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2 The Ising model, duality, and transfer matrix

In this section we still concentrate on the Ising model without gauge fields. The
subjects we discuss in this chapter are, on the one hand, needed afterwards in our
treatment of lattice gauge theories. In particular, the concept of duality proved on
the other hand to be useful in several context in theoretical physics ranging from
statistical mechanics of classical systems to string theories. Therefore, it is useful to
discuss them in some detail.

2.1 Self-duality in the two-dimensional Ising model

Here we will just consider duality in the two-dimensional Ising model, as was first
introduced by Kramers and Wannier [7]. A comprehensive exposition on duality can
be found in the review article by Savit [8].

We start by considering the partition function of the Ising model defined in (1.1),
that can be rewritten as follows:

Z =
∑

{Sj}

eK
P

〈j,ℓ〉 SjSℓ =
∑

{Sj}

∏

〈j,ℓ〉

eKSjSℓ =
∑

{Sj}

∏

〈j,ℓ〉

1
∑

r=0

Cr(K) (SjSℓ)
r , (2.1)

where C0(K) = cosh K and C1(K) = sinh K. With the simple transformations
above, we see that for each bond 〈j, ℓ〉, a new Z2 variable can be introduced, namely
r. To recall this fact, we label it as rµ with µ ≡ (i, 〈i, j〉), that is, we label it with
the site i from which the bond 〈i, j〉 emanates. The partition function can now be
expressed as follows

Z =
∑

{Sj}

∑

{rµ}

∏

〈j,ℓ〉

Crµ
(K)

∏

i

S
P

〈i,j〉 rµ

i , (2.2)

where we grouped together all the products of spins on site i, such that
∑

〈i,j〉 rµ

contains all four contributions due to the bonds connected to site i. We can further
perform explicitely the sum over spin configurations, leading to

(2.2) =
∑

{rµ}

∏

〈j,ℓ〉

Crµ
(K)

∏

i

∑

Si=±1

S
P

〈i,j〉 rµ

i

=
∑

{rµ}

∏

〈j,ℓ〉

Crµ
(K)

∏

i

2δ



mod2





∑

〈i,j〉

rµ







 , (2.3)

where the Kroneker delta gives 1 if the sum over bonds is even and zero if it is odd.
Now we have achieved an expression for the partition function expressed only in
terms of the new Z2 variable rµ.

The presence of the Kroneker δ in (2.3) shows that many configurations have
vanishing contributions. It would be more effective if we could find variables that
automatically satisfy it. This can be achieved by defining a dual lattice, where the



A. Muramatsu - Lattice gauge theory - Summer 2009 9

vertices are set in the center of the plaquettes defined by the original one. Figure 1
shows the dual lattice corresponding to the original square lattice.

i

j

r

σi

µ

Figure 1: Dual lattice. Black full lines correspond to the original lattice, where rµ

denotes a bond. Blue dashed lines correspond to the dual lattice. The link joining
the sites i and j on the dual lattice crosses the bond rµ. New variables σi are defined
on the sites of the dual lattice.

We define now new Z2 variables σi = ±1 on the sites of the dual lattice. For
each link of the original lattice there is a pair of σi’s (e.g. on the sites i and j on the
dual lattice in Fig. 1) that we can associate to it. We can express the variable rµ in
terms of the new variables as follows:

rµ =
1

2
(1 − σiσj) , (2.4)

where sites i and j on the dual lattice are those whose link crosses rµ. Then, for the
sum of rµ over the four nearest neighbors of a site i, we have

∑

〈i,j〉

rµ = 2 − 1

2
(σ1σ2 + σ2σ3 + σ3σ4 + σ4σ1) , (2.5)

where the indices of the σ’s were chosen as shown in Fig. 2. For the four variables
σ1, . . . , σ4, there are 24 possible configurations. However, they can be grouped in
four cases, and it turns out that all the cases lead to an even number for the sum of
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rµ over the bonds. To see this, we consider those four cases below.

1 4

2 3

i

Figure 2: Four sites on the dual lattice with links crossing bonds around i.

i) σi = 1 ∀ i. An equivalent configuration is with all σi’s inverted. Here we
have

∑

〈i,j〉

rµ = 0 . (2.6)

ii) σ1 = σ2 = σ3 = −σ4 = 1. There are in total 8 equivalent configurations of this
type and the result for the sum is

∑

〈i,j〉

rµ = 2 . (2.7)

iii) σ1 = σ3 = −σ2 = −σ4 = 1. An equivalent configuration is obtained with all
σi’s inverted.

∑

〈i,j〉

rµ = 4 . (2.8)

iv) σ1 = σ4 = −σ2 = −σ3 = 1. Here we have in total 4 equivalent configurations,
each one leading to

∑

〈i,j〉

rµ = 2 . (2.9)

The listing above shows that with the choice of variables we made, we allways
satisfy the δ-function. Then, for the partition function we have.

Z =
1

2
2N
∑

{σi}

∏

〈j,ℓ〉

on dual lattice

C[(1−σiσj)/2](K) , (2.10)
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where the factor 1/2 is due to the fact that for each value of rµ, there are two
configurations of the σ’s, the factor 2N comes from the factor 2 in front of the
Kroneker δ in (2.3) with N the number of sites on the lattice, and the product is
now over bonds in the dual lattice.

The expression of the partition function (2.10) shows that the weight for each
configuration of the σ’s is given by the coefficients C(K). Therefore, the next step
is to see whether it is possible to bring C(K) to a form that looks like a Boltzmann
weight. In order to maintain a short notation, we keep here the label rµ.

Cr(K) = cosh K [1 + r (tanh K − 1)]

= cosh K exp {ln [1 + r (tanh K − 1)]}
= cosh K exp (r ln tanh K)

= cosh K exp

[

1

2
(1 − σiσj) ln tanhK

]

= (cosh K sinh K)1/2 exp

(

−1

2
ln tanhKσiσj

)

. (2.11)

Bringing this expression into the partition function (2.10), we have

Z =
1

2

(

sinh 2K̃
)−N ∑

{σi}

exp



K̃
∑

〈j,ℓ〉

σjσℓ



 , (2.12)

where we used the fact that there are 2N bonds, and we defined the new coupling
constant

K̃ ≡ −1

2
ln tanh K , (2.13)

that is the coupling for an Ising model on the dual lattice. Hence, the Ising model
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K
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K
�

Figure 3: Relation between the original coupling K and the dual one K̃.
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is self-dual since the duality transformation brings it into itself. Since tanh K < 1,
K̃ > 0. Furthermore, when K → ∞, K̃ → 0. The opposite happens when K → 0.
Therefore, the duality transformation relates the hight T region (low T region)
of the original model to the low T (high T ) region of the dual one. This is a
common feature of duality transformations, relating opposite regions of the dual
models or of the same model, when it is self-dual. Such a relation is very useful,
since it is in general possible to perform a high temperature expansion. The duality
transformation tells then how the behavior is in the low temperature region, that is
in general more difficult to extract.

Due to its self-duality, it is possible to extract for the two-dimensional Ising
model the value of the critical temperature. To see this, we consider the free energy
per site

f = − 1

N
ln Z . (2.14)

From the relation (2.12) between the partition functions of the original model and
the dual one, we have

f(K) = ln sinh 2K̃ + f(K̃) . (2.15)

This is a rather strong constraint on the free energy. Since sinh 2K̃ is an analytic
function, the equation above implies that a singularity in f(K) corresponds to a
singularity in f(K̃). Furthermore, since K̃(K) is a monotonous function of K, it
should hold that K̃c = Kc. Then, from (2.13) we have

e2Kc =
e2Kc + 1

e2Kc − 1
, (2.16)

with the solution

Kc =
1

2
ln
(

1 +
√

2
)

. (2.17)

Hence, self-duality has allowed us to calculate the exact value of the critical tem-
perature in the two-dimensional Ising model.

A straightforward generalization of the results obtained in the isotropic case can
be done for the anisotropic one, i.e. when we allow for couplings Kx 6= Ky in the
respective directions. This will be important for the next section, where we will see
that in order to map the classical system to a quantum mechanical one, anisotropy
will appear naturally. In the treatment above, we made in general no explicit use
of the fact that Kx = Ky, since the information of the strength of the bonds was
contained in the coefficients (2.11). The only place where we used isotropy was in
writing eq. (2.12). However, it is easy to generalize the result there for the anisotropic
case by realizing that eq. (2.11) relates the value of a bond in x-direction on the
original lattice with the value of the coupling constant on the dual lattice in the
y-direction. Therefore, in the anisotropic case we generalize (2.13) as follows:

K̃y ≡ −1

2
ln tanhKx , K̃x ≡ −1

2
ln tanh Ky . (2.18)
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Assuming again, that given Kx and Ky there is only one critical point, we can sum-
marize both equations above into the following condition for a critical line separating
the ordered from the disordered phase in an anisotropic Ising model:

sinh(2Kxc) sinh(2Kyc) = 1 . (2.19)

The same condition is obtained in the exact solution of the anisotropic case [9], using
in part the transfer matrix method, to be discussed in the next section. Figure 4
shows the phase diagram of the anisotropic Ising model.
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Figure 4: Phases of the anisotropic Ising model with the critical line obtained from
the duality relations.

For a further more general account of duality relations, see the review article by
Savit, Ref. [8].

2.2 Transfer matrix: from two dimensional classical

statistics to one dimensional quantum mechanics

The transfer matrix played an important role in deriving a more transparent exact
solution of the two dimensional Ising model [9] than the one originally obtained by
Onsager [10], and is a well established method in statistical mechanics. Besides this,
it will play an important role in models for lattice gauge theory.

We start with the partition function

Z =
∑

{Si}

e−S , (2.20)

with

S = −K
∑

〈i,j〉

SiSj , (2.21)
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and Si = ±1. Since we are dealing with the model in two dimensions, it is better to
introduce coordinates (p, q) for each site, where p, q ∈ Z, and denote the coordinates
in x- and y-direction, respectively. We generalize our model allowing for different
couplings along the x- and y-directions, and having N sites in the x-direction and
M-sites in the y-direction but keeping periodic boundary conditions (p.b.c) along
both directions. With all these changes, the action S can be written as follows:

S =

M
∑

q=1

L(q, q + 1) , (2.22)

where due to p.b.c. M + 1 → 1. The ”Lagrangean” L(q, q + 1) is given by

L(q, q + 1) =

N
∑

p=1

(−KxSp,qSp+1,q − KySp,qSp,q+1) , (2.23)

where again, due to p.b.c. N + 1 → 1.
We consider first the case Kx = 0, that corresponds to N decoupled one-

dimensional Ising models. Let us consider one of those chains, say the p-th one
and at a given site q. Then, the partition function consists of a product of terms as
follows,

Zp =
∑

Sp,1,...,Sp,M

∏

q

T y
pq , with T y

pq = eKySp,qSp,q+1 . (2.24)

Since the variables Sp,q have two possible values, we can represent them by a two
component vector (a spinor):

Sp,q = +1 →
(

1

0

)

, Sp,q = −1 →
(

0

1

)

, (2.25)

such that T y
pq can be viewed as a 2 × 2 matrix:

T y
Sp,q,Sp,q+1

=

(

eKy e−Ky

e−Ky eKy

)

. (2.26)

Since a 2 × 2 matrix can be written in terms of Pauli matrices, we have

T y
pq = eKy1 + e−Kyσx

pq = eKy
(

1 + e−2Kyσx
pq

)

. (2.27)

At this point we recall that T y
pq is part of a partition function, and therefore, it would

be easier to interpret what we have, if we could express it as the exponential of an
operator. Using the fact that (σx)2 = 1, we have in general

exp
(

K̃y σx
)

= cosh K̃y + sinh K̃y σx = cosh K̃y

(

1 + tanh K̃y σx
)

. (2.28)

Hence, setting

tanh K̃y = e−2Ky , (2.29)
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we finally have

T y
pq =

(

sinh K̃y cosh K̃y

)−1/2

exp
(

K̃y σx
pq

)

. (2.30)

This form is reminiscent of the one obtained in eq. (2.11) when we discussed duality.
In fact, inverting (2.29), we have

e−2K̃y = tanh Ky ⇒ K̃y = −1

2
ln tanhKy . (2.31)

Using (2.29) we can also rewrite the prefactor of (2.30) as

sinh K̃y cosh K̃y =
1

2
sinh 2K̃y =

1

2 sinh 2Ky
, (2.32)

such that

T y
pq = (2 sinh 2Ky)

1/2 exp
(

K̃y σx
pq

)

. (2.33)

Until now, we were discussing the one-dimensional Ising model. The correspond-
ing partition function is

Zp =
∑

Sp,1,...,Sp,M

T y
Sp,1,Sp,2

T y
Sp,2,Sp,3

· · ·T y
Sp,M−1,Sp,M

T y
Sp,M ,Sp,1

= Tr (T y)M , (2.34)

where T y is called the transfer matrix. Since the trace is invariant under a unitary
transformation, it is more informative to look at the trace after diagonalizing T y.
In this case we have only two eigenvalues, such that

Zp = Tr (T y)M = λM
1

[

1 +

(

λ2

λ1

)M
]

, (2.35)

where we have chosen λ1 to be the largest eigenvalue. In the thermodynamic limit,
M → ∞, only λ1 remains, such that the free energy per site is given by the largest
eigenvalue of the transfer matrix:

f = −kBT

M
ln Zp = −kBT ln λ1 . (2.36)

We see that as a spin-off of our discussion of the transfer matrix, we attained
also an exact solution of the one-dimensional Ising model. In fact, in order to show
that in this case there is no order at any temperature T > 0, we need to generalize
slightly our action (2.21) to include a magnetic field in the form

S → −K
∑

〈i,j〉

SiSj − h
∑

i

Si , (2.37)
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where h = B/kBT , and B is the applied magnetic field. We can generalize T y
pq to

this case as follows:

T y
pq → eKySp,qSp,q+1+h(Sp,q+Sp,q+1)/2 , (2.38)

such that the matrix is now

T y
Sp,q ,Sp,q+1

→
(

eKy+h e−Ky

e−Ky eKy−h

)

. (2.39)

From here one can obtain the eigenvalues and hence, the free energy as a function
of temperature and magnetic field. The derivative of the free energy with respect
to the magnetic field gives the magnetization, and the result is that it vanishes for
B = 0 at any temperature T > 0. The explicit calculation can be found in the book
on statistical mechanics by K. Huang.

For the two-dimensional case, we have still to switch on Kx. Since we have
already seen that an operator σx entered, it is also convenient to introduce a notation
with bras and kets where | Sp,q = ±1〉 are eigenstates of σz. Then, the matrix
elements of T y can be expressed as 〈Sp,q | T y

pq | Sp,q+1〉. Now we can consider two
columns p and p + 1, where we introduce an operator T x with matrix elements

〈Sp,qSp+1,q | T x
pq | Sp,q+1Sp+1,q+1〉 = eKxSp,qSp+1,q . (2.40)

Here we see that the operator T x should be such that its matrix elements contain
no information on the states at q +1. Furthermore, its action on the states at p and
p + 1 is

T x
pq | Sp,q = 1, Sp+1,q = 1〉 = T x

pq | Sp,q = −1, Sp+1,q = −1〉 = eKx ,

T x
pq | Sp,q = 1, Sp+1,q = −1〉 = T x

pq | Sp,q = −1, Sp+1,q = 1〉 = e−Kx .
(2.41)

All the requirements above are met by

T x
pq = exp

(

Kxσ
z
p,qσ

z
p+1,q

)

. (2.42)

With the result above and (2.33) we arrive at the partition function for the whole
system:

Z = (2 sinh 2Ky)
NM/2 TrTM , (2.43)

with

T = exp

(

Kx

∑

p

σz
pσ

z
p + 1

)

exp

(

K̃y

∑

p

σx
p

)

. (2.44)

This is now the transfer matrix for the two-dimensional anisotropic Ising model. In
contrast to the one-dimensional case, we have now instead of a 2×2 matrix, a 2N×2N
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dimensional array. It is however possible to solve the problem exactly, by means of
a Jordan-Wigner transformation making fermions out of spins [9]. We are not going
to pursue this path but would like to explicitely show that the transfer matrix can
be seen as an evolution operator in quantum mechanics, i.e. that it has the form
of an exponential of a Hamiltonian. Here we follow the discussion introduced by
Fradkin and Susskind [11].

We first notice that the two exponentials entering (2.44) do not commute with
each other. This makes in fact the problem really quantum mechanical. However,
if by some reason the arguments of both exponentials were multiplied by a small
constant ∆τ , we could expand each exponential to first order in that constant and
reexponentiate the result afterwards, such that the transfer matrix could be written
as the exponential of an object that would correspond to a Hamiltonian. The error
made acting like that would be of O (∆τ 2), such that in the limit ∆τ → 0, it
vanishes. Going back to (2.44) this means that we have to look for the situation
where both Kx and K̃y are small. From eq. (2.29) we see that this means

Kx ∝ ∆τ , e−2Ky ∝ ∆τ . (2.45)

That is, we are interested in the region Ky ≫ 1 and Kx ≪ 1. Although it seems
to be a very special portion of parameter space, the phase diagram in Fig. 4 shows
that it is still interesting, since there will be a phase transition between a disordered
and an ordered phase. For definitness, we take

K̃y = ∆τ , Kx = λ∆τ , (2.46)

where λ is a proportionally constant which, in principle, can take any value as long
as the condition ∆τ ≪ 1 is fulfilled. Performing these replacements in (2.44), we
can write

Z ∝ Tr e−βQMH , (2.47)

where we defined βQM = M∆τ , the temperature in the quantum mechanical system,
and

H = −
∑

p

σx
p − λ

∑

p

σz
pσ

z
p+1 , (2.48)

the one-dimensional Hamiltonian of the Ising model with transverse field, that due to
the presence of two noncommuting pieces is a genuinely quantum mechanical model.
The thermodynamic limit of the two-dimensional classical model corresponds to the
limit M, N → ∞, so that the quantum mechanical counterpart will show a phase
transition only in the limit βQM → 0, i.e. only in its ground-state. This is an example
of a quantum phase transition, where the parameter driving the phase transition is
not any more the temperature but a coupling of the Hamiltonian, in this case λ. In
order to obtain the critical value of λ, we recall the relation (2.19). In the limit of
interest here (Ky ≫ 1 and Kx ≪ 1), that relation reduces to

2Kxc
1

2
e2Kyc = 1 . (2.49)
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On the other hand, in the same limit, we have from (2.29)

K̃y = e−2Ky , (2.50)

such that

Kx = λe−2Ky , (2.51)

that together with (2.49) leads to λc = 1. Increasing λ brings us into the ordered
phase, while decreasing it leads to the disordered phase, as depicted in Fig. 4.
Therefore, large values of λ correspond to the low temperature phase and small
values to the high temperature one. Hence, we can identify 1/λ with temperature.

We have seen that in order to map the classical system into a quantum mechanical
one, we had to search for the continuum limit in imaginary time. Yet, the critical
properties of the original model could be recovered by an appropriate scaling of
couplings in the spatial and temporal directions. Such a relation between quantum
and classical counterparts will prove usefull in understanding the phases of lattice
gauge models.


