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4 Abelian lattice gauge theory

As a next step we consider a generalization of the discussion in Ch. 3 from a discrete
to a continuous symmetry. The simplest case is given by an invariance of the theory
under a U(1) local symmetry, i.e. by an abelian lattice gauge theory, that can be
viewed as a lattice version of electrodynamics.

4.1 U(1) lattice gauge theory

Since in our discussion of the Z2 lattice gauge theory we upgraded the global Z2

symmetry of the Ising model to a local one, we proceed in a similar way here starting
with the XY-model. The spin variable is confined to a plane with two components,
that, as already discussed in Ch. 1, are given by

S(n) =

[
cos θ(n)
sin θ(n)

]

, (4.1)

where the angle θ is measured with respect to a given, globally defined axis. The
ordinary XY-model has an action, with the notation introduced in Ch. 3 given by

S = −J
∑

n,µ

S(n) · S(n+ µ) = −J
∑

n,µ

cos [θ(n) − θ(n + µ)] . (4.2)

It is therefore convenient to introduce a difference operator

∆µ θ(n) = θ(n+ µ) − θ(n) , (4.3)

so that the action is now

S = −J
∑

n,µ

cos [∆µ θ(n)] . (4.4)

As already discussed in Ch. 1, this action has an U(1) global symmetry.
The general scheme to elevate the global symmetry to a local one, follows the

same steps as in the previous chapter. We place planar spins on the links (n, µ) of
a lattice that we denote θµ(n), Since the same link can also be labeled (n+ µ,−µ),
we have to give the relationship between θµ(n) and θ−µ(n+ µ). Our convention is

θ−µ(n+ µ) = −θµ(n) . (4.5)

With such a convention we can interprete θµ(n) as giving the angle of a reference
axis at site n + µ with respect to the reference axis at site n. On changing to the
point of view that the angular variable on that link gives the angle of the reference
axis on site n with respect to the reference axis on n+µ, i.e. considering θ−µ(n+µ),
a minus sign must be introduced. We note also that with such a convention, the
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variables appear as in Fig. 7, when considering a directed path around a plaquette.

( n )

n+µ( )θ−ν θν

θ−µ

µθ

( n+µ+ ν )

( )n+ ν

Figure 7: Directed plaquette with U(1) variables.

In analogy to electrodynamics, we can introduce a curl, that in this case should
be defined as a discrete difference.

θµν(n) = ∆µθν(n) − ∆νθµ(n)

= θν(n + µ) − θν(n) − θµ(n+ ν) + θµ(n)

= θµ(n) + θν(n+ µ) + θ−µ(n+ µ+ ν) + θ−ν(n+ ν) , (4.6)

where we used on passing to the last line, the convention (4.5). With that convention,
the curl introduced above leads to the sum over the angular variables around a
directed plaquette. As in electrodynamics, where Fµν = ∂µAν − ∂νAµ is invariant
under a gauge transformation Aµ → Aµ+∂µχ, the discrete curl is also invariant upon
a gauge transformation on a site n, defined in analogy to the Ising gauge theory, by
a rotation of an angle χ(n) of all the spins on the links emanating from that site.
Such a transformation leads to

θµ(n) → θµ(n) − χ(n) (4.7)

on the link (n, µ), while

θ−ν(n+ ν) → θ−ν(n + ν) + χ(n) (4.8)

on the link (n, ν). The similarity with electrodynamics becomes more evident by
performing a gauge transformation on site n by χ(n) and at site n+ µ by χ(n+ µ).
Then we have

θµ(n) → θµ(n) − χ(n) + χ(n + µ) = θµ(n) + ∆µχ(n) , (4.9)

while the curl remains invariant.
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Following the close correspondence between Fµν and θµν , we define the action as
follows:

S = J
∑

n,µν

[1 − cos θµν(n)] , (4.10)

that is gauge invariant and periodic in the variable θµν . In fact, considering the low
temperature limit we expect θµ(n) to be smoothly varying, so that θµν(n) is small,
and the cosine can be expanded, such that

1 − cos θµν(n) ≃ 1

2
θ2

µν , (4.11)

and since the fields vary smoothly, the sum over links can be converted into an
integral such that the action becomes

S → J

2

∫
ddx

ad
θ2

µν . (4.12)

We can further identify

θµν = a2gFµν , J =
1

2g2
, (4.13)

such that

S =
1

4ad−4

∫

ddxFµνFµν , (4.14)

becomes the Euclidean action of electrodynamics. Taking into account (4.6), the
identities above lead to the relation with the electrodynamic potential:

θµ(n) = agAµ(x) . (4.15)

The identifications made above with electrodynamics will be usefull later, when the
coupling of matter to the gauge fields is discussed.

4.2 Gauge-invariant correlation functions and phase
diagrams

In order to study correlation functions and the phase diagram, we consider the
partition function of the theory, given by

Z =

∫ 2π

0

∏

n,µ

dθµ(n) exp

{

− 1

2g2

∑

n,µν

[1 − cos (∆µθν − ∆νθµ)]

}

. (4.16)

Although we do not demonstrate it here, Elitzur’s theorem is also valid in this case
(in fact he did it explicitely for the U(1) case [12] – a general proof for any gauge
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group can be found in Itzykson-Drouffe). Therefore, expectation values of quantities
that are not gauge invariant must vanish, and we have to look for gauge-invariant
correlation functions. In a similar way as in the Ising gauge theory, we consider a
product along a closed, directed contour C containing angular variables:

exp

{

i
∑

C

θµ(n)

}

. (4.17)

In the same way as we have seen through eqs. (4.7) and (4.8), that θµν is gauge
invariant, it can be seen that the directed sum above is also gauge invariant. The
expectation value of the operator above leads to the so-called Wilson-loop [2]:

〈

exp

{

i
∑

C

θµ(n)

}
〉

=
1

Z

∫

Dθµ exp

{

i
∑

C

θµ(n)

}

e−S . (4.18)

In the following we consider the behavior of the Wilson loop in the strong- and
weak-coupling limits.

4.2.1 Strong-coupling limit

The strong coupling limit (g ≫ 1) is equivalent to the high temperature limit in our
discussion of the XY-model in Ch. 1. As in that case, for a large loop C, low orders
of the expansion will lead to integrals over the angular variables, that vanish:

∫ 2π

0

dθµ(n) eiθµ(n) = 0 . (4.19)

Only when enough phase factors appear in the expansion, such that the phase factors
of the correlation function are cancelled, a finite result will be achieved. To see this,
we consider the expansion of the exponential of the action.

exp

{

1

2g2

∑

n,µν

cos θµν

}

=
∏

n,µν

exp

{
1

2g2
cos θµν

}

=
∏

n,µν

exp

{
1

4g2

[
eiθµν + e−iθµν

]
}

=
∏

n,µν

∑

m

1

m!

{
1

4g2

[
ei

P

p θµ + e−i
P

p θµ
]
}m

, (4.20)

where in the last line we introduced
∑

p that denotes a directed sum of the angular
variables along a plaquette. The non-vanishing contribution in lowest order will
be given by the lowest power (i.e. m = 1) for each plaquette where one of the
sides coincides with the loop C. The other sides of these plaquettes have to be
compensated as well, so that finally, the minimal area subtended by C will be
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covered with plaquettes, as shown in Fig. 8. Hence, the number of plaquettes

Figure 8: Plaquettes inside the contour C needed to cancel phase factors on C and
its interior.

needed in order to obtain a non vanishing result is given by the minimal area A
enclosed by C, such that,

〈

exp

{

i
∑

C

θµ(n)

}
〉

≃
(

1

4g2

)A

= e− ln(4g2)A . (4.21)

As in the Ising case, we obtain the area law in the strong coupling (high temperature)
limit. In general, assuming that the strong-coupling expansion has a finite radius of
convergence, the result is

〈

exp

{

i
∑

C

θµ(n)

}
〉

= e−f(g2)A , (4.22)

where the function f is in leading order ln(4g2).

4.2.2 Weak-coupling limit

In this case we have g ≪ 1, i.e. the low temperature limit that we discussed briefly
at the end of Sec. 4.1. Since we have seen there that a close connection can be
established with electrodynamics in the continuous limit appropriate for g ≪ 1, we
return to eq. (4.15), and identify the Wilson loop in the form he originally introduced
[2].

〈

exp

{

i
∑

C

θµ(n)

}
〉

→
〈

exp

{

ig

∮

C

Aµ dxµ

}〉

=
1

Z

∫

DAµ exp

(

− 1

4ad−4

∫

ddxFµνFµν + ig

∮

C

Aµ dxµ

)

,(4.23)
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where since Aµ ∼ θµ/a, and a → 0, the integral over Aµ goes from −∞ to ∞. The
limit a → 0 does not present a problem in d = 4, where QED is renormalizable.
Hence, from now on, we restrict ourselves to d = 4.

In order to proceed further, we have to fix the gauge in order to have a mean-
ingfull evaluation of the integral (4.23). Since such an evaluation involves the prop-
agator of the gauge fields, let us discuss briefly how it can be evaluated. Here we
concentrate on the term with F 2

µν , that can be expressed as follows

S(Aµ) =
1

4

∫

d4xFµνFµν =
1

2

∫

d4k Aµ(−k)
(
k2δµν − kµkν

)
Aν(k) , (4.24)

where k2 = kµkµ. The propagator of the gauge fields is given by the inverse of the
expression in brackets. However, it can be easily seen that unless we regularize the
expression, the inverse does not exist. Hence, we introduce a mass for the gauge
fields, that at the end will be sent to zero, i.e. we add a term

1

2
m2A2

µ (4.25)

to the action that leads to

(4.24) → 1

2

∫

d4k Aµ

[(
k2 +m2

)
δµν − kµkν

]
Aν . (4.26)

Still we need to fix the gauge. For that purpose, we introduce a scalar field adding
to the action a term

S(Aµ, χ) = S(Aµ) − 1

2

∫

d4x
[
(∂µχ)2 − m̃2χ2

]
. (4.27)

Since the term is bilinear in χ, this amounts to introducing a multiplicative con-
stant to the partition function, that is cancelled by normalization in the correlation
function. We can perform now a change of variables

Aµ = A′
µ +

1

m
∂µχ , (4.28)

that corresponds to a change of gauge. Therefore, Fµν is not changed, so that the
only change appears in the mass term.

1

2
m2A2

µ =
1

2
m2A′2

µ +mA′
µ∂µχ +

1

2
(∂µχ)2 , (4.29)

leading to

S(A′
µ, χ) = S(A′

µ) +

∫

d4x

(

mA′
µ∂µχ +

1

2
m̃2χ2

)

= S(A′
µ) −

∫

d4x

(

m∂µA
′
µ χ− 1

2
m̃2χ2

)

. (4.30)
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At this point we can integrate over χ, since it appears in a bilinear form. We recall
briefly in the following, how such an integration can be performed.

Gaussian integration
In order to discuss a Gaussian integration, we start by considering a Gaussian

integral for a single degree of freedom

e
1

2
ax2

=
1√
2πa

∫ ∞

−∞

dφ e−
φ2

2a
+φx (4.31)

Next we consider a bilinear form with the result:

exp

(

1

2

N∑

i,j

xiAij xj

)

=
1

(2π)N/2

1√
detA

∫ N∏

i=1

dφi

︸ ︷︷ ︸

Dφ

× exp

[

−1

2

∑

ij

φi

(
A−1

)

ij
φj +

∑

i

φixi

]

, (4.32)

with A a symmetric and positive definite matrix. In order to see that (4.32) follows
from (4.31), we recall that since A is symmetric, there exists an orthogonal matrix
M such that

MTAM = AD ⇒ A = MADMT , (4.33)

where
(
AD
)

ij
= aiδij is a diagonal matrix. In the same way we can define trans-

formed vectors x′ = MT x, such that

exp

(
1

2
xT Ax

)

= exp

(
1

2
x′TADx′

)

= exp

(

1

2

∑

i

x′i ai x
′
i

)

=
∏

i

exp

(
1

2
x′i ai x

′
i

)

. (4.34)

For each term in the product (4.34), we can apply the identity (4.31), leading to

∏

i

exp

(
1

2
x′i ai x

′
i

)

=
∏

i

1√
2πai

∫ ∞

−∞

dφ′
i exp

(

−φ′2
i

2ai

+ φ′
ix

′
i

)

, (4.35)

with φ′ = Mφ. Undoing the orthogonal transformation we arrive at the result
(4.32).

Once we have recapitulated how a Gaussian integral is performed, we apply the
above to the integral over χ, leading to

S̃(A′
µ) = S(A′

µ) +
m2

2m̃2

∫

d4x
(
∂µA

′
µ

)2
. (4.36)
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A choice of gauge corresponds now to a choice of m̃. Taking m̃ = m, we have
the Feynman gauge. As we will see below, after such a choice, the propagator
becomes particularly simple. However, since it is the first time that we consider the
propagator of a field theory, let us recall how to obtain it.

As propagator we understand an expectation value of the corresponding fields
propagating from a point to another (let us say from 0 to x):

〈Aµ(x)Aµ(0)〉 =
1

Z

∫

DAµAµ(x)Aµ(0) e−S(A) . (4.37)

The propagator can be obtained from the generating functional (i.e. in our case
the partition function) by introducing sources that couple to the fields of interest,
and differentiating with respect to the sources. In our case, we introduce sources
coupling to the gauge-fields, such that the generating functional is as follows:

Z [J ] =

∫

DAµ exp

[

−S(A) +

∫

ddx Jµ(x)Aµ(x)

]

. (4.38)

The propagator is then obtained by differentiating with respect to J at the points
x and 0:

〈Aµ(x)Aµ(0)〉 =
δ2 lnZ[J ]

δJµ(x) δJµ(0)
. (4.39)

Using the action obtained in (4.30), i.e.

S(Aµ) =
1

2

∫

d4k Aµ(−k)
(
k2 +m2

)
Aµ(k) , (4.40)

that is quadratic in Aµ, we can perform the integration over Aµ, since it is a Gaussian
integration. With the notation

G−1
0 (k) = k2 +m2 , (4.41)

we have after performing the Gaussian integration

Z[J ] = Z[0] eW [J ] , (4.42)

where

W [J ] =
1

2

∫

ddkJ(−k)G0(k)J(k) , (4.43)

such that for the propagator of the gauge field we obtain

〈AµAν〉(k) =
δµν

k2 +m2
. (4.44)

From there, and assuming that since we are on a lattice, we do not need to fear
ultraviolet divergences, we can Fourier-transform the result above in order to finally
obtain the form of the propagator in real space.
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Since we have to perform a Fourier-transform in d = 4 of a rotational invariant
function, we recall the form of the Jacobian when going to spherical coordinates in
d dimensions:

ddk = kd−1dk dφ sin θ1dθ1 sin2 θ2dθ2 · · · sind−2 θd−2dθd−2 . (4.45)

For completeness, we recall the form of the area of a unit sphere in d dimensions:

Sd =

∫ 2π

0

dφ

[
d−2∏

j=1

∫ π

0

sinj θj dθj

]

=
2πd/2

Γ (d/2)
, (4.46)

where Γ(x) is the gamma function. Going back to our case, the Fourier-transform
of (4.44) is given by

〈Aµ(x)Aν(0)〉 = 2π

∫ ∞

0

dk

(2π)4

k3

k2 +m2

∫ π

0

dθ1 sin θ1 eik|x|cos θ1

∫ π

0

dθ2 sin2 θ2

=
1

8π2 | x |

∫ ∞

0

dk
k2

k2 +m2
sin (k | x |) . (4.47)

The resulting integral is safely convergent in the IR, so that we can take m → 0.
However, we have to regularize it in the UV. We do so with an exponential cutoff.

(4.47) → 1

8π2 | x |

∫ ∞

0

dk sin (k | x |) e−ak =
1

8π2 (a2+ | x |2) . (4.48)

Hence, we can write

〈Aµ(x)Aν(0)〉 = δµν ∆(x) , (4.49)

with

∆(x− y) = ∆(0)δx,y + ∆′(x− y) , (4.50)

where

∆′(x− y) =

{
1/ (8π2 | x− y |) if | x− y |> a ,
0 otherwise .

(4.51)

Now we are able to evaluate (4.23) since it is again a Gaussian integral. The
result of the evaluation is

〈

exp

{

ig

∮

C

Aµ dxµ

}〉

= exp

[

−1

2
g2

∮

C

∮

C

〈Aµ(x)Aν(y)〉dxµdxν

]

= exp

[

−1

2
g2

∮

C

∮

C

∆(x− y)dxµdyµ

]

. (4.52)

Before going into an explicit evaluation of the integral, we can first try to assess
the outcome of it. The propagator of the gauge fields corresponds to an interaction,
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that in this case takes place between line elements dxµ and dyµ, and is given by
an exchange of virtual photons. In the case of a large loop, the dependence of the
Wilson loop on the dimensions of the loop will reflect the long-distance behavior of
the propagator. If the propagator is short ranged, i.e. it decays exponentially within
a distance ξ, then, the correlator (4.52) will be determined by the contributions of
dxµ and dyµ within the distance ξ. For C ≫ ξ, the correlation function should
then obey the perimeter law. In the U(1) case we discuss here, we have seen that
∆(x − y) decays actually with a power law. We will discuss its consequences in an
explicit calculation below.

In order to evaluate (4.52), we consider a rectangular contour as in Fig. 8. We

R

T
x

y

x

y
(b)(a)

Figure 9: Contributions to the Wilson loop.

separate the calculation of the integral for the Wilson loop into two contributions
as shown in Fig. 9. On the one hand, we have contributions where an edge interacts
with itself, as shown in Fig. 9 (a). On the other hand, two different edges can
interact with each other. Notice that orthogonal edges do not interact since in that
case, dxµdyµ = 0. The integral corresponding to Fig. 9 (a) gives

∫ ∫

∆′(x− y)dxµdyµ =
2

8π2

∫ T

a

dy

∫ y−a

0

dx
1

(y − x)2

=
1

4π2

[
T

a
− ln

(
T

a

)]

, (4.53)

when going along the side T from bottom to top, and the same contribution is ob-
tained when going from top to bottom. The factor 2 comes from the two possibilities,
i.e. x > y and x < y. When integrating along the side R, the result is

∫ ∫

∆′(x− y)dxµdyµ =
2

8π2

∫ R

a

dy

∫ y−a

0

dx
1

(y − x)2

=
1

4π2

[
R

a
− ln

(
R

a

)]

. (4.54)
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Finally, the total contribution to Wilson’s loop from Fig. 9 (a) is

∮

C(a)

∮

C(a)

∆′(x− y)dxµdyµ =
1

2π2

[
T +R

a
− ln

(
T

a

)

− ln

(
R

a

)]

. (4.55)

The integral corresponding to Fig. 9 (b) gives

∫ ∫

∆′(x− y)dxµdyµ = − 2

8π2

∫ T

0

dy

∫ T

0

dx
1

R2 + (y − x)2

= − 1

4π2

[

2
T

R
arctan

(
T

R

)

− ln

(
R2 + T 2

R2

)]

.(4.56)

when going along the side T . For the side R, we need just to exchange T and R:

∫ ∫

∆′(x− y)dxµdyµ = − 2

8π2

∫ R

0

dy

∫ R

0

dx
1

T 2 + (y − x)2

= − 1

4π2

[

2
R

T
arctan

(
R

T

)

− ln

(
R2 + T 2

T 2

)]

.(4.57)

Before obtaining the complete expression for Wilson’s loop, we can simplify our task
by considering the case where T ≫ R, i.e. anticipating the limit of zero temperature
for the corresponding quantum theory that we could reach using the transfer matrix.
In this case, the last integral leads to a vanishing expression while for (4.56) we have

(4.56) ≃ − 1

4π

T

R
+

1

2π2
ln

(
T

a

)

− 1

2π2
ln

(
R

a

)

, (4.58)

such that finally,

∮

C

∮

C

∆(x− y)dxµdyµ =

(

∆(0) +
1

4π2a

)

P − 1

4π

T

R
− 1

π2
ln

(
R

a

)

, (4.59)

where P = 2(T + R) is the perimeter of C. The final result for the correlation
function is

〈

exp

{

ig

∮

C

Aµ dxµ

}〉

= exp

[

−1

2
g2cP +

g2

8π

T

R
+

g2

2π2
ln

(
R

a

)]

, (4.60)

where c is a constant depending on the lattice propagator at the origin, and in
general of the UV cutoff. Here we obtained a result corresponding to a perimeter
law but with corrections due to the long-range character of the propagator. In any
case, the behavior of the correlation function is qualitatively different from the one
in strong-coupling, strongly suggesting that the Abelian lattice gauge theory has
two different phases.
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4.2.3 Potential for static charges and confinement

A further understanding of the results obtained for the correlation function can
be gained by recalling that in electrodynamics, that based on our weak-coupling
analysis should correspond to that limit of the theory, the gauge fields mediate an
interaction among charges in the system. In particular, for static charges, we should
have Coulomb’s law.

In order to see that this is the case, we recall the form of the coupling of the
electromagnetic fields to currents:

e

∫

Aµ(x)Jµ(x) d4x , (4.61)

a term that should be added to the action. Furthermore, since the current is a
conserved quantity, we can consider it on a closed loop. Let the loop be C, the
same rectangular loop we were considering in our discussion of the strong- and
weak-coupling limits. Since the loop has infinitesimal cross-section, we are actually
considering not a current density but a current on it. Hence, Jµ can be taken to be
unity on the directed loop and zero elsewhere. Then, for a given time slice at time
τ , we have J0 = −1 at x = 0, and J0 = +1 at x = R. From the point of view of the
transfer matrix, we have a system with a static charge at x = R and its antiparticle
at x = 0. With such a picture in mind, the expectation value of the Wilson loop can
be viewed as the ratio of the partition function of the system coupling to external
charges (i.e. with an action including (4.61)) to the partition function of the systems
without them:

〈

exp

{

ig

∮

C

Aµ dxµ

}〉

=
Z[J ]

Z[0]
. (4.62)

This can be also expressed in terms of the free energy of the system since F = − lnZ,
where we have absorbed the factor 1/kBT in the definition of F such that

Z[J ]

Z[0]
= exp {− [F(J) − F(0)]} . (4.63)

In the limit T → ∞ (i.e. when the temporal side of C becomes very long), we
approach the ground-state of the equivalent Hamiltonian and the difference in free
energies, since they are extensive quantities, should obey

F(J) − F(0) ∝ T . (4.64)

The proportionality constant is the energy difference between the ground-state of the
Hamiltonian with and without charges. For static charges this difference is purely
due to the potential energy, such that

F(J) − F(0) = V (R)T . (4.65)
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Putting the expressions above together, we have

〈

exp

{

ig

∮

C

Aµ dxµ

}〉

= e−V (R) T , (4.66)

or equivalently,

V (R) = − lim
T→∞

1

T
ln
〈

exp

{

ig

∮

C

Aµ dxµ

}〉

, (4.67)

the potential acting on static charges hold a distance R appart.
We can now go back to our result (4.60). There, the perimeter law would lead

to a constant potential, meaning that the charges are free. However, taking into
account the second term leads to

V (R) ∼ const. − g2

8π

1

R
, (4.68)

that corresponds to Coulomb’s law. Hence, we can reproduce in this limit the well
known result V (R) ∼ e2/R. We can also give a meaning to the result obtained in
the strong-coupling limit, where the area law leads to

V (R) ∼| R | , (4.69)

i.e. we obtain confinement of particle and antiparticle. While in the traditional
frame of a quantum field theory, no way is known up to now to reach confinement,
it appears naturally in a lattice gauge theory in the strong coupling limit.

4.3 Two-dimensional Abelian lattice gauge theory

As we have seen in the case of the Ising lattice gauge theory, it can be expected that
as we lower the dimensions, only one phase may subsist for all non-zero values of
the coupling constant. In order to see this, we perform a direct calculation.

As in the case of the Ising lattice gauge theory, it is convenient to choose a
definite gauge. Here we take the temporal gauge with

θ0(n) = 0 , (4.70)

such that exp [iθµ(n)] = 1 for µ in the τ -direction. Choosing a rectangular contour,
θµ(n) 6= 0 only on its horizontal links, i.e. the remaining variable is θ1(n). Then, the
correlation function is given by

〈

exp

(

i
∑

C

θµ

)〉

=
1

Z

∫
∏

dθ1(n) exp

[

β
∑

n,µν

cos θµν + i
∑

C

θµ

]

,(4.71)

where C is a closed contour, and β ≡ 1/2g2. In order to see that it is possible to
perform a change of variables from θµ to θµν , such that a manifestly gauge-invariant
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form can be obtained for the evaluation of the correlation function, we notice first,
that

∑

C

θµ =
∑

{PC}

θµν(n) , (4.72)

where {PC} denotes the set of plaquettes enclosed within C. This can be obtained
directly from the definition (4.6) together with the convention (4.5). Equation (4.72)
is the lattice version of Stoke’s law. In order to change variables, we need the
Jacobian of the transformation. To this end, we notice that in two dimensions, θµν

can be determined in terms of e.g. θ01. From the definition (4.6), and taking the
temporal gauge into account, we have

θ10(n) = −θ1(n+ τ̂ ) + θ1(n) , (4.73)

that leads to

θ1(n) = −θ10(n− τ̂) + θ1(n− τ̂ )

= −θ10(n− τ̂) − θ10(n− 2τ̂) + θ1(n− 2τ̂ )

= −
∑

τ ′<τ

θµν(τ
′, x) , (4.74)

such that the Jacobian is one. Finally, after the change of variables we have

〈

exp

(

i
∑

C

θµ

)〉

=

∫ ∏

{PC} dθµν(n) exp
[

β
∑

n,µν cos θµν + i
∑

PC
θµν

]

∫ ∏

{PC} dθµν(n) exp
[

β
∑

n,µν cos θµν

] , (4.75)

where common factors from numerator and denominator were cancelled. The expres-
sion above corresponds to a product of independent integrations, with the plaquettes
being thus decoupled, such that

(4.75) =

{∫ 2π

0
dθµν exp [β cos θµν + iθµν ]
∫ 2π

0
dθµν exp [β cos θµν ]

}A

, (4.76)

where A is the number of plaquettes enclosed by C. For the integrals in the expres-
sion above we have

∫ 2π

0

dθµν exp [β cos θµν ] = 2πI0(β) ,

∫ 2π

0

dθµν exp [β cos θµν + iθµν ] = 2πI1(β) , (4.77)
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where I0(z) and I1(z) are incomplete Bessel functions, such that
〈

exp

(

i

∮

C

θµ

)〉

=

[
I1(β)

I0(β)

]A

. (4.78)

With β = 1/2g2, we can obtain the results for the strong (g2 ≫ 1 ↔ β ≪ 1) and
weak-coupling (g2 ≪ 1) limits. In strong coupling we have

I0(z) = 1 + O
(
z2
)
,

I1(z) =
z

2
+ O

(
z3
)
, (4.79)

such that

I1(β)

I0(β)
≃ β

2
=

1

4g2
, (4.80)

leading to
〈

exp

(

i

∮

C

θµ

)〉

≃ e− ln(4g2)A . (4.81)

This is the same result as the one obtained in (4.21). On the other hand, in the
weak-coupling limit we have the asymptotic expression for the incomplete Bessel
functions

Iν(z) =
ez

√
2πz

(

1 − 4ν2 − 1

8z
+ · · ·

)

, (4.82)

such that

I1(β)

I0(β)
≃ 1 − 1

2β
= 1 − g2 , (4.83)

that leads to
〈

exp

(

i

∮

C

θµ

)〉

≃ eln(1−g2)A ≃ e−g2A . (4.84)

We can see explicitely, that in the two-dimensional case, we are allways in the
confining phase with the interquark potential varying smoothly between g2 | R | at
weak coupling to ln(4g2) | R | at strong coupling.

It should be noted that the construction used here relies on the fact that the
plaquettes variables can be considered as independent. However, e.g. in three di-
mensions, an elementary volumen element coresponds to a cube with six plaquettes.
The oritentation for the circulation can be chosen in such a way that

∑

faces

θµν = 0 . (4.85)

Such a constraint, that corresponds to a lattice version of Gauss’ law, shows that
the plaquettes cannot be treated as independent.
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4.4 The quantum Hamiltonian formulation and quark
confinement

We can learn more about the Abelian lattice gauge theory by considering the cor-
responding quantum Hamiltonian. As we have already seen in the case of the Ising
lattice gauge theory, the first step is to allow for different couplings along the time
and spatial directions. Here we can write

S = βτ

∑

n,k

[1 − cos θ0k(n)] − β
∑

n,ik

cos θik(n) , (4.86)

where the temporal index is 0 and latin letters denote spatial links. As before, we
take the temporal gauge, i.e. θ0(n) = 0. In this gauge there are still τ -independent
gauge transformations under which the system is invariant.

In the temporal gauge, we have

θ0k = θk(n + τ̂) − θk(n) . (4.87)

Since, as in the Ising case, we are interested in the limit βτ → ∞, i.e. we are
interested in the thermodynamic limit of the original model, only slowly varying
configurations of θk will be important Therefore, we can approximate the first term
in (4.86) as follows:

1 − cos θ0k ≃ 1

2
θ2
0k ≃ 1

2
a2

τ

(
∂θk

∂τ

)2

, (4.88)

where aτ denotes the lattice constant in the temporal direction. Going over to a
τ -continuum, we can replace the sums over sites along the temporal direction by
integrals:

∑

n,k

→ 1

aτ

∫

dτ
∑

n,k

, (4.89)

where n denotes the sites in the spatial directions. With all these changes, the
action becomes

S =

∫

dτ

{

1

2
βτaτ

∑

n,k

(
∂θk

∂τ

)2

− β

aτ

∑

n,ik

cos θik(τ,n)

}

. (4.90)

We are interested in the limits

βτ =
g2

aτ
→ ∞ ,

β =
aτ

g2
→ 0 , (4.91)

where g2 is held finite at a given fixed value. This is in fact the same limit we took
when discussing the transfer matrix of the Ising model in Sec. 2.2.
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In order to define a quantum Hamiltonian, a Hilbert space has to be set up
for each τ -surface. In our case, the quantum field is given by θk(n). We define a
canonically conjugate momentum density Lk(n) with the commutation relation

[θk(n
′), Li(n)] = i δik δnn′ . (4.92)

Since θk is a planar angle, Lk is an angular momentum with eigenvalues m ∈ Z.
At this point we recall what happens with other familiar canonically conjugated
variables, namely x and p. In that case, it can be shown (e.g. when going to a path
integral) that

〈xi+1|e−ǫp̂2/2|xi〉 ∝ exp

[

−1

2
ǫ

(
xi+1 − xi

ǫ

)2
]

. (4.93)

That is, the square of the time derivative goes over into the square of the conjugate
operator in the exponential. We expect something similar to happen in this case,
although we are dealing now with a discrete spectrum. However, in the same way
as it is shown in elementary quantum mechanics for x and p, we can see here that,
using the fact that for each operator θk there is an eigenstate fulfilling

θk | θ〉 = θ | θ〉 , (4.94)

where

〈θ′ | θ〉 = δ(θ′ − θ) , (4.95)

then,

〈θ | ℓ〉 ∝ eiℓθ , (4.96)

where | ℓ〉 is an eigenstate of Lk. Using the above, we have in our case

〈θ′ | e−ǫL2/2 | θ〉 =
∑

ℓ,ℓ′

〈θ′ | ℓ′〉〈ℓ′ | e−ǫL2/2 | ℓ〉〈ℓ | θ〉

=
∑

ℓ

exp

[

−1

2
ǫℓ2 + iℓ(θ′ − θ)

]

. (4.97)

Here we can use the Poisson summation formula

∞∑

n=−∞

f(n) =
∞∑

k=−∞

f̂(2πk) , (4.98)

where f(x) is a continuous function with Fourier-transform f̂(q). In our case, this
translates into

∑

ℓ

exp

[

−1

2
ǫℓ2 + iℓ(θ′ − θ)

]

=

√

2π

ǫ

∑

k

exp

[

− 1

2ǫ
(θ′ − θ − 2πk)2

]

.(4.99)
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Since we are interested in the limit ǫ → 0, and we assume that θ′ and θ are close
to each other, only the term with k = 0 remains. In this way, the Hamiltonian
resulting from the transfer matrix has the form

aH =
1

2
g2
∑

n,k

L2
k(n) − 1

g2

∑

n,ik

cos θik(τ,n) , (4.100)

where a is a lattice constant introduced in order to have the proper units for H .
Once we have obtained the Hamiltonian of the system, we can consider its sym-

metries, in particular its invariance under τ -independent local gauge transforma-
tions. Having seen that an angular momentum operator appears in the theory in
a natural way, we can use it to perform rotations of the variables on the links ℓ
connecting to a site n by defining

Gχ(n) = exp

[

i
∑

±ℓ

Lℓ(n)χ

]

. (4.101)

This can be generalized to local gauge transformations acting on all sites as follows

Gχ = exp

[

i
∑

n,ℓ

Lℓ(n)χ(n)

]

. (4.102)

It can be easily verified that

Gχ θk G
−1
χ = θk + χ(n) − χ(n + k) = θk − ∆kχ , (4.103)

that corresponds to a τ -independent gauge transformation. Since the Hamiltonian
(4.100) is gauge invariant, it holds that

GχH G−1
χ = H . (4.104)

Furthermore, due to Elitzur’s theorem, the states in the physical space are also
gauge invariant, such that

Gχ | θ〉 = | θ〉 . (4.105)

At this point we recall the connection between the gauge fields in the lattice gauge
theory and the corresponding ones in electrodynamics that was given in (4.15). With
it we can rewrite the commutation relations (4.92) as follows.

g

a2
[Ak(n

′), Li(n)] = i δik
1

a3
δnn′ . (4.106)

Identifying δnn′/a3 with the discrete form of the Dirac delta function, we can view
the commutator above as the commutation relation of quantum electrodynamics

[Ai(x), Ej(x
′)] = iδij δ (x − x′) , (4.107)
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where E (x) is the electric field. Without reviewing here quantum electrodynamics,
let us give a simple argument, as to why the electric field is canonical conjugate to
Aµ. For that purpose let us look at the classical field equations of electrodynamics:

∂µF
µν = jν , (4.108)

in appropriate units. We can expresse this equation for a particular gauge, the one
with A0 = 0, that is equivalent to our temporal gauge. In this case, the equations
of motion become

∂jȦj = j0 ,

Äi − ∂jFji = ji , (4.109)

where the indices are treated now in Euclidean space. The classical Lagrangean
leading to such equations of motion is

L(Ai) =

∫

dd−1x

[
1

2
Ȧ2

i −
1

4
F 2

ij + jiAi

]

. (4.110)

The canonical momentum is given in this case by

Πi(x, t) = Ȧi(x, t) , (4.111)

that corresponds to the electric field. We see then, that the electric field can be
related to the angular momentum as follows.

Ei(n) =
g

a2
Li(n) . (4.112)

As we mentioned before, since Li has a discrete spectrum with eigenvalues m ∈ Z,
the equation above implies that the electric flux on a link , a2Ei(n), is quantized
in units of charge g. The quantization is a consequence of considering Ak(n) an
angular variable, and hence, this situation is often referred to as compact QED [13].

We can use (4.112) in order to express the Hamiltonian (4.100) in terms of an
electric field,

H =
1

2

∑

n,k

a3E2
k(n) − 1

g2a

∑

n,ik

cos θik(τ,n) , (4.113)

where we see now that the first term is the discrete form of the contribution to the
energy by the electric field. Hence, we should expect that the second term is the
magnetic contribution to the energy. In fact, such an identification can be made
since in electrodynamics we have

Bi = εijk∂jAk , (4.114)

so that we can set

θjk = a2g εijkBi . (4.115)
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Then, in the continuum limit, we have

− 1

g2a

∑

n,ik

cos θik(τ,n) ≃ − 1

g2a

∑

n,ik

(

1 − 1

2
θ2

ik

)

≃ 1

2

∑

n,k

a3B2
k(n) + const. , (4.116)

as expected.
In order to relate the behavior of the Hamiltonian (4.113) to the previously dis-

cussed phases, and in particular, in order to see whether confinement is present or
not, we need to stipulate how static charges can be introduced in the theory. We
introduce additional angular variables θ(n) on the sites of the model, and conse-
quently, a momentum L(n) conjugate to θ(n), obeying

[θ(n), L(n′)] = i δnn′ . (4.117)

The phase variables θ(n) exponentiated will be used to describe matter fields, that
is they are given by

ψ(n) = e±iθ(n) , (4.118)

and the generators of local gauge transformations at a site n will be given now by

∑

±j

Lj(n) + L(n) , (4.119)

with a generalization to the whole lattice given by

Gχ = exp

[

i
∑

n,ℓ

Lℓ(n)χ(n) + i
∑

n

L(n)χ(n)

]

. (4.120)

Then, a gauge transformation of the matter field is performed as follows

Gχ ψ(n)G−1
χ = Gχ e±iθ(n)G−1

χ = e±iχ(n)e±iθ(n) , (4.121)

that is, the gauge transformation corresponding to a charged field with ±g units of
charge.

Once we have specified, how the matter field looks like, we can consider an
operator to create a state with static charges ±g at points, say zero and R. While

e−iθ(0) eiθ(R) (4.122)

appears as a first possibility, we notice that this is not gauge invariant. A similar
problem appears in quantum field theory. There we can consider field operators that
transform under a gauge transformation in a similiar way as our matter fields, i.e.,

ψ(x) → exp [ieΛ(x)] ψ(x) , (4.123)
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for a gauge transformation

Aµ(x) → Aµ(x) + ∂µΛ(x) . (4.124)

However, when considering a product of two field operators that should be point
splitted in order to avoid ultraviolet divergencies in quantum electrodynamics, the
following combination is used to ensure gauge invariance:

ψ̄(x+ ξ) exp

[

ie

∫ x+ξ

x

Aµdxµ

]

ψ(x) . (4.125)

The analogue on a lattice is

θ (0,R) = e−iθ(0) exp

[

i
∑

C

θℓ(n)

]

eiθ(R) , (4.126)

where C is a lattice contour that goes from 0 to R. Taking into account the com-
mutation relation (4.92) we have

[

e±iθk(n′), Li(n)
]

= ∓ δik δnn′ e±iθk(n′) . (4.127)

Applying the equation to an eigenstate of Li | n〉, we see that

Lie
±iθk(n) | n〉 = (n± 1)e±iθk(n) | n〉 . (4.128)

That is, each operator on the contour C raises the eigenvalue of Li by one unit, so
that the electric flux passing through that link has been increased by g. This shows
that the construction chosen leads to a charge that is a source of g units of electric
flux, in agreement with our expectation from Gauss’ law.

We can ask next, which contour C will lead to a state of minimum energy. The
answer will depend on the value of the coupling constant g. Let us first assume that
g ≫ 1. Looking back at (4.100), we see that the electric term in H dominates. In
zeroth order, we can consider

aH0 =
1

2

∑

n,k

L2
k(n) , (4.129)

where the spectrum is given by the eigenvalues of Li. The ground-state is given by
the eigenvalue zero, that is by the absence of charges. If we now consider the state

θ (0,R) | 0〉 , (4.130)

since on each link on the contour the value of L2
i is raised by unity, the lowest energy

is obtained by the shortest countour between 0 and R. This implies that the flux line
is a straight line between the charges, and the energy of the state grows linearly with
R, giving confinement by a linear potential, as obtained in our previous analysis.
As g is decreased, the magnetic part of the Hamiltonian becomes more important.
From a perturbative point of view we can expect that the flux lines will meander
more, leading to complicated contours. At some moment we expect confinement to
cease, since at weak coupling the Coulomb law should prevail, as we have seen in
our weak coupling analysis, such that charges may deconfine.


