi} \int \mathrm{d}^3 r' \frac{\nabla' \times \mathbf{J}(\vec{r}')}{|\vec{r} - \vec{r}\prime|} \stackrel{\mathrm{l.b.P.}}{=} \frac{1}{4\pi} \int \mathrm{d}^3 r' \mathbf{J}(\vec{r}') \times \frac{\vec{r} - \vec{r}\prime}{|\vec{r} - \vec{r}\prime|^3}$$

 $\hookrightarrow \mathsf{A}[\mathsf{J}] = \mathsf{A}[\Phi] \text{ is a non-local functional of } \Phi.$

■ Consider two skyrmions with world lines $\vec{\gamma}_{1,2}(\varphi)$ parametrized by φ . $\hookrightarrow \mathbf{J} d^3 r \approx J \cdot d\vec{\gamma}_1 + J \cdot d\vec{\gamma}_2$ for skyrmions with negligible spatial extent.

It follows

$$\mathbf{A}(\vec{r}) = \frac{J}{4\pi} \int \mathrm{d}\vec{\gamma_1} \times \frac{\vec{r} - \vec{r_1}}{|\vec{r} - \vec{r_1}|^3} + \frac{J}{4\pi} \int \mathrm{d}\vec{\gamma_2} \times \frac{\vec{r} - \vec{r_2}}{|\vec{r} - \vec{r_2}|^3}$$

A straightforward approach

Since $\vec{\gamma}_i$ are closed curves, Stoke's theorem implies

$$\begin{aligned} \mathbf{A}(\vec{r}) &= \quad \frac{J}{4\pi} \nabla \cdot \int_{\Sigma_1} \mathrm{d}\vec{n}_1 \times \frac{\vec{r} - \vec{r}_1}{|\vec{r} - \vec{r}_1|^3} + \frac{J}{4\pi} \nabla \cdot \int_{\Sigma_2} \mathrm{d}\vec{n}_2 \times \frac{\vec{r} - \vec{r}_2}{|\vec{r} - \vec{r}_2|^3} \\ &= \quad \frac{J}{4\pi} \left[\nabla \Omega_1(\vec{r}) + \nabla \Omega_2(\vec{r}) \right] \end{aligned}$$

where $\Omega_i(\vec{r})$ denotes the solid angle of Σ_i viewed from \vec{r} .

The Hopf invariant is

$$H = -\frac{1}{2\pi} \int \mathrm{d}^3 r \, \mathbf{A}(\vec{r}) \mathbf{J}(\vec{r}) \approx -\frac{1}{2\pi} \sum_{i=1,2} \int_{\gamma_i} \mathrm{d}\vec{\gamma_i} \, \mathbf{A}(\vec{r}) = -\frac{J}{8\pi^2} \sum_{i,j=1,2} \int_{\gamma_i} \mathrm{d}\vec{\gamma_i} \, \nabla\Omega_j(\vec{r})$$

• Assume $d\vec{\gamma}_i \cdot \nabla \Omega_i(\vec{r}) = 0$ for i = 1, 2 and set $J = \pi$:

$$H = -\frac{J}{8\pi^2} \sum_{i \neq j} \int_{\gamma_1} \int_{\gamma_2} \frac{\left[(\vec{r}_i - \vec{r}_j) \times d\vec{\gamma}_j \right] \cdot d\vec{\gamma}_i}{|\vec{r}_i - \vec{r}_j|^3} = \frac{J}{4\pi^2} \int_{\gamma_1} \int_{\gamma_2} \frac{\vec{r}_1 - \vec{r}_2}{|\vec{r}_1 - \vec{r}_2|^3} \left(d\vec{\gamma}_1 \times d\vec{\gamma}_2 \right)$$
$$= \operatorname{Link}[\gamma_1, \gamma_2] \implies \operatorname{Linking number of world lines}$$