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3 Ising lattice gauge theory. Elitzur’s theorem

In the previous chapters we have considered phase transitions in models with a global
symmetry that showed a phase transition, i.e. spontaneous breaking of their global
symmetry as a function of temperature or by changing a coupling constant. Here we
will start the discussion of the possible phases, when the global symmetry is raised
to a local one, that is, when the symmetry operation that leaves the Hamiltonian
invariant is not the same on all points of the lattice but can be different from point
to point. The easiest model where we can study such a situation is the Ising model,
in the form introduced by Wegner [1].

3.1 Ising model with a local Z2 symmetry

We consider a hypercubic lattice in d-dimensional Euclidean space (or space-time
if we happen to have a quantum mechanical model, as already shown for the Ising
model with transverse field). The sites of the lattice are labeled by an index n. At
each lattice point there are 2d links connecting it to the nearest neighbor sites. We
label the links by (n, µ), where µ is a unit lattice vector pointing in the direction of
the link. The same link can be also labeled (n + µ,−µ). We define the model so,
that now our Z2 variables (we call them as before spins) are sitting on the links

The next step is to define an operation that is local. In the case of the glocal Z2

symmetry of the Ising model we made the change Si → −Si ∀ i. Here we have spins
σ(n, µ) and introduce a local gauge transformation G(n) by flipping all the spins on
links connected to site n. Figure 5 shows an example on a two dimensional lattice,

Figure 5: Gauge transformation on the central site. All the spins on the links
touching the central site are flipped.

where the gauge transformation is performed at the central site of the figure.
Finally, we need an action that defines the statistical weight for the spin configu-

rations, and is invariant under the gauge transformation. The following form fulfills
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those conditions:

S = −J
∑

n,µν

σ(n, µ) σ(n+ µ, ν) σ(n+ µ+ ν,−µ) σ(n+ ν,−ν) . (3.1)

Although our example in Fig. 5 shows a two dimensional lattice, the action above
is defined for arbitrary dimensions. The gauge invariance of the action can be seen
in Fig. 5. Since the gauge transformation flips two spins in each plaquette with a
vertex at the site of the transformation, the product in each plaquette in (3.1) does
change. Certainly, it would be possible to consider different forms for the action
that are also gauge invariant. The form given above is the one where the interaction
is as local as possible.

Due to the gauge invariance of the action, many configurations are gauge equiv-
alent, i.e. all those configurations that can be reached from a given one through
gauge transormations. In order to discern which configurations change the value of
the action, we can recall the situation in the case of the ordinary Ising model. There,
we looked at the configuration of each bond, where the product SiSj was invariant
under a global Z2 transformation. Depending on the configuration, we had there the
two possible values ±1. However, such a quantity is not gauge invariant. Instead,
we can take the product of the spins in a plaquette with the two possible values ±1:

∏

i∈p

σi = ±1 , (3.2)

where we denote with p a given plaquette. In this way we can distinguish configu-
rations with different energies.

Once we can distinguish configurations by their energy, the question arises,
whether a phase transition can take place, as in the ordinary Ising model, that
is, with a spontaneous symmetry breaking. We will see in the next section, that by
virtue of Elitzur’s theorem, this cannot happen.

3.2 Elitzur’s theorem

Spontaneous symmetry breaking is in general characterized by the development of a
non-vanishing value of an order parameter. In the case of the ordinary Ising model,
we have seen that the magnetization serves as a local order parameter. We will
therefore, consider the local magnetization in the case of the gauge invariant model.
Although we will proove its vanishing only for the Ising gauge theory, more general
proofs of Elitzur’s theorem [12] can be found in the book by Itzykson and Drouffe.

In order to see whether there is spontaneous symmetry breaking, we switch on
a small external magnetic field h with a coupling

h
∑

n,µ

σ(n, µ) , (3.3)

and compute 〈σ(m, ν)〉. We take the thermodynamic limit and then the limit h→ 0.
If the expectation value of σ does not vanish, then, there is spontaneous symmetry
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breaking. The expectation value is

〈σ(m, ν)〉h =
1

Zh

∑

{σ}

σ(m, ν) exp

[

βJ
∑

p

∏

ℓ∈p

σℓ + h
∑

n,µ

σ(n, µ)

]

, (3.4)

with

Zh =
∑

{σ}

exp

[

βJ
∑

p

∏

ℓ∈p

σℓ + h
∑

n,µ

σ(n, µ)

]

. (3.5)

If we perform a local gauge transformation at site m, the interaction part of the
action remains unchanged due to gauge invariance. The part that couples to the
magnetic field changes as follows:

h
∑

n,µ

σ(n, µ) = h
∑

n,µ

[σ′(n, µ) − δσ(n, µ)] , (3.6)

where σ′ is the transformed spin with

δσ(ℓm) = σ′(ℓm) − σ(ℓm) = −2σ(ℓm) ,

δσ(ℓm) = 0 if ℓ /∈ {ℓm} , (3.7)

where {ℓm} is the set of links emanating from m. Changing to the new variable σ′

we have

〈σ(m, ν)〉h = −
1

Zh

∑

{σ′}

σ′(m, ν)

× exp

[

βJ
∑

p

∏

ℓ∈p

σ′
ℓ + h

∑

n,µ

σ′ − h
∑

n,µ

δσ

]

= 〈−σ(m, ν) e−h
P

ℓm
δσ〉h . (3.8)

Next we look for a bound for the following quantity

|〈σ(m, ν)〉h − 〈−σ(m, ν)〉h| =
∣

∣〈−σ(m, ν)〉h
[

e−h
P

ℓm
δσ − 1

]
∣

∣

≤
∣

∣e4dh − 1
∣

∣ |〈σ(m, ν)〉h| . (3.9)

But then, as h→ 0, we have

〈σ(m, ν)〉h=0 = 〈−σ(m, ν)〉h=0 , (3.10)

so that 〈σ(m, ν)〉 = 0. The difference with respect to a system with a global sym-
metry is that, since the system is invariant under a local transformation, such a
transformation leads to a finite energy change in the presence of h. On the contrary,
for a global Z2 symmetry, the symmetry operation involves a macroscopic number
of degrees of freedom. Since local, non-gauge invariant observables do not lead to
any information, we have to consider next gauge-invariant correlation functions. As
we will see, such correlation functions are necessary non-local.
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3.3 Gauge invariant correlation functions

Elitzur’s theorem shows that it is not possible to have a spontaneous breaking of local
gauge symmetries, and hence, an order-parameter cannot be used to characterize
the possible phases of the system.

We have already seen the case of the XY-model, where due to Mermin-Wagner’s
theorem, the continuous O(2) symmetry cannot be spontaneously broken, yet we
have encountered two phases. One which we called the disordered phase, where the
correlation function decays exponentially, and another one below TKT , the temper-
ature at which the Kosterlitz-Thouless transition takes place, where the correlation
function decays as a power law. Hence, although there is no order parameter, it is
possible to distinguish different phases by looking at appropriate correlation func-
tions. One could also distinguish them by considering the correlation length. The
disordered phase has a finite correlation length while the the phase with quasi-long
range order has an infinite correlation length.

In the present case, Wegner proposed to look at gauge-invariant correlation func-
tions. As we have seen already in the construction of a gauge-invariant action for the
Ising model, a gauge-invariant quantity can be obtained by considering the product
of spin variables along a closed path of links,

∏

ℓ∈C

σ(ℓ) , (3.11)

where the arguments of the spin variable denotes links and C is a closed contour.
Two quantities related to C that are going to play an important role in the following
are P , the perimeter of C, and A, the minimal area enclosed by C.

We consider now high and low temperature expansions for the Ising gauge the-
ory. High temperature expansions are part of the established tools in statistical
mechanics. We are not going to review them here, but just apply it to the case of
interest without use of any formal argument. For those interested in a more de-
tailed account on high temperature expansions, the review article by Kogut and the
references therin should be appropriate.

3.3.1 High temperature expansion

Since the Boltzmann weight is an exponential, in the limit β → 0, we could directly
expand the exponential in powers of the argument. However, due to the simplicity
of the variables in our case, and due to the fact that

[

∏

ℓ∈p

σ(ℓ)

]2

= 1 , (3.12)
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we consider first the Boltzmann weight on a plaquette, where we absorb the coupling
constant J in the definition of temperature, and make a simple exact transformation:

eβσσσσ =

∞
∑

n=0

1

n!

[

β
∏

ℓ∈p

σ(ℓ)

]n

= cosh β + sinh β
∏

ℓ∈p

σ(ℓ)

=

[

1 + tanh β
∏

ℓ∈p

σ(ℓ)

]

cosh β . (3.13)

Once we transformed the weight for a plaquette, we can write a thermodynamic
average as

〈

∏

ℓ∈C

σ(ℓ)
〉

=

∑

{σ}

∏

ℓ∈C σ(ℓ)
∏

p

[

1 + tanh β
∏

ℓ∈p σ(ℓ)
]

∑

{σ}

∏

p

[

1 + tanh β
∏

ℓ∈p σ(ℓ)
] . (3.14)

At high temperatures, we can expand the expression above in powers of tanhβ. In
lowest order we have

∑

{σ}

∏

ℓ∈C

σ(ℓ) =
∑

{σ∈C}

∏

ℓ∈C

σ(ℓ)
∑

{σ/∈C}

1

=
∏

ℓ∈C

∑

σ(ℓ)=±1

σ(ℓ)
∑

{σ/∈C}

1 = 0 . (3.15)

Since
∑

σ

σ2 = 2 , (3.16)

in order to obtain a non-zero result, we have to be able to have squared all the σ’s on
C. We can reach that by considering as many powers of tanhβ as plaquettes needed
to follow the contour C. However, although the σ variables on C get squared, there
remain unpaired spins in the inside of the contour. In order to obtain a non-vanishing
result, we have to pair them also. Therefore, the first non-zero contribution in the
numerator of (3.14) is obtained when all links contained in C and in its interior
appear twice, i.e. when we have a contribution containing all plaquettes in the
minimal surface bounded by C:

〈

∏

ℓ∈C

σ(ℓ)
〉

∝ (tanh β)NpC + higher order

= eNpC
ln tanh β + · · · , (3.17)

where NpC
is the number of plaquettes inside C. There are going to be also higher

order contributions but all of them should appear in such a way that all the σ’s on



A. Muramatsu - Lattice gauge theory - Summer 2009 24

the links in the interior of C are paired. In general we can write

〈

∏

ℓ∈C

σ(ℓ)
〉

= e−f(β)A , (3.18)

where

f(β) = − ln tanh β + · · · , (3.19)

and A is the minimal area subtended by C. This is the celebrated area law that holds
for finite but high temperatures. In the case of the ordinary Ising model, it can be
proved that the high temperature expansion has a finite radius of convergence, and
the same applies here. While we state this without demonstration, more information
can be gathered in the review by Kogut.

3.3.2 Low temperature expansion

Since we will see later that d = 2 is a special case, we start the discussion by
considering d > 2.

In the case of the ordinary Ising model, we know that the low temperature
phase is the one with all spins pointing in the same direction. In the present case,
we have the possibility of performing local gauge transformations, such that many
other (in principle infinite many in the thermodynamic limit) configurations can be
generated from that one, without changing the energy of the system. It is therefore
convenient to reduce this redundancy by taking representatives of classes defined by
those configurations that are gauge equivalent, that is the configurations that can
be connected by a gauge transformation. Since we are computing gauge-invariant
expectation values, by just considering one representative of a given class, the result
does not depend on the particular representative. On summing over all possible
configurations of spins, a common factor emerges for each class, that is taken care
of by the normalization. Hence, after having chosen a representative for a gauge-
invariant configuration, we can speak of spin-flips, as long as such changes do not
correspond to a gauge transformation.

In the limit β → ∞, it is clear that we maximize the Boltzmann weight by taking
all spins equal, say σ = 1, and hence, we take this state as a representative of the
state at T = 0. Then, the expansion at low temperatures can proceed by considering
the number of flipped spins. For the expectation value we have as allways

〈

∏

ℓ∈C

σ(ℓ)
〉

=
1

Z

∑

{σ}

∏

ℓ∈C

σ(ℓ) exp

[

∑

p

∏

ℓ∈p

σ(ℓ)

]

. (3.20)

When all spins are ”up”, we have

〈

∏

ℓ∈C

σ(ℓ)
〉

= 1 . (3.21)
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Let us now flip one spin. Since each link belongs to 2(d − 1) plaquettes, this gives
the number of unsatisfied plaquettes, that we call frustrated. We call the weight of
the configuration with all spins up

W↑ = eβNp , (3.22)

where Np is the number of plaquettes in the system. Then, by considering the
expansion in the number of flipped spins we have

Z

W↑

= 1 +Nℓ e−4(d−1)β + · · · , (3.23)

where Nℓ is the number of links in the system, that appears since Z contains a sum
over all possible configurations.

For the observable
∏

ℓ∈C σ(ℓ) we will have a contribution −1, whenever the
flipped spin is on C. If L is the number of links in C, we have

〈

∏

ℓ∈C

σ(ℓ)
〉

=
1 + (Nℓ − 2L) e−4(d−1)β + · · ·

1 +Nℓ e−4(d−1)β + · · ·
. (3.24)

For n flipped spins, considering them as totally independent, we would have for the
numerator

1

n!
(Nℓ − 2L)n e−4n(d−1)β , (3.25)

where, since we consider the events as independent, the total weight is just the
product of the weights. Furthermore, since the order of the flipped spins does not
matter, we have a factor 1/n!. On the other hand, the partition function itself will
have contributions due to flipped spins that go as

1

n!
Nn

ℓ e−4n(d−1)β . (3.26)

Summing over n, we have

〈

∏

ℓ∈C

σ(ℓ)
〉

=

∑

n
1
n!

(Nℓ − 2L)n e−4n(d−1)β

∑

n
1
n!
Nn

ℓ e−4n(d−1)β

=
exp

[

(Nℓ − 2L) e−4(d−1)β
]

expNℓ e−4(d−1)β
= exp

[

−2e−4(d−1)βL
]

. (3.27)

We have obtained in this way the so-called perimeter law. A more accurate deter-
mination would have led to

〈
∏

ℓ∈C

σ(ℓ)〉 = e−h(β)L , (3.28)

with h(β) = 2 exp [−4(d− 1)β] in leading order. Such an accurate determination
was performed in Ref. [1] and shows that beyond the approximations made here,
the perimeter law holds.
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We discuss now the special features of the d = 2 case. As in the preceeding
discussion, we flip one spin on a given link, and as we mentioned already, there are
going to be 2(d − 1) = 2 frustrated plaquettes. However, in this case it is possible
to invert a line of spins and there are still only two plaquettes that are frustrated.
Figure 6 displays an example showing that the frustrated plaquettes are at the end
of the line of down spins. Hence, there is a special degeneracy in this case, where

F F

Figure 6: Example of a configuration with two frustrated plaquettes denoted by F

at the ends of the line of overturned spins.

many configurations, independently of the number of overturned spins leads to the
same action.

We can learn more about this special case by looking at the gauge-invariant cor-
relation function we defined before. We consider a system in the thermodynamic
limit and focus on the case where the line of overturned spins has one end at in-
finity. This is in fact one of the possible degenerate configurations. There are two
possibilities for the contour C of our correlation function. Either it contains the end
of the overturned spins in its inside, or not. If not, at most an even number of spins
on C are overturned since at most, the line of overturned spins enters and leaves
the space enclosed by C. All these contributions will lead to the same value as in
the case where no spin is inverted. On the other hand, if the end of the string of
overturned spins is inside C, there is an odd number of inverted spins on C, leading
to a negative contribution for the correlation function. We can sum over all possible
configurations in a way similar to the low temperature expansion for d > 2. The
result for the correlation function is

〈

∏

ℓ∈C

σ(ℓ)
〉

=
1 + (N − 2NC) e−4β + · · ·

1 +N e−4β + · · ·
, (3.29)

where NC is the number of links inside C, i.e. the number of possibilitites for the
string to end inside C. As before, we assume for the case with n strings that they
are not correlated such that their contribution is

〈

∏

ℓ∈C

σ(ℓ)
〉

≃
exp

[

(N − 2NC)e−4β
]

exp (Ne−4β)

= exp
(

−2 e−4βNC

)

≃ exp
(

−4 e−4βA
)

, (3.30)
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where we set A ≃ NC/2. Hence, we obtain in this case the same as in the high tem-
perature expansion, or equivalently, we do not see any signal of a phase transition.

We can gain further insight into the result for the two dimensional case by
viewing it as living in space-time of a one-dimensional model, where one direction
is space-like with links denoted by x̂ and the other time-like, with links labeled
by τ̂ . Since we are interested in gauge-invariant correlations, the results should be
independent of a particular choice of gauge. We can then choose, i.e. fix the gauge
to our convenience. In this case we choose

σ(n, τ̂) = 1 (3.31)

for each temporal link. In fact, given any configuration we can perform a gauge
transformation such that the condition above is fulfulled. This is called the temporal

gauge. The action in this gauge is

S = −J
∑

n
µ=x̂,τ̂

σ(n, x̂) σ(n+ τ̂ , x̂) . (3.32)

In this gauge the couplings in the horizontal direction do not appear any more, such
that a one-dimensional Ising model in the τ̂ direction results. Therefore we have the
following remarkable relation:

2D Ising gauge theory = 1D Ising model

As we discussed before, the one-dimensional Ising model is disordered at all finite
temperatures. This confirms our discussion, where we found an area law also at low
temperatures for the gauge invariant correlation function.

We can also evaluate the correlation function on a simple rectangular contour
with a width R along the spatial and a height T along the temporal direction. Then,
for the product of spins along the contour we have

∏

ℓ∈C

σ(ℓ) = σ(0, 0, x̂) σ(0, 1, x̂) · · ·σ(0, R, x̂)

...

×σ(T, 0, x̂) σ(T, 1, x̂) · · ·σ(T,R, x̂) , (3.33)

since all the vertical links are one. Since there is no interaction on the horizontal
direction, we have the spin-spin correlation on the τ -direction R times. This means

〈
∏

ℓ∈C

σ(ℓ)〉 = 〈σ(T, 0, x̂) σ(0, 0, x̂)〉R ∼ e−TR/ξ = −A/ξ . (3.34)

3.4 Quantum Hamiltonian and duality transformation of

the three-dimensional Ising gauge theory

In order to deepen our understanding of the phases that can occur in the Ising gauge
theory, we consider first the mapping to a τ -continuum quantum mechanical Hamil-
tonian, as we did in Sec. 2.2 for the anisotropic two-dimensional Ising model. As in
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that case, we start by generalizing the action by considering anisotropic couplings:

S = −Jτ

∑

pτ

∏

ℓ∈pτ

σℓ − Js

∑

ps

∏

ℓ∈ps

σℓ , (3.35)

where we denote with pτ plaquettes containing links in the temporal direction and
with ps plaquettes containing links only in the spatial direction. It is convenient
to choose the temporal gauge, that was introduced at the end of the previous Sec.
3.3.2 linking the 2D Ising gauge theory and the 1D Ising model, and expressed in
eq. (3.31). Although we fixed the gauge, there is still a large set of local gauge
operations under which the action is invariant, namely all τ -independent gauge
transformations. In this case, given a site n on which the gauge transformation
should be performed, all other sites with the same spatial coordinates along the
time direction will be affected. But this means that the spins are going to be flipped
twice on the temporal link, such that the condition (3.31) is respected. Then, the
temporal part of the action above simplifies as follows:

−Jτ

∑

pτ

σ(n, x̂) σ(n+ τ, x̂) →
Jτ

2

∑

pτ

[σ(n+ τ, x̂) − σ(n, x̂)]2 , (3.36)

where passing to the last expression, we just performed a shift of the energy. After
these transformations, the action reads now

S =
Jτ

2

∑

pτ

[σ(n + τ, x̂) − σ(n, x̂)]2 − Js

∑

ps

∏

ℓ∈ps

σℓ . (3.37)

We can now construct the transfer matrix for the model in the same way as
we did in Sec. 2.2. Focusing first on the temporal part of the action, i.e. assuming
Js = 0, and introducing a spinor notation for the σ-variables, we have now a transfer
matrix of the form

T τ =

(

1 e−2βJτ

e−2βJτ 1

)

= 1 + e−2βJτσx =
(

cosh K̃τ

)−1

exp
(

K̃τ σ
x
n,x̂

)

, (3.38)

with

tanh K̃τ = e−2βJτ . (3.39)

With the same reasoning we had to arrive to (2.42), we just replace the variables by
operators in the term proportional to Js.

The last step to reach a Hamiltonian is to consider the limit where βJs and
K̃τ = e−2βJτ are small, i.e. βJs ≪ 1 and βJτ ≫ 1. In the same way as for the
two-dimensional Ising model in Sec. 2.2, we have finally a Hamiltonian of the form

H = −
∑

n,x̂

σx(n, x̂) − λ
∑

ps

∏

ℓ∈ps

σz
ℓ , (3.40)
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where now we have a pure spatial lattice two-dimensional lattice.
Once we have reached a quantum mechanical description of the system, we can

also look at the local symmetries of the theory in an operator formulation. An
operator that flips all the links emanating from a given site n is given by

G(n) =
∏

±x̂

σx(n, x̂) . (3.41)

This operator commutes with the first term in (3.40), so that we need only to
consider its action on the σz operator. There we have

G−1(n) σz(n, x̂)G(n) = −σz(n, x̂) . (3.42)

Then it follows that the Hamiltonian is invariant under such operation

G−1(n)H G(n) = H , (3.43)

that is, the Hamiltonian is gauge invariant. Elitzur’s theorem implies that the Hilber
space is invariant to local gauge operations:

G(n) | ψ〉 =| ψ〉 . (3.44)

As a consequence, we can see explicitely that spontaneous symmetry breaking is not
possible:

〈ψ | σz(n, x̂) | ψ〉 = 〈ψ | G(n)G−1(n) σz(n, x̂)G(n)G−1(n) | ψ〉

= −〈ψ | σz(n, x̂) | ψ〉 , (3.45)

such that 〈ψ | σz(n, x̂) | ψ〉 = 0.
As a consequence of the invariance (3.44), the operator G(n) can be viewed as

the identity, such that

σx(n, ŷ) σx(n,−ŷ) σx(n, x̂) σx(n,−x̂) = 1 . (3.46)

We can use this property in order to reduce the number of operators that appear
explicitely, since from the relation above, we can write

σx(n, ŷ) = σx(n, x̂) σx(n,−x̂) σx(n,−ŷ) . (3.47)

The last operator can be again written in terms of the operators on the links arriving
at n− ŷ, such that

σx(n, ŷ) = σx(n, x̂) σx(n,−x̂) σx(n− ŷ, x̂)

×σx(n− ŷ,−x̂) σx(n− ŷ,−ŷ) . (3.48)

This means, that we can eliminate operators σx on links pointing in the y-direction
by applying recursively (3.47). After having eliminated such operators from the
Hamiltonian, we have to realize that the operators σz on those links, i.e. pointing
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also in the y-direction commute with H , and hence, the expectation values of these
operators are conserved quantities. Therefore, without altering the physics, we can
choose them to be a constant

σz(n, ŷ) = 1 . (3.49)

As a result of the manipulations above, σx(n, x̂) and σz(n, x̂) are the only operators
appearing explicitely in H .

We can now define a duality transformation for the three-dimensional Ising gauge
theory. As already performed in the case of the two-dimensional Ising model, we
define adual lattice with sites at the center of the original lattice. On such sites we
define further a ”dual spin-flip” operator by

µx(n∗) =
∏

ℓ∈p

σz(ℓ) , (3.50)

where p is the plaquette associated with n∗. A corresponding operator µz can also
defined as follows

µz(n∗) =
∏

n′≥0

σx(n− n′ŷ, x̂) . (3.51)

We have to see now, whether such definitions are consistent with the Pauli spin-
algebra. First we can easily see that

[µx(n∗)]2 = [µz(n∗)]2 = 1 . (3.52)

Furthermore, for the anticommutator on the same site we have

{µx(n∗), µz(n∗)} = 0 , (3.53)

since, going back to the original operators, we see that there is only one link in
common for the two dual opertors, such that on that link {σx(n, x̂), σz(n, x̂)} = 0,
where n is a site on the original lattice (say at the lower left corner of the corre-
sponding plaquette). Finally, we have to see whether these operators commute on
different sites. In fact, since a problem can only arise if both sites are on the same
column along the y-direction, and µx involves the product of two operators σz on
links along the x-direction, the commutator will involve two commutation operations
of the original operators. Hence,

[µx(n∗), µz(m∗)] = 0 , for n∗ 6= m∗ . (3.54)

Once we have seen that the mapping reproduces faithfully the spin algebra, we
consider how to express the Hamiltonian with the new operators. From the definition
(3.51) it clearly follows that

µz(n∗)µz(n∗ − ŷ) = σx(n, x̂) . (3.55)
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On the other hand,

µz(n∗)µz(n∗ − x̂) = σ(n, x̂)σ(n− ŷ, x̂)σ(n− 2ŷ, x̂) · · ·

×σ(n− x̂, x̂)σ(n− x̂− ŷ, x̂)σ(n− x̂− 2ŷ, x̂) · · ·

= σ(n, x̂)σ(n− ŷ, x̂)σ(n− 2ŷ, x̂) · · ·

×σ(n,−x̂)σ(n− ŷ,−x̂)σ(n− 2ŷ,−x̂) · · ·

= σx(n, ŷ) , (3.56)

where the last equality comes from (3.48), when the recursion relation is used to
eliminate σx(n− n′ŷ, ŷ) ∀ n > 0. Putting together all the pieces, we finally have

H = −
∑

n∗,ℓ

µz(n∗)µz(n∗ + ℓ) − λ
∑

n∗

µx(n∗)

= λ

[

−
∑

n∗

µx(n∗) −
1

λ

∑

n∗,ℓ

µz(n∗)µz(n∗ + ℓ)

]

, (3.57)

where the expression in brackets is the Hamiltonian version of the three-dimensional
anisotropic Ising model with coupling λ−1. Viewing λ as inverse temperature, as we
did at the end of Sec.2.2, we have a mapping between the high (low) temperature
properties of the gauge system and the low (high) temperature behavior of the
conventional Ising model.

It is well known that the three-dimensional Ising model undergoes a continuous
phase transition at a critical temperature Tc and develops long-range order. It is
then possible to characterize the phases of the Ising gauge model with help of the
order parameter of the ordinary Ising model. The order parameter of the Ising model
and the corresponding quantity for the Ising gauge theory are related as follows

〈0 | µz(n∗) | 0〉 = 〈0 |
∏

n′≥0

σx(n− n′ŷ, x̂) | 0〉 , (3.58)

such that we can now label the phases of the gauge theory by means of a nonlocal

disorder parameter that becomes non-zero in the high temperature phase since the
order parameter of the ordinary Ising model acquires a non-zero value in that region
of the gauge theory. This can be summarized as

〈0 |
∏

n′≥0

σx(n− n′ŷ, x̂) | 0〉 = 0 (λ large) ,

〈0 |
∏

n′≥0

σx(n− n′ŷ, x̂) | 0〉 6= 0 (λ small) . (3.59)

In order to understand this result, we can think of the operator

∏

n′≥0

σx(n− n′ŷ, x̂) (3.60)



A. Muramatsu - Lattice gauge theory - Summer 2009 32

as a kink operator. To see this we can think on the action of this operator on a
fully ordered state with, say, all spins up. The operator above will flip all the spins
starting at the link (n, x̂) down to the lowest link in the system. Its expectation value
for large λ is zero, meaning that the state is free of kinks. Above the critical point,
its expectation value is non-zero, a fact that can be understood as a kink condensate.
Hence, such a state is characterized by topologically non-trivial objects, the kinks.

In spite of its close connection to the local order parameter of the ordinary Ising
model, the fact that the disorder parameter above acquires a non-vanishing value
does not contradict Elitzur’s theorem, since it is non-local. Furthermore, considering
the operator for local gauge transformations (3.41), we see that the expectation
value obtained is gauge invariant since both operators commute. Finally, once we
understand that the high temperature phase is a kink condensate, we can go back to
the gauge invariant correlation function (3.11), and consider a purely spatial contour
C. The fact that we have kinks, means that also frustrated plaquettes are present.
Then, repeating the reasoning we had for the two-dimensional Ising gauge theory,
we can arrive at the already discussed area law.


