
Solid State Theory, Exercises VIII

Prof. Hans Peter Büchler SS 2012, 29th of June 2012

The RPA dielectric function
The general form of the screened susceptibility is given by
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(a) Show that the screened susceptibility is :
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and
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where g is the density of states.

(b) Using the above formula compute the dielectric function εRPA(q, ω) .

(c) Write down Re[εRPA] in the static limit ω → 0, and sketch it as a function of q. Expand
at small q to recover the Thomas-Fermi screening form. What happens at q = 2kF ? Show
that at this point the dielectric constant is continuous but non-differentiable. Explain why
this a special value of q.

(d) Expand Re[εRPA(q, ω)] at small q to order q2 (this requires expansion of the logarithms
to quite a high order in q/ω). You should recover the plasmon dispersion given in exercise
sheet V II.
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