Prof. Hans Peter Büchler WS 2010/11, 18. Januar 2011

1. Addition von Geschwindigkeiten (Schriftlich)

Wir betrachten drei Koordinatensysteme K_1 , K_2 und K_3 , deren Ursprung zum Zeitpunkt $t_1 = t_2 = t_3 = 0$ übereinander liege.

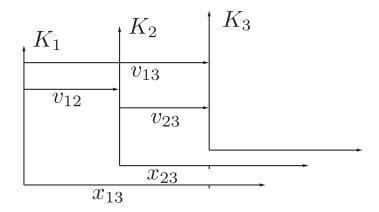


Abbildung 1: Drei Koordinatensysteme K_1 , K_2 und K_3 mit Eigenzeiten t_1 , t_2 und t_3 und Relativgeschwindigkeiten v_{12} , v_{13} und v_{23} .

 K_2 bewege sich relativ zu K_1 mit der konstanten Geschwindigkeit v_{12} , K_3 zu K_2 mit v_{23} und K_3 zu K_1 mit v_{13} . Weiterhin gilt für die Entfernung von K_1 zu K_3 die Form $x_{13} = v_{13}t_1$, und für die Entfernung von K_2 zu K_3 die Form $x_{23} = v_{23}t_1$.

(a) Berechne über $v_{13} = x_{13}/t_1$ das Additionstheorem für relativistische Geschwindigkeiten.

Tipp: Transformiere x_{13} und t_1 in das bewegte Koordinatensystem K_2 . Zwischenergebnis:

$$v_{13} = \frac{v_{12} + v_{23}}{1 + \frac{v_{12}v_{13}}{c^2}} \tag{1}$$

- (b) Zeige, dass für kleine Geschwindigkeiten $v/c \ll 1$ sich wieder das Galilei'sche Additionstheorem $v_{13} = v_{12} + v_{13}$ ergibt.
- (c) Führe nun die Rapiditäten $v=c \tanh \theta$ ein, und zeige, dass im relativistischen Fall für die θ das Additionstheorem $\theta_{13}=\theta_{12}+\theta_{23}$ gilt.

2. Lorentztransformation (Übungsstunde)

Zeige, dass für einen beliebigen Geschwindigkeitsvektor \mathbf{v} mit $v=|\mathbf{v}|$ die Transformation

$$ct' = \gamma ct - \gamma \frac{\mathbf{x} \cdot \mathbf{v}}{c} \tag{2}$$

$$\mathbf{x}' = \mathbf{x} + \frac{\gamma - 1}{v^2} \mathbf{v} (\mathbf{v} \cdot \mathbf{x}) - \gamma t \mathbf{v}$$
 (3)

einen Lorentzboost in die Richtung v mit Geschwindigkeit v beschreibt. Ein Massenpunkt bewegt sich mit der Geschwindigkeit u' bezüglich dem Inertialsystem K'. Berechne jetzt die Geschwindigkeit u dieses Massenpunktes im System K, wenn sich K' gegen K mit der Geschwindigkeit v bewegt. Ist es möglich, dass sich der Massenpunkt schneller als die Lichtgeschwindigkeit bewegt, d.h., |u| > c? Untersuche die spezial Fälle, dass v parallel zu u steht, und das v senkrecht zu u steht. Interpretiere das zweite Resultat auch mit Hilfe der Zeitdilatation.