
Chapter 4

Interacting electrons

4.1 Quantum mechanical identical particles

In this chapter we will discuss interacting electrons, i.e. systems of many quantum
mechanical identical particles. The fact that they are indentical (in the sense that all
intrinsic properties like mass, spin, charge, etc, are identical) imposes a symmetry
on the system, namely that its physical properties are invariant upon a permutation
of the particles. Such a symmetry has radically different consequences for systems
with classical or quantum mechanical particles.

In the case of classical particles, we can describe the state of the system by
the instantaneous coordinates and momenta of the particles. Let us consider as an
example two classical particles. They will have positions and momenta given by

q1(t) = q(t) , q2(t) = q′(t)

p1(t) = p(t) , p2(t) = p′(t) (4.1)

The functions q(t), p(t), q′(t), and p′(t) describe the trajectory of the particles. Since
the particles are indistinguishable, we could exchange the functions in (4.1).

q1(t) = q′(t) , q2(t) = q(t)

p1(t) = p′(t) , p2(t) = p(t) (4.2)

The description of the system is completetly equivalent in both cases. Therefore, it
suffices to take one of the possibilities. This means, that we can actually consider
them as distinguishable particles, since we could distinguish between both possibili-
ties on the basis of the initial conditions.

In the quantum mechanical case, we cannot any more speak about trajectories.
Let us consider again two particles that are initially far away from each other, and
that they collide after some time. We denote their wavefunctions as follows:

ψ0 (x1, t0) , ψ′
0 (x2, t0) , (4.3)

where t0 is the initial time. We can think of these wavefunctions as wave-packets
well separated from each other. The wavefunction of the whole system is

ψ (x1,x2, t = t0) = ψ0 (x1, t0) ψ
′
0 (x2, t0) . (4.4)
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Since the particles are indistinguishable, it is equally possible to have

ψ̄ (x1,x2, t = t0) = ψ0 (x2, t0) ψ
′
0 (x1, t0) , (4.5)

as a wavefunction of the system. If ψ is a solution of Schrödinger’s equation at time
t0, then, ψ̄ should also be a solution, since by hypothesis

H (x1,x2) = H (x2,x1) . (4.6)

We have here an exchange degeneracy. In fact, ψ and ψ̄ are different states. This
can be explicitely seen by noticing that they are orthogonal to each other:

∫

d3x1 d3x2 ψ
∗ (x1,x2, t0) ψ̄ (x1,x2, t0)

=
∫

d3x1 ψ
∗
0 (x1, t0) ψ

′
0 (x1, t0)

︸ ︷︷ ︸

=0

∫

d3x2 ψ
′
0
∗
(x2, t0) ψ0 (x2, t0)

︸ ︷︷ ︸

=0

= 0 , (4.7)

where each integral vanishes since by hypothesis, each wavepacket had no overlap
with the other.

Let us now consider the time evolution of the system, where we assume that the
particles approach each other. We will have in general a wavefunction not in the form
of a product, but still two possible wavefunctions to describe the system, namely ψ
and ψ̄. Even more, we can also consider linear combinations, since the Schrödinger
equation being linear, if both ψ and ψ̄ are solutions, any linear combination is also a
solution. In particular, we can have a symmetric and an antisymmetric combination

ψS =
1√
2

(

ψ + ψ̄
)

ψA =
1√
2

(

ψ − ψ̄
)

(4.8)

The linear combinations above are symmetric or antisymmetric upon a permuta-
tion of the particles. Also a linear combination of them should be solution of
Schrödinger’s equation if each one of them is. We therefore consider now

Ψ (x1,x2, t) = αψA (x1,x2, t) + β ψS (x1,x2, t) , (4.9)

with | α |2 + | β |2= 1. The probability of finding a particle (either 1 or 2) at x and
the other at x′ is

P (x,x′) = | Ψ (x,x′) |2 + | Ψ (x′,x) |2

= | α |2 | ψA (x,x′) |2 + | β |2 | ψS (x,x′) |2
+α∗β ψA

∗
(x,x′) ψS (x,x′) + β∗αψS

∗
(x,x′) ψA (x,x′)

+ | α |2 | ψA (x′,x) |2 + | β |2 | ψS (x′,x) |2

+α∗β ψA
∗
(x′,x) ψS (x′,x) + β∗αψS

∗
(x′,x) ψA (x′,x)

= 2
[

| α |2 | ψA (x,x′) |2 + | β |2 | ψS (x,x′) |2
]

. (4.10)
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Since all linear combinations are physically equivalent, the probability P should be
independent of α and β. This can be accomplished only if

| ψA (x,x′) |=| ψS (x,x′) | . (4.11)

Let us now assume that the particles do not interact with each other. Then, the
wavefunction of the total system can be written as a product of the one-particle
wavefunctions even in the case that both particles are approaching each other. Re-
calling (4.4), we have

| ψS,A (x,x′) |= 1√
2
| ψ0 (x) ψ′

0 (x′) ± ψ0 (x′) ψ′
0 (x) | . (4.12)

For x = x′, we have

| ψS (x,x′) |=
√

2 | ψ0 (x) ψ′
0 (x) |6= 0 , (4.13)

but | ψA (x,x′) |= 0. This is a contradiction, that will be solved by introducing a
postulate that until now was not contradicted by experiments (but we should discuss
this in more detail).

4.1.1 Permutation operators

Let us consider first only two particles. We take a complete set of one-particle states
{| ui >}, such that a basis of two-particle states can be obtained as a product

| u(1)
i > ⊗ | u(2)

j >≡| u(1)
i ; u

(2)
j > . (4.14)

We introduce a permutation operator that exchanges particles:

P | u(1)
i ; u

(2)
j >=| u(2)

i ; u
(1)
j > . (4.15)

By applying twice such an operator, we recover the original state. Since this fact is
independent of the states used, such an operator fulfills in general

P 2 = 1 . (4.16)

Furthermore, we can show that P is hermitian, by considering any matrix element:

< u
(1)
i ; u

(2)
j | P | u(1)

i′ ; u
(2)
j′ >=< u

(1)
i ; u

(2)
j | u(2)

i′ ; u
(1)
j′ >= δij′δji′ . (4.17)

Since all matrix elements are real, P † = P . Moreover, since P 2 = 1, we have

PP = P †P = 1 , (4.18)

that is, P is unitary.
Let us consider finally the eigenvalues of P . If | ψ > is an eigenvector of P , since

P 2 = 1, we have

P 2 | ψ >= λ2 | ψ > =⇒ λ = ±1 . (4.19)
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The eigenstates with eigenvalue +1 are symmetric, the ones with eigenvalue −1 are
antisymmetric.

P | ψS > = | ψS >
P | ψA > = − | ψA > . (4.20)

Let us examine next the case with N > 2 particles. Generalizing what we did
with two particles, we construct a basis for the N -particle state as a product of
one-particle states.

| u(1)
i1 , u

(2)
i2 , . . . , u

(N)
iN

>=| u(1)
i1 > ⊗ | u(2)

i2 > ⊗ · · ·⊗ | u(N)
iN

> . (4.21)

In general, there are N ! possible permutations. We denote a general permutation
by

Pℓ1···ℓN , with ℓj = 1, . . . , N ; j = 1, . . . , N . (4.22)

As an example let us consider the case N = 3. There are 3! = 6 possible permuta-
tions: P123, P231, P312, P213, P321, and P132. The action of the permutation operator
is then, e.g.

P312 | u(1)
i1 , u

(2)
i2 , u

(3)
i3 >=| u(3)

i1 , u
(1)
i2 , u

(2)
i3 >=| u(1)

i2 , u
(2)
i3 , u

(3)
i1 > . (4.23)

Properties of permutation operators

The permutation operators build a group since

i) The product of two permutation operators is a permutation operator. This
can be easily seen in our example with N = 3, where e.g. P312P213 = P132

P312P213 | u(1)
i1 , u

(2)
i2 , u

(3)
i3 > = P312 | u(2)

i1 , u
(1)
i2 , u

(3)
i3 >

= P312 | u(1)
i2 , u

(2)
i1 , u

(3)
i3 >

= | u(3)
i2 , u

(1)
i1 , u

(2)
i3 >

= P132 | u(1)
i1 , u

(2)
i2 , u

(3)
i3 > .

ii) The identity is also a permutation operator. Again in our example, the identity
is P123.

iii) The inverse of a permutation is also a permutation. In our example we have

P−1
123 = P123 , P−1

231 = P312

P−1
312 = P231 , P−1

213 = P213

P−1
321 = P321 , P−1

132 = P132 .
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In general, permutations do not commute. This can be also seen in our example:
P213P312 = P321 6= P132, as we obtained in i).

A permutation where only two particles are permuted is called a transposition.
In our example they are P132, P321, and P213. As we have already shown for the case
N = 2, transpositions are hermitian and unitary. Furthermore, each permutation
operator can be expressed as a product of transpositions. In our example P312 =
P132P213. The parity of a permutation is given by the parity of the number of
transpositions in which a permutation can be splitted. In our example P132 is odd
but P312 is even. Since a permutation can be expressed as a product of transpositions,
and transpositions are unitary, permutations are unitary (recall that the product of
unitary operators is unitary). But since permutations do not commute in general,
although transpositions are hermitian, a general permutation is not.

Symmetrization and antisymmetrization operators

Here we discuss possible eigenstates of permutation operators. Let us look for states
that are eigenstates of all permutation operators in a system with N particles. We
number with an index p all possible N ! permutations and let | ψ > be such that

Pp | ψ >= cp | ψ > ∀ p . (4.24)

The easiest case is that of a transposition, where we have already seen (case N = 2),
that c(transp)p = ±1. Since | ψ > is assumed to be an eigenvector of all permutations,
it should be an eigenvector of all transpositions. Furthermore, if the particles are in-
distinguishable, the eigenvalue of the transposition cannot depend on the particular
transposition, and therefore, the eigenvalue should be the same for all transpositions,
i.e. ±1. Therefore, the eigenvalue for a permutation should be

cp = (±1)np , (4.25)

where np is the number of transpositions in which the p-th permutation can be
splitted. It is even or odd depending on whether the permutation is even or odd.
This means that there are only two possible cases

a) Totally symmetric case

Pp | ψS >=| ψS > =⇒ cp = 1 ∀ p. (4.26)

b) Totally antisymmetric case

Pp | ψA >= ǫp | ψA > with

{

ǫp = +1 Pp an even permutation
ǫp = −1 Pp an odd permutation

(4.27)

The set of all totally symmetric states spans a subspace of the total Hilbert space
which we call HS, and correspondingly HA for the totally antisymmetric states. We
can easily see that the states of these two subspaces are orthogonal to each other:

< ψS | ψA >=< ψS | P †
p | ψA >=< ψS | P−1

p | ψA >= − < ψS | ψA > , (4.28)
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where we assumed that the parity of P−1
p is odd.

Finally, let us construct projection operators on the subspaces HS and HA, such
that we can obtain elements of either subspace from any given state. We define the
following operators

S =
1

N !

∑

p

Pp symmetrization operator , (4.29)

A =
1

N !

∑

p

ǫpPp antisymmetrization operator , (4.30)

where we sum over the N ! permutations. Since Pp is unitary, P † = P−1 is also a
permutation operator. This implies that S† = S, and A† = A, i.e. both operators
are hermitian. Furthermore, we see that for any permutation operator Pp0, the
following holds:

Pp0S =
1

N !

∑

p

Pp0Pp =
1

N !

∑

p′
Pp′ = S ,

Pp0A =
1

N !

∑

p

ǫpPp0Pp =
1

N !

∑

p

ǫ2p0ǫpPp0Pp

= ǫp0
1

N !

∑

p

ǫp0ǫp
︸ ︷︷ ︸

ǫ̃p

Pp0Pp
︸ ︷︷ ︸

P̃p

= ǫp0A . (4.31)

With the results above, we can prove that

S2 = S
1

N !

∑

p

Pp =
1

N !

∑

p

SPp
︸︷︷︸

=S

= S (4.32)

A2 = A
1

N !

∑

p

ǫpPp =
1

N !

∑

p

ǫpAPp
︸ ︷︷ ︸

=ǫpA

= A (4.33)

SA = S
1

N !

∑

p

ǫpPp =
1

N !

∑

p

ǫpSPp = S
1

N !

∑

p

ǫp = 0 . (4.34)

Equations (4.32) and (4.33) show that S and A are projection operators, whereas
(4.34) shows that they project onto orthogonal subspaces.

4.1.2 The symmetrization postulate

We have seen in the case of two indistinguishable particles, that if we allow any
superposition of symmetric and antisymmetric states, we arrive at a contradiction.
On the other hand, in the general case of N indistinguishable particles, it is possible
to project any state into the subspace of totally symmetric or antisymmetric states.
However, this leaves open what happens with the rest of possible states.

In order to resolve this situation, we introduce a symmetrization postulate: ”The
physical states of a system with N indistinguishable particles are all either totally
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symmetric or totally antisymmetric. The particles with symmetric states are called
bosons and the particles with antisymmetric states are called fermions”. This is an
additional postulate to the ones that constitute the foundation of quantum mechan-
ics. As a consequence of this postulate it is not any more possible to construct the
Hilbert space of N particles as a product of the subspaces of each particle. The
subspace for bosons is HS and for fermions HA.

Although this seems at this point rather arbitrary, we should recall that in the
frame of non-relativistic quantum mechanics, spin had also to be introduced by
Pauli’s postulate. It is relativistic quantum mechanics, specifically Dirac’s equation,
that tells us that there are particles with a new quantum number, namely spin. In
fact, there is a so-called spin-statistics theorem that demonstrates that in a local
relativistic quantum field-theory (in 4 space-time dimensions) particles with half-
integer spin are fermions and particles with integer spin are bosons. Other spins are
not allowed, since as was already shown (suppossedly) in non-relativistic quantum
mechanics, the algebra of spins, i.e. the SU(2) algebra, admits eigenvalues of S2

with the form s(s + 1), where s is half-integer or integer. In fact, until now no
violation of the postulate was observed. However, systems in lower dimensions may
show departures from the rule. We discuss this point qualitatively in the following.

• d = 1. Let us think in a purely one-dimensional system, with quantum me-
chanical particles with a hard core. Since particles cannot pass each other,
there cannot be exchange processes during the time evolution of the system.
Therefore, up to some extent, the statistical properties do not play a role. In
fact, in one dimension it is possible to map hard-core bosons into fermions with
the help of a so-called Jordan-Wigner transformation. Actually, it is possible
to construct even more general statistics. Furthermore, in one dimension it is
possible to map the low energy properties of bosons (not only hard-core ones)
into fermions and viceversa by a procedure called bosonization. Although all
this lies beyond the scope ot these lectures, it is usefull to know that such
possibilities exist.

• d = 2. In this case we have particles on a plane. Let us imagine two such
particles. As we have discussed above, a permutation of two particles (trans-
position) performed twice brings the particles to the initial situation. However,
if we imagine a rope attached to the particles, we can distinguish both states
since there will be a difference in the number of windings of the rope around
one of the particles, if the particles are not rotated during the whole pro-
cess. This shows that in two dimensions an additional number of topological
character can be used and the concept of fractional statistics arises. This
has immediate consequences for experimentally relevant systems like those in
fractional quantum Hall effect.

• d = 3. The topological case discussed above does not subist in 3 dimensions,
such that in this case, all particles are either bosons or fermions.
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The symmetrization postulate resolves the problem of exchange degeneracy since
only states belonging to HS or HA are allowed. In this case, an arbitrary permutation
does not bring a state to another one, but it leaves it invariant:

i) Bosons: S | ψ >=| ψ >.

=⇒ P | ψ >= PS | ψ >= S | ψ >=| ψ > . (4.35)

ii) Fermions: A | ψ >=| ψ >.

=⇒ Pp | ψ >= PpA | ψ >= ǫpA | ψ >= ǫp | ψ > . (4.36)

In this case the permutation generates only a state that is linearly dependent
on the original one.

4.1.3 Occupation-number states for bosons

We start with N particles, where each particle can occupy one-particle states | ui >,
where in principle i = 1, . . . ,∞. As we already discussed repeatedly, if the one-
particle states {| ui >} form a basis, we can use as a basis for the N particles the
tensor product | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >, where ni is the number of particles in state
| ui >. Of course, it should hold that

∞∑

i=1

ni = N . (4.37)

As we have already seen, the discussion above holds for distinguishable particles. If
we are working with indistinguishable particles, we should apply the projector S on
the states (4.37), such that the physical states are then given by

S | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >=
1

N !

∑

p

Pp | un1

1 , u
n2

2 , . . . , u
nj

j , . . . > . (4.38)

In order to properly normalize the state above, let us discuss more in detail
the action of the permutation operators on the states. Among the permutations
entering (4.38), there are some of them that permute particles within some state
| uni

i >. Given ni particles, there are ni! such permutations. These permutations
do not change the state | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >. Writing out the state | uni

i >
explicitely,

| uni
i >=| u(1)

i , u
(2)
i , . . . , u

(ni)
i > , (4.39)

we can immediately see, e.g. using the rules for the action of a permutation op-
erator as displayed in the example (4.23), that | uni

i > is not changed by such
permutations that only permute the particles within that state. There are in total
∏∞
j=1 nj ! such permutations. Due to (4.37), there are many states with nj = 0, but

this is not a problem since 0! = 1. All other permutations do change the vector
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| un1

1 , u
n2

2 , . . . , u
nj

j , . . . >. To see this, let us consider in detail the vectors | un1

1 > and
| un2

2 >. Each one can be explicitely written as

| un1

1 > = | u(1)
1 , . . . , u

(α)
1 , . . . , u

(n1)
1 > ,

| un2

2 > = | u(n1+1)
2 , . . . , u

(β)
2 , . . . , u

(n1+n2)
2 > . (4.40)

Now imagine a transposition between the α-th particle in state 1, with 1 ≤ α ≤ n1

and the β-th particle in state 2, with n1 + 1 ≤ β ≤ n1 + n2. Since after the
transposition, the α-th particle is in state 2 and the β-th particle in state 1, we
have a vector different from the initial one. Moreover, they are orthogonal, since
the states | ui > are basis vectors.

We can now calculate the norm of the vector (4.38).

< un1

1 , u
n2

2 , . . . , u
nj

j , . . . | S†S | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >

=< un1

1 , u
n2

2 , . . . , u
nj

j , . . . | SS︸︷︷︸
=S

| un1

1 , u
n2

2 , . . . , u
nj

j , . . . >

=
1

N !

∑

p

< un1

1 , u
n2

2 , . . . , u
nj

j , . . . | Pp | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >

=

∏∞
j=1 nj !

N !
. (4.41)

This means that given a one-particle basis {| ui >}, a normalized state for N bosons
is given by

| ψS >=

(

N !
∏∞
j=1 nj !

) 1

2

S | un1

1 , u
n2

2 , . . . , u
nj

j , . . . > . (4.42)

Next we consider the construction of a basis in HS. As before, we consider a
basis for the N -particle system given by a product of the one-particle states. They
give a basis of H, the Hilbert space obtained as a tensorial product of the Hilbert
spaces of each particle. The subspace of totally symmetric states upon permutation
was already denoted as HS, with HS ⊂ H. Then, any vector | ψS >∈ HS is also an
element of H, such that, it can be expanded in the basis of H

| ψS >=
∑

i1,...,iN

ai1,...,iN | u(1)
i1 , . . . u

(N)
iN

> . (4.43)

From what we have discussed in Sec. 4.1.1, we know that if | ψS >∈ HS, then
S | ψS >=| ψS >, such that

| ψS >= S | ψS >=
∑

i1,...,iN

ai1,...,iNS | u(1)
i1 , . . . u

(N)
iN

> . (4.44)

Since S | u(1)
i1 , . . . u

(N)
iN

> are elements of HS, we can expect that they are close to be
members of a basis of HS. In order to see whether this is the case, let us introduce
a vector

| n1, . . . , ni, . . . >= cS | un1

1 , . . . , u
ni

i , . . . > , (4.45)

and discuss its properties.
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i) Scalar product.

< n1, . . . , ni, . . . | n′
1, . . . , n

′
i, . . . > 6= 0 , (4.46)

only then, when ni = n′
i for i = 1, 2, . . . This can be seen by looking at the

vector | un1

1 , . . . , u
ni
i , . . . >. If two vectors have a different number of particles

in a given state, it means that there are particles in different states in each
vector, and hence, they are orthogonal.

ii) Normalization. As we have seen in (4.41), the normalization constant c is
given by

c =

(

N !
∏∞
j=1 nj !

) 1

2

. (4.47)

iii) Basis. Equation (4.44) shows that any state in HS can be expanded in states
proportional to | n1, . . . , ni, . . . >. Furthermore, in i) and ii), it was shown
that they are orthonormalized. Therefore, they constitute a basis of HS.

Once we found a basis of HS, we still have to translate the coefficients of the
expansion appearing in (4.44). In order to do so, we express the summation in (4.44)
over all possible states for N particles as a summation over all possible occupation
numbers with the constraint that the total number of particles isN and a summation
over all the states that are compatible with a given configuration of occupation
numbers.

∑

i1,...,iN

=
∑

n1,...,nj ,...
∑

i
ni=N

∑

i1,...,iN

(n1,...,nj,...)

(4.48)

Using the reformulation of the sums above, we have

| ψS >=
∑

n1,...,nj ,...
∑

i
ni=N

1

c

∑

i1,...,iN

(n1,...,nj,...)

ai1,...,iN | n1, . . . , ni, . . . > . (4.49)

We recall now that we are dealing with identical particles. This means, that given
a configuration of the occupation numbers n1, . . . , nj , . . ., the coefficients ai1,...,iN
are the same, irrespective of the particular distribution of particles in the different
states, i.e.

∑

i1,...,iN

(n1,...,nj ,...)

ai1,...,iN = an1,...,nj ,...

∑

i1,...,iN

(n1,...,nj,...)

= an1,...,nj ,...
N !

n1! · · ·nj! · · ·
. (4.50)
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Taking into account the coefficient 1/c in (4.49), we can define coefficients

cn1,...,nj ,... =

√
√
√
√

N !

n1! · · ·nj ! · · ·
an1,...,nj ,... , (4.51)

such that

| ψS >=
∑

n1,...,nj ,...

cn1,...,nj ,... | n1, . . . , nj , . . . > , (4.52)

where

∑

n1,...,nj ,...

| cn1,...,nj ,... |2= 1 , (4.53)

with the condition (4.37).

4.1.4 Bose-Einstein statistics

Once we have a formal description of the space HS with a general prescription
that allows to go from a basis of one-particle states to a basis of N -particle states,
fulfilling the requirements of the symmetrization postulate, we recall some concepts
of statistical mechanics, that are fundamental for dealing with an N -particle system.

When we are working with a macroscopic number of particles, we have the idea
that there is the notion of temperature and we would like to be able to calculate the
physical properties of the system in a statistical manner starting from our knowledge
of the energy levels of the system. In this case, we will have in general a statistical
mixing of states (in contrast to a coherent superposition) and the statistical proper-
ties can be calculated using the density matrix ρ. In the case of a statistical mixture
of states, we assign a probability pn to a state | ψn >, such that the density matrix
is given by

ρ =
∑

n

pn | ψn >< ψn | . (4.54)

From this definition we obtain the basic properties of the density matrix

i) Normalization

Trρ = 1 . (4.55)

ii) Expectation value of an operator

< A >= Tr (ρA) . (4.56)
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Canonical ensemble

Here we consider a system with N ≫ 1 particles at a temperature T . The tem-
perature of the system is given by putting the system in contact with a heat bath.
We assume that the walls of the system allow for an exchange of energy but the
number of particles in the system under consideration (we call it ‘1’) is constant,
i.e. there is no exchange of particles with the bath. We are then dealing with a
canonical ensemble. In the following we discuss how to obtain the density matrix
for this statistical ensemble.

We assume that the whole system (system 1 + bath) is isolated, such that,

E = E1 + E2 = cte , (4.57)

where we denote with ‘2’ the heat bath, and E is the total energy. We recall
that the heat bath is allways assumed to be much larger than the system under
consideration, such that E2 ≫ E1, the energy being an extensive quantity. The
probability of system 1 to have an energy E1 should be proportional to the number
of states in system 2 that are compatible with an energy E2:

p (E1) ∼ Γ2 (E2) . (4.58)

A measure of the number of states for a given energy is given by the entropy, in fact

S2 (E2) = kB ln Γ2 (E2) , (4.59)

where kB is Boltzmann’s constant. For S2 we can write

S2 (E2) = S2 (E − E1) ≃ S2(E) −E1
∂S

∂E
, (4.60)

From the first law of thermodynamics

dE = TdS − PdV , (4.61)

we have at constant volume that

∂S

∂E
=

1

T
, (4.62)

such that from (4.59) and (4.60) we have that

Γ2 (E2) ∼ exp

[

S2(E)

kB

]

exp
(

− E1

kBT

)

, (4.63)

and hence, inserting the result above into (4.58), we have

p (E1) ∼ exp
(

− E1

kBT

)

. (4.64)

This is the probability of having the system at the energy E1, given the temperature
T . Once the probability for a given energy is found, we have that the density matrix
should be given by

ρ =
exp (−βH)

Tr exp (−βH)
, (4.65)

with β = (kBT )−1.
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Grand canonical ensemble

In this case fluctuations in the number of particles is allowed, i.e. the system under
consideration and the thermal bath can exchange also particles. The fluctuation of
particles induces in general a fluctuation of the energy, that can be described by
introducing the chemical potential, defined as follows

µ =
∂E

∂N

∣
∣
∣
∣
∣
V

. (4.66)

Since N is actually a discrete quantity, we should consider ∆N = 1, so that the
chemical potential describes the change in energy when the number of particles is
increased by one. In order to obtain the density matrix in this case we have to
repeat the discussion for the canonical ensemble taking into account the change in
the number of particles. The first law of thermodynamics is now

dE = TdS − PdV + µdN , (4.67)

leding to

dS =
1

T
(dE − µdN) (4.68)

at constant volume. Taking into account that E1 ≪ E2 and N1 ≪ N2, with a total
energy E = E1 + E2 and a total number of particles N = N1 +N2, the probability
of having energy E1 and number of particles N1 in the system under consideration
is

p (E1, N1) ∼ Γ2 (E2, N2) (4.69)

and the entropy is given by

S2 (E2, N2) = S2 (E −E1, N −N1)

≃ S2 (E,N) −E1
∂S

∂E
−N1

∂S

∂N

= S2 (E,N) − E1

T
− µN1

T
. (4.70)

Then,

p (E1, N1) ∼ exp
[

− 1

kBT
(E1 − µN1)

]

. (4.71)

Accordingly, the density matrix is given by

ρ =
exp

[

−β
(

H − µN̂
)]

Tr exp
[

−β
(

H − µN̂
)] , (4.72)

where N̂ is the particle-number operator.
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Bose-Einstein statistics

Once we have determined the density matrix in the canonical and the grand-canonical
ensemble in general, we examine how it acts in the subspace HS. We consider here
the so-called ideal Bose-gas, that is an ensemble of N bosons that do not interact
with each other. In this case, the Hamiltonian can be written as the sum of N
Hamiltonians.

H = H(1) +H(2) + · · ·+H(N) . (4.73)

Let us denote the energy levels by εi, i = 1, . . . ,∞. Then, the partition function is
given by

Z = Tr exp
[

−β
(

H − µN̂
)]

=
∑

n1,...,n∞

< n1 · · ·n∞ | exp
[

−β
(

H − µN̂
)]

| n1 · · ·n∞ > . (4.74)

The particle number operator acts on the occupation-number states as follows

N̂ | n1 · · ·n∞ >=
∑

i

ni | n1 · · ·n∞ > , (4.75)

whereas for the Hamiltonian we have

H | n1 · · ·n∞ >=
∑

i

εi ni | n1 · · ·n∞ > . (4.76)

Inserting the results above into (4.74), we have

Z =
∑

n1,...,n∞

< n1 · · ·n∞ | exp

[

β

(

µ
∑

i

ni −
∑

i

εi ni

)]

| n1 · · ·n∞ >

=
∑

n1

exp [β (µn1 − ε1 n1)] × · · · ×
∑

n∞

exp [β (µn∞ − ε∞ n∞)]

=
∞∏

i

∞∑

n=0

{

exp [β(µ− εi)]
}n

︸ ︷︷ ︸

geometric series

=
∞∏

i

1

1 − exp [β(µ− εi)]
. (4.77)

From the knowledge of the partition function, we can calculate the expectation value
of the number operator:

< N̂ > =
Tr N̂ ρ

Tr ρ
=

Tr N̂ exp
[

−β
(

H − µN̂
)]

Tr exp
[

−β
(

H − µN̂
)]

= kBT
∂

∂µ
ln Tr exp

[

−β
(

H − µN̂
)]
∣
∣
∣
∣
∣
T,V

= kBT
∂

∂µ
ln

{
∞∏

i

1

1 − exp [β(µ− εi)]

}

=
∞∑

i=1

1

exp [β(εi − µ)] − 1
. (4.78)
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Since the expectation value of N̂ is the sum of the mean occupation numbers (we
call them ñi) for each level i, we have the well known result

ñi =
1

exp [β(εi − µ)] − 1
. (4.79)

From here, it is possible to show for free bosons that as T → 0, the occupation num-
ber of the lowest state diverges in the thermodynamic limit, namely Bose-Einstein

condensation results. Unfortunately this is beyond the scope of this lectures, so that
it will not be discussed here. However, this phenomenon show, how quantum me-
chanical indistinguishable particles can lead to phenomena radically different from
those possible in classical physics.

4.1.5 Fermions and the exclusion principle.

Slater determinant.

We can essentially repeat here what we have done for bosons in Sec. 4.1.3, however
we should pay attention to the fact that now we are dealing with particles in HA.
Given a state vector | un1

1 , u
n2

2 , . . . , u
nj

j , . . . > as in the bosonic case, we have now to
apply the antisymmetrization operator in order to project it down to HA.

A | un1

1 , u
n2

2 , . . . , u
nj

j , . . . >=
1

N !

∑

p

(−1)p Pp | un1

1 , u
n2

2 , . . . , u
nj

j , . . . > . (4.80)

We notice now that if ni ≥ 2 for some state i, such a state is symmetric under under
a transposition of two particles in that state. This means that

| un1

1 , . . . , u
ni

i , . . . >=
1

2

[

1 + Pαiβi

]

| un1

1 , . . . , u
ni

i , . . . > . (4.81)

However, we have already seen in Sec. 4.1.1 that

PpA = APp = (−1)pA . (4.82)

The identity has even parity but a transposition has odd parity, such that

A
[

1 + Pαiβi

]

= A− A = 0 . (4.83)

Consequently whenever the operator A encounters a state with ni ≥ 2 for some
state i, it will annihilate it. Such a fact corresponds to Pauli’s exclusion principle

that states that two fermions cannot occupy the same state. Hence, in the case of
fermions, each one-particle state can be at most singly occupied, i.e. ni = 0 or 1.
For the norm of the state, we can repeat the calculation in (4.41), but now since
ni = 0 or 1, ni! = 1, it leads to

| ψA >=
√
N !A | un1

1 , u
n2

2 , . . . , u
nj

j , . . . > . (4.84)
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A practical way of obtaining a totally antisymmetric wavefunction starting from
one-particle states is the so-called Slater determinant. Let us rewrite | ψA > above
in a way, where we see explicitely the one-particle states that the N fermions are
occupying

| ψA > =
√
N !A | u(1)

1 , u
(2)
2 , . . . , u

(N)
N >

=
√
N !

1

N !

∑

p

(−1)p Pp | u(1)
1 , u

(2)
2 , . . . , u

(N)
N >

=
1√
N !

εi1i2···iN | u(i1)
1 , u

(i2)
2 , . . . , u

(iN )
N >

=
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

| u(1)
1 > | u(2)

1 > · · · | u(N)
1 >

| u(1)
2 > | u(2)

2 > · · · | u(N)
2 >

...
...

...
...

| u(1)
N > | u(2)

N > · · · | u(N)
N >

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(4.85)

In the third line above, we introduced the Levi-Civita symbol in N dimensions, and
a summation is understood for repeated indices. This symbol guarantees that we
have the correct sign according to the parity of the permutation. However, such
an expression corresponds to the determinant of a matrix | u(j)

i >. The Slater
determinant makes the exclusion principle explicit, since a determinant vanishes if
two columns or two rows are equal.

The occupation number states can be introduced in the same way as done in Sec.
4.1.3 for bosons, taking into account now that ni = 0, 1. Then, without repeating the
steps we already performed in the case of bosons, we just remark that the occupation
number states can be obtained as follows:

| n1, . . . , ni, . . . >= cA | un1

1 , . . . , u
ni
i , . . . > , (4.86)

with the properties listed below

i) Scalar product.

< n1, . . . , ni, . . . | n′
1, . . . , n

′
i, . . . > 6= 0 , (4.87)

only then, when ni = n′
i for i = 1, 2, . . . with ni = 0, 1.

ii) Normalization. As we have seen in (4.84), the normalization constant c is
given by

c =
√
N ! . (4.88)

iii) Basis. By the same reasons as in Sec. 4.1.3, | n1, . . . , ni, . . . > constitute a
basis of HA.
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In the same way that led to an expansion of a totally symmetric state in (4.43),
a totally antisymmetric state can be as well expressed as a linear superposition of
elements of the basis in H since HA ⊂ H.

| ψA > = A | ψA >=
∑

i1,...,iN

ai1,...,iNA | u(1)
i1 , . . . u

(N)
iN

>

=
1

N !

∑

i1,...,iN

ai1,...,iN
∑

p

ǫpPp | u(1)
i1 , . . . u

(N)
iN

> , (4.89)

where we recall that Pp permutes the particles. We show this explicitely in the
following discussion introducing the notation

Pp −→ Pp [(1), . . . , (N)] . (4.90)

Due to Pauli’s exclusion principle, the sum over indices i1, . . . , iN can only contain
terms, where all indices from i1 to iN are different. As a consequence of this, when
we go from a sum over states to a sum over occupation numbers as done in (4.48)
for bosons,

∑

i1,...,iN

=
∑

n1,...,nj,...
∑

i
ni=N

∑

i1,...,iN

(n1,...,nj ,...)

, (4.91)

the second summation above, performed for a given distribution of occupation num-
bers (only zero or one), amounts to a permutation of the indices ii to iN :

∑

i1,...,iN

(n1,...,nj,...)

=
∑

p

(n1,...,nj,...)

Pp (i1, . . . , iN) . (4.92)

Then, for (4.89) we have

| ψA > =
1

N !

∑

n1,...,nj,...
∑

i
ni=N

∑

p′

(n1,...,nj ,...)

Pp′ (i1, . . . , iN) ai1,...,iN

×
∑

p

ǫp Pp [(1), . . . , (N)] | u(1)
i1 , . . . u

(N)
iN

> . (4.93)

Since the permutations constitute a group, we can write the following

Pp [(1), . . . , (N)] = Pp′ [(1), . . . , (N)] P−1
p′ [(1), . . . , (N)]

×Pp [(1), . . . , (N)]

= Pp′ [(1), . . . , (N)] Pp̄ [(1), . . . , (N)] , (4.94)

and it also holds that

ǫp = ǫp′ ǫp̄ . (4.95)
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Using the manipulations above, we can write

∑

p′
Pp′ (i1, . . . , iN ) ai1,...,iN

∑

p

ǫp Pp [(1), . . . , (N)] | u(1)
i1 , . . . u

(N)
iN

>

=
∑

p′
Pp′ (i1, . . . , iN) ai1,...,iN ǫp′ Pp′ [(1), . . . , (N)]

×
∑

p̄

ǫp̄ Pp̄ [(1), . . . , (N)] | u(1)
i1 , . . . u

(N)
iN

> . (4.96)

Here we should realize that if we perform a permutation of the states given by the
indices i1, . . . , iN , and the same permutation is performed on the particles, the vector
| u(1)

i1 , . . . u
(N)
iN

> does not change. Therefore, we can consider the summation over
permutations p′ and p̄ above independently from each other, i.e.

(4.96) =




∑

p′
Pp′ (i1, . . . , iN) ai1,...,iN ǫp′





×



∑

p̄

ǫp̄ Pp̄ [(1), . . . , (N)] | u(1)
i1 , . . . u

(N)
iN

>



 . (4.97)

The first term on the r.h.s. of the equation above is zero if the coefficients ai1,...,iN
are symmetric with respect to permutations. Since they cannot be symmetric, they
should be antisymmetric in the case of transpositions. Since each permutation can
be expressed as a product of transpositions, the coefficients ai1,...,iN should have the
parity of the permutation, i.e.

Pp (i1, . . . , iN) ai1,...,iN = ǫp ai1,...,iN . (4.98)

This means that

∑

p′
ǫp′ Pp′ (i1, . . . , iN) ai1,...,iN = N ! ai1,...,iN ≡

√
N ! cn1,...,nj ,... . (4.99)

Using the result above together with (4.86), we finally have

| ψA > =
∑

n1,...,nj ,...

cn1,...,nj ,... | n1, . . . , nj , . . . > , (4.100)

where

∑

n1,...,nj ,...

| cn1,...,nj ,... |2= 1 . (4.101)

4.1.6 Fermi-Dirac statistics

The arguments that lead to the density matrix (4.65) for the canonical and (4.72) for
the grand canonical ensemble in Sec. 4.1.4 were of general character and therefore,
the density matrices deduced there can be also used in the case of fermions.
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Let us now consider again the partition function in the grand canonical ensemble.
We do so for generality. In the case one wants to consider the canonical ensemble,
one needs only to put µ = 0. As in Sec. 4.1.4, we look at a system of non-interacting
particles, in this case, an ideal Fermi gas.

Z = Tr exp
[

−β
(

H − µN̂
)]

=
∑

n1,...,n∞

< n1 · · ·n∞ | exp
[

−β
(

H − µN̂
)]

| n1 · · ·n∞ >

=
∑

n1,...,n∞

< n1 · · ·n∞ | exp

[

β

(

µ
∑

i

ni −
∑

i

εi ni

)]

| n1 · · ·n∞ >

=
∞∏

i

1∑

n=0

{

exp [β(µ− εi)]
}n

=
∞∏

i

{

1 + exp [β(µ− εi)]
}

. (4.102)

Once we obtained the partition function, we calculate as in the case of bosons, the
expectation value of the number operator.

< N̂ > = kBT
∂

∂µ
ln

(
∞∏

i

{

1 + exp [β(µ− εi)]
}
)

= kBT
∑

i

∂

∂µ
ln
(

1 + exp [β(µ− εi)]
)

=
∑

i

1

exp [ − β(µ− εi)] + 1
, (4.103)

such that the Fermi-Dirac distribution is obtained

ñi =
1

exp [β(εi − µ)] + 1
. (4.104)

In the limit of T −→ 0 (i.e. β −→ ∞), it is easy to see that

ñi =

{

1 for εi < µ
0 for εi > µ

(4.105)

Therefore, µ(T = 0) = EF , where EF , the Fermi-energy, was introduced already in
Sec. 3.1.2.

4.1.7 The Schrödinger equation for N identical particles.

Once we have seen the structure of states for N quantum mechanical identical
particles, we should consider now the Hamiltonian and the Schrödinger equation, in
order to see, how the whole formalism works in the case of many particles.

Let us look at a Hamiltonian in a rather general in form, with a kinetic energy
part and an interaction part containing pairwise interactions. This is not the most
general Hamiltonian for a many particle system, but the one of interest for us, since
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we are going to consider only the consequences of Coulomb interaction, as we said
at the very beginning of these lectures.

H =
N∑

i=1

Ti +
1

2

N∑

i,j=1

i6=j

Vij . (4.106)

The Schrödinger equation looks as follows

ih̄
∂

∂t
| ψ1, . . . , ψN , t >= H | ψ1, . . . , ψN , t > . (4.107)

In order to obtain a solution, we proceed as in Secs. 4.1.3 and 4.1.5. We start
by taking one-particle states | ui >, that build a complete set of one-particle states
{| ui >}. A basis in the Hilbert space of N particles is constructed using product
states. Since these N -particle states consitute a basis, they are time independent.
The solution of the Schrödinger equation can be expressed as a linear combination
of such states.

| ψ1, . . . , ψN , t >=
∑

α1,...,αN

a (α1, . . . , αN , t) | u(1)
α1
, . . . , u(N)

αN
> , (4.108)

where the time dependence is in the coefficients of the expansion. The next step is
to distinguish between bosons and fermions, that is to project the states to either
HS or HA. We consider first the bosonic case, then, as we have already seen, the
same kind of steps have to be taken in the fermionic case but with the restriction
imposed on the ocupation numbers due to Pauli’s exclusion principle. Of course,
also the appropriate changes of sign should be taken into account.

Bosons

In the case of bosons, we use the totally symmetric projector S:

S | ψ1, . . . , ψN , t > =
∑

α1,...,αN

a (α1, . . . , αN , t) S | u(1)
α1
, . . . , u(N)

αN
>

=
∑

n1,...,nj ,...

cn1,...,nj ,...(t) | n1, . . . , nj, . . . > , (4.109)

where in going to the second line, we used (4.52), and according to (4.51),

cn1,...,nj ,...(t) =

√
√
√
√

N !

n1! · · ·nj ! · · ·
a (α1, . . . , αN , t) , (4.110)

We can now insert this state into Schrödinger’s equation (4.107), and consider first
the left hand side, i.e. the time derivative.

ih̄
∂

∂t
S | ψ1, . . . , ψN , t > = ih̄

∑

n1,...,nj ,...

∂

∂t
cn1,...,nj ,...(t) | n1, . . . , nj, . . . > .(4.111)
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Next we multiply from the left by < u(1)
α1
, . . . , u(N)

αN
|,

ih̄ < u(1)
α1
, . . . , u(N)

αN
| ∂
∂t
S | ψ1, . . . , ψN , t >

= ih̄
∑

n1,...,nj ,...

∂

∂t
cn1,...,nj ,...(t) < u(1)

α1
, . . . , u(N)

αN
| n1, . . . , nj, . . . > . (4.112)

Due to the orthogonality of the one-particle states, only those states will remain,
where the same number of particles per state are present in | n1, . . . , nj, . . . > as
in < u(1)

α1
, . . . , u(N)

αN
|, that is only one term survives in the summation. The overlap

gives, according to (4.45),

< u(1)
α1
, . . . , u(N)

αN
| n1, . . . , nj, . . . >

=

√
√
√
√

N !
∏∞
j=1 nj !

1

N !

∑

p

< u(1)
α1
, . . . , u(N)

αN
| Pp | u(1)

α1
, . . . , u(N)

αN
>

︸ ︷︷ ︸

=
∏∞

j=1
nj !

=

√∏∞
j=1 nj !

N !
, (4.113)

where
∏∞
j=1 nj ! is given by the particular configuration in | u(1)

α1
, . . . , u(N)

αN
>. Finally,

we have

ih̄ < u(1)
α1
, . . . , u(N)

αN
| ∂
∂t
S | ψ1, . . . , ψN , t >=

√∏∞
j=1 nj !

N !
ih̄

∂

∂t
cn1,...,nj ,...(t) . (4.114)

Next we consider the kinetic part.

N∑

i=1

Ti S | ψ1, . . . , ψN , t >

=
N∑

i=1

Ti
∑

n1,...,nj ,...

cn1,...,nj ,... (t) | n1, . . . , nj, . . . > . (4.115)

Again we multiply from the left by < u(1)
α1
, . . . , u(N)

αN
|,

< u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

Ti S | ψ1, . . . , ψN , t >

=
∑

n1,...,nj ,...

cn1,...,nj,... (t) < u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

Ti | n1, . . . , nj, . . . > .(4.116)

In order to calculate the matrix elements for the kinetic energy operator, we use
again (4.45)

< u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

Ti | n1, . . . , nj , . . . >

=

√
√
√
√

N !
∏∞
j=1 nj!

1

N !

∑

i,p

< u(1)
α1
, . . . , u(N)

αN
| TiPp | u(1)

β1
, . . . , u

(N)
βN

> , (4.117)
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where we have chosen labels β that are in general different from α, but they should
be compatible with the specific configuration n1, . . . , nj , . . .. Since Ti is a one-particle
operator that acts on particle i, it leaves unaffected all other particles. This means,
that all the levels βj , where particle i is not present, should have the same number
of particles as the levels αj, j 6= i. As a consequence of this,

i) the number of particles in levels different from αi and βi, in the sum over
n1, . . . , nj, . . . in (4.116) is restricted to those given by the state | u(1)

α1
, . . . , u(N)

αN
>;

ii) the sum over permutations in (4.117) gives a factor
∏

βℓ 6=βi,αi

nβℓ
! × (nαi

− 1)! (nβi
− 1)! , (4.118)

where we took also into account that there are (nαi
− 1) particles in level αi

and (nβi
− 1) particles in level βi that remain unaffected by the operator Ti.

On the other hand, we have in general matrix elements of the form

< u(i)
αi

| Ti | u(i)
P (βi)

> , (4.119)

where P (βi) denotes the state to which particle i went after the permutation P .
Since the particles are indistinguishable, the same matrix element appears for all
possible particles in level βi. This gives an additional factor nβi

and the sum over
permutations is reduced to a sum over levels βi that are reached by the permutations.
Although there are in general much more levels than those that can be reached by
performing the permutations, since the factor nβi

is present, we can extend the sum
to all possible levels. Let us summarize the discussion above by rewriting (4.116)
with the corresponding modifications.

(4.116) =
∑

n1,...,nj,...

√
√
√
√

N !
∏∞
j=1 nj !

1

N !
cn1,...,nj,... (t)

×
∑

i

∑

βi

∏

βℓ 6=βi,αi

nβℓ
! (nαi

− 1)!nβi
! < u(i)

αi
| Ti | u(i)

βi
> ,(4.120)

where we still have to discuss which values take the occupation numbers n1, . . . , nj, . . ..
Since the operator Ti connects a state | u(1)

α1
, . . . , u(N)

αN
> where particle i is in state

| u(i)
αi
> with a state | u(1)

β1
, . . . , u

(N)
βN

>, where particle i is in state | u(i)
β >, then, the

state | u(1)
β1
, . . . , u

(N)
βN

> should have nβ+1 particles in level β if state | u(1)
α1
, . . . , u(N)

αN
>

has nβ particles in that level, and similarly nαi
−1 particles in level αi. Furthermore,

since the particles are indistinguishable, we can go from a sum over particles i over
to a sum over levels α as follows

∑

i

< u(i)
αi

| Ti | u(i)
βi
>→

∑

α

< α | T | β > nα , (4.121)

where we took into account the number of particles nα in each level α. Before
going to the final result, we should take care to consider two different cases. Until
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now we assumed that in general states | α > and | β > are different. It could
happen however, that the operator T can also have non-vanishing matrix elements
for | α >=| β >. In this case, the state | u(1)

β1
, . . . , u

(N)
βN

> will have the same number

of particles in state | α > as the state | u(1)
α1
, . . . , u(N)

αN
>. Taking this into account,

we have

(4.120) =
∑

α

√

n1! · · ·nα! · · ·
N !

cn1,...,nα,... (t) < α | T | α > nα

+
∑

α6=β

√

n1! · · · (nα − 1)! · · · (nβ + 1)! · · ·
N !

cn1,...,nα−1,...,nβ+1,... (t)

× < α | T | β > nα . (4.122)

Before going to the interaction term, let us consider Schrödinger’s equation only
with the kinetic energy part, in order to have a first look at its form. We have on the
one hand (4.114), where the occupation numbers are the same as in | u(1)

α1
, . . . , u(N)

αN
>,

whereas (4.122) has occupations numbers in general differing by one in levels α and
β. This leads to

ih̄
∂

∂t
cn1,...,nα,...(t) =

∑

α

< α | T | α > nα cn1,...,nα,... (t)

+
∑

α6=β

< α | T | β >
√

nα (nβ + 1)

×cn1,...,nα−1,...,nβ+1,... (t) . (4.123)

Already without taking into account the interaction, we have a set of coupled dif-
ferential equations, with a huge number of equations, in principle infinite. We see
therefore, that to work with a many particle system in first quantization appears as
an extemely hard task.

Let us consider finally the interaction term. Here we have,

1

2

N∑

i,j=1

i6=j

Vij S | ψ1, . . . , ψN , t >

=
1

2

N∑

i,j=1

i6=j

Vij
∑

n1,...,nj ,...

cn1,...,nj ,... (t) | n1, . . . , nj , . . . > . (4.124)

Again we multiply from the left by < u(1)
α1
, . . . , u(N)

αN
|,

1

2

N∑

i,j=1

i6=j

< u(1)
α1
, . . . , u(N)

αN
| Vij S | ψ1, . . . , ψN , t >

=
1

2

∑

n1,...,nj ,...

cn1,...,nj ,... (t)
N∑

i,j=1

i6=j

< u(1)
α1
, . . . , u(N)

αN
| Vij | n1, . . . , nj , . . . >
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=
1

2

∑

n1,...,nj ,...

cn1,...,nj ,... (t)

×
N∑

i,j=1

i6=j

√
√
√
√

N !
∏∞
j=1 nj !

1

N !

∑

p

< u(1)
α1
, . . . , u(N)

αN
| VijPp | u(1)

β1
, . . . , u

(N)
βN

> . (4.125)

The same arguments can be repeated here as for the kinetic energy, with the only
difference, that instead of having one state that is affected, we have to consider two.
The matrix elements that have to be considered are of the form

< u(i)
αi
u(j)
αj

| Vij | u(i)
βi
u

(j)
βj
> , (4.126)

This means, that in general the state | u(1)
β1
, . . . , u

(N)
βN

> will have nαi
− 1, nαj

− 1,

nβi
+ 1, and nβj

+ 1 particles if the state | u(1)
α1
, . . . , u(N)

αN
> has nαi

, nαj
, nβi

, and nβj

particles in the corresponding states. As in the case of a one-particle operator, we
go from a sum over particles over to a sum over states. However, we have to take
into account that i 6= j, and therefore, distinguish whether the the two particles are
sitting in different states or on the same state

i) Particles on different states. Since we have two different states, i 6= j.

∑

i,j=1

i6=j

< u(i)
αi
u(j)
αj

| −→
∑

α6=α′

nαnα′ < αα′ | . (4.127)

ii) Particles on the same state. Since i 6= j, one particle can be identified with
one of the nα particles in that state, but for the other one there are only nα−1
possibilities.

∑

i,j=1

i6=j

< u(i)
αi
u(j)
αj

| −→
∑

α

nα (nα − 1) < αα | . (4.128)

Taking into account the discussion above, we have

(4.125) −→ 1

2

√∏∞
j=1 nj !

N !

∑

α,α′

β,β′

nα (nα′ − δαα′) < αα′ | V | ββ ′ >

×cn1,...,nα−1,...,nβ+1,...,nα′−1,...,nβ′+1,... . (4.129)

As in the kinetic energy part, we have also to treat separately cases where α = β,
etc.. There are in total 15 different possibilities. They correspond to all different
(1), two indices equal and all the other different (6), indices equal in pairs (3), three
indices equal (4), and all equal (1). Let us consider just two of them in order to see,
the kind of fafctors that arise.
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i) α 6= α′, α 6= β, α 6= β ′, α′ 6= β, α′ 6= β ′, β 6= β ′.
In this case we have a factor nαnα′ from (4.127), and from the normalization
factors

√

(nα − 1)! (nα′ − 1)! (nβ + 1)!
(

n′
β + 1

)

! , (4.130)

such that after cancelling the normalization on both sides of Schrödinger equa-
tion, such a term contains a factor

√

nαnα′

(

nβ + 1
) (

n′
β + 1

)

. (4.131)

ii) α = α′, α 6= β, α 6= β ′, β 6= β ′.
In this case we have a factor nα (nα − 1) from (4.127), and from the normal-
ization factors

√

(nα − 2)! (nβ + 1)!
(

n′
β + 1

)

! , (4.132)

such that after cancelling the normalization on both sides of Schrödinger equa-
tion, such a term contains a factor

√

nα
(

nα − 1
)(

nβ + 1
) (

n′
β + 1

)

. (4.133)

Putting all results together, the Schrödinger equation has the following form

ih̄
∂

∂t
cn1,...,nα,...(t) =

∑

α

< α | T | α > nα cn1,...,nα,... (t)

+
∑

α6=β

< α | T | β >
√

nα (nβ + 1)

×cn1,...,nα−1,...,nβ+1,... (t)

+
1

2

∑

α6=α′ 6=β 6=β′

< αα′ | V | ββ ′ >

×
√

nαnα′

(

nβ + 1
) (

n′
β + 1

)

×cn1,...,nα−1,...,nβ+1,...,nα′−1,...,nβ′+1,...(t)

+
1

2

∑

α=α′ 6=β 6=β′

< αα | V | ββ ′ >

×
√

nα
(

nα − 1
)(

nβ + 1
) (

n′
β + 1

)

×cn1,...,nα−2,...,nβ+1,...,nβ′+1,...(t)

+ 13 other terms . (4.134)

This shows that to solve a many-body problem in first quantization is rather hope-
less, since just to write them down becomes rather demanding.
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Fermions

A general fermionic state can be expanded in terms of occupation-number states as
shown in (4.89),

A | ψ1, . . . , ψN , t > =
∑

α1,...,αN

a (α1, . . . , αN , t) A | u(1)
α1
, . . . , u(N)

αN
>

=
∑

n1,...,nj ,...

cn1,...,nj ,...(t) | n1, . . . , nj, . . . > , (4.135)

where the relation between a (α1, . . . , αN , t) and cn1,...,nj ,...(t) is given by (4.99).
As in the bosonic case, we multiply the Schrödinger equation from the left by
< u(1)

α1
, . . . , u(N)

αN
|, and taking into account that Pauli’s exclusion principle only

allows ni = 0, 1, we have for the time derivative

ih̄ < u(1)
α1
, . . . , u(N)

αN
| ∂
∂t
A | ψ1, . . . , ψN , t >=

√

1

N !
ih̄

∂

∂t
cn1,...,nj ,...(t) . (4.136)

For the treatment of the kinetic energy and the interaction term, we should now take
into account the fact that in the case of fermions, there are phase factors associated
with the permutations. In order to follow these phase factors, we will assume a
particular ordering of the levels for < u(1)

α1
, . . . , u(N)

αN
|, namely

α1 < α2 < · · · < αN . (4.137)

With the assumption above, we have in analogy to the bosonic case (4.116)

< u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

TiA | ψ1, . . . , ψN , t >

=
∑

n1,...,nj ,...

cn1,...,nj,... (t) < u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

Ti | n1, . . . , nj, . . . > .(4.138)

However, the matrix elements have now the following form

< u(1)
α1
, . . . , u(N)

αN
|
N∑

i=1

Ti | n1, . . . , nj, . . . >

=
1√
N !

∑

i,p

(−1)p < u(1)
α1
, . . . , u(N)

αN
| TiPp | u(1)

β1
, . . . , u

(N)
βN

> . (4.139)

We use now the fact that the states are ordered as discussed above in order to
determine the phase factor in eq. (4.139), recalling that the kinetic operator is a
one-particle operator that connects the state αi with the state βi. There are two
cases to be considered

i) βi < αi.
In this case, the number of transpositions is given by the number of occupied
states between βi and αi, such that

(−1)p = (−1)nβi+1+nβi+2+···+nαi−1 . (4.140)
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ii) βi > αi.
Here we need to count the number of occupied states between αi and βi.

(−1)p = (−1)nαi+1+nαi+2+···+nβi−1 . (4.141)

The rest of the calculation for the kinetic energy term goes along the lines discussed
for bosons, such that using (4.139) with the phase factors discussed above, we finally
have similarly to the bosonic case

(4.138) =

√

1

N !

∑

α,β

(−1)nα+1+nα+2+···+nβ−1

× < α | T | β > cn1,...,nα−1,...,nβ+1,... (t) , (4.142)

where the phase factors are to be understood as counting the number of occupied
states between α and β.

We do not deal here directly with the interaction terms, since from the discussion
of the kinetic energy term, we see that a similar structure as in the bosonic case is
obtained with the addition of phase factors. This means, that also a complicated set
of differential equations is obtained here and the formulation in first quantization is
of doubtfull use.

4.2 Second quantization

Second quantization was originally introduced in order to deal with relativistic quan-
tum mechanics, realizing that a consistent way of formulating a relativistic field the-
ory had to go beyond first quantization. In our case, we stay in the realms of non-
relativistic quantum mechanics, but second quantization will allow us to describe
a many-body system in a transparent way, on the basis of the occupation-number
states that we discussed in the previous section. We start with bosons and then
discuss fermions.

4.2.1 Bosons in second quantization

Occupation-number states appear already in the discussion of the harmonic oscillator
in an elementary course in quantum mechanics. In fact, we have already seen them
in our chapter of phonons. Let us recall the discussion in the case of a harmonic
oscillator. There we have operators b, b† that fulfill the following commutation
relation:

[

b, b†
]

= 1 . (4.143)

Furthermore, we can define an occupation-number operator n̂ = b†b, with eigenstates
| n >, such that

n̂ | n >= n | n > , n ≥ 0 . (4.144)
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As a consequence of the commutation relation above, it is easy to show that

n̂ b | n > = (n− 1) b | n > ,

n̂ b† | n > = (n+ 1) b† | n > , (4.145)

i.e. b | n > and b† | n > are eigenstates of the occupation-number operator with a
quantum less or more. Therefore, they are called annihilation and creation operators.
With the assumption that | n > is normalized, we have already seen that

b | n > =
√
n | n− 1 > ,

b† | n > =
√
n+ 1 | n+ 1 > . (4.146)

We generalize in the following the properties discussed above to, in principle,
an infinite number of modes i = 1, . . . ,∞, in such a way that the occupation-
number states | n1, . . . , ni, . . . > we had in the previous sections, are eigenstates
of occupation-number operators n̂i = b†ibi, where the commutation relations are
generalized as follows:

[

bi, b
†
j

]

= δij ,
[

bi, bj
]

=
[

b†i , b
†
j

]

= 0 . (4.147)

The action of the occupation-number operators on the states is a simple generaliza-
tion, where the occupation number states is seen as a tensorial product of eigenstates
of infinitely many harmonic oscillators:

n̂i | n1, . . . , ni, . . . > = ni | n1, . . . , ni, . . . > . (4.148)

Then, using again the commutation relations (4.147), we obtain the action of anni-
hilation and creation operators on the occupation-number states

bi | n1, . . . , ni, . . . > =
√
ni | n1, . . . , ni − 1, . . . > ,

b†i | n1, . . . , ni, . . . > =
√
ni + 1 | n1, . . . , ni + 1, . . . > . (4.149)

The space containing all the occupation-number states is called the Fock-space. It is
a vector space as the Hilbert space but it contains all possible numbers of particles.
Acting with an annihilation or creation operator on one state of the Fock-space
brings us from one state to another one in the same Fock-space.

Let us reconsider the Schrödinger equation we discussed in Sec. 4.1.7 and trans-
late it from first to second quantization. We had there a general state

| ψ(t) >=
∑

n1,...,ni,...

cn1,...,ni,...(t) | n1, . . . , ni, . . . > . (4.150)

Recalling the form we finally obtained for the Schrödinger equation, let us examine
the different contributions on the right hand side of (4.134), where we consider only
the terms that were written down explicitely. Actually, in (4.134) we arrived at a
set of coupled differential equations, only in terms of the coefficients cn1,...,ni,...(t) of
the linear combination above. But since the states | n1, . . . , ni, . . . > constitute a
basis in HS, we can reconstruct the evolution of the state | ψ(t) > by multiplying in
(4.134) both sides by | n1, . . . , ni, . . . > and summing over all indices n1, . . . , ni, . . ..
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1. Time derivative.

ih̄
∂

∂t
cn1,...,nα,...(t) → ih̄

∂

∂t

∑

n1,...,ni,...

cn1,...,ni,...(t) | n1, . . . , ni, . . . >

= ih̄
∂

∂t
| ψ(t) > . (4.151)

2. Kinetic terms.

i) Diagonal part.

∑

i

< i | T | i > ni cn1,...,ni,... (t)

→
∑

n1,...,ni,...

∑

i

< i | T | i > ni cn1,...,ni,... (t)

× | n1, . . . , ni, . . . > . (4.152)

Since

ni | n1, . . . , ni, . . . >= b†ibi | n1, . . . , ni, . . . > , (4.153)

we have

(4.152) =
∑

n1,...,ni,...

∑

i

< i | T | i > b†ibi cn1,...,ni,... (t) | n1, . . . , ni, . . . >

=
∑

i

b†i < i | T | i > bi | ψ(t) > . (4.154)

ii) Off-diagonal part

∑

i6=j

< i | T | j >
√

ni (nj + 1) cn1,...,ni−1,...,nj+1,... (t)

→
∑

n1,...,ni,...

∑

i6=j

< i | T | j >
√

ni (nj + 1)

×cn1,...,ni−1,...,nj+1,... (t) | n1, . . . , ni, . . . > .(4.155)

since we are summing over all possible values of the ni’s, we can rename
them as follows

ni − 1 = n′
i , nj + 1 = n′

j , nk = n′
k , for k 6= i, k 6= j . (4.156)

Notice that the condition
∑

i ni = N is also fulfilled by the new variables.
With the changes above, we have

(4.155) =
∑

n′
1
,...,n′

i
,...

∑

i6=j

< i | T | j >
√

(n′
i + 1)n′

j cn′
1
,...,n′

i
,...,n′

j
,... (t)

× | n′
1, . . . , n

′
i + 1, . . . , n′

j − 1, . . . > .(4.157)
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The original occupation numbers fulfilled the condition ni ≥ 0. We can
also restrict the new variables to the same range of values since if ni = 0,

then n′
i = −1 but

√

(n′
i + 1)n′

j = 0. We can also admit n′
j = 0 in spite of

the fact that this implies nj = −1, since
√

(n′
i + 1)n′

j = 0 also. Finally,

we need only to realize that
√

(n′
i + 1)n′

j | n′
1, . . . , n

′
i + 1, . . . , n′

j − 1, . . . >

= b†ibj | n′
1, . . . , n

′
i, . . . >, (4.158)

such that

(4.157) =
∑

i6=j

b†i < i | T | j > bj | ψ(t) > . (4.159)

Putting together the results (4.154) and (4.159), we have a rather simple ex-
pression for the kinetic energy operator:

N∑

i=1

Ti →
∑

i,j

b†i < i | T | j > bj , (4.160)

where it is not anymore necessary to distinguish the different cases.

3. Interaction terms.
Here we have to distinguish the 15 cases we mentioned before. However, after
having seen that second quantization leads to expressions, where different cases
are all incorporated without an explicit division of cases, we just examine the
two terms we already discussed and see, whether the same happens as in in
the case of the kinetic energy.

i) Matrix elements with all four different states.

1

2

∑

i6=j 6=k 6=ℓ

< ij | V | kℓ >
√

ninj
(

nk + 1
)

(nℓ + 1)

×cn1,...,ni−1,...,nk+1,...,nj−1,...,nℓ+1,...(t)

→ 1

2

∑

n1,...,ni,...

∑

i6=j 6=k 6=ℓ

< ij | V | kℓ >

×
√

ninj
(

nk + 1
)

(nℓ + 1)

×cn1,...,ni−1,...,nk+1,...,nj−1,...,nℓ+1,...(t)

× | n1, . . . , ni, . . . > . (4.161)

As before, we rename the variables:

ni − 1 = n′
i , nj − 1 = n′

j , nk + 1 = n′
k , nℓ + 1 = n′

ℓ

nm = n′
m , for m 6= i, j, k, ℓ . (4.162)
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Repeating the steps we made in 2.ii), we arrive at

(4.161) =
1

2

∑

i6=j 6=k 6=ℓ

b†ib
†
j < ij | V | kℓ > bkbℓ . (4.163)

ii) Matrix elements with two states equal.

1

2

∑

i=j 6=k 6=ℓ

< ii | V | kℓ >
√

ni
(

ni − 1
)(

nk + 1
)

(nℓ + 1)

×cn1,...,ni−2,...,nk+1,...,nℓ+1,...(t)

→ 1

2

∑

n1,...,ni,...

∑

i=j 6=k 6=ℓ

< ii | V | kℓ >

×
√

ni
(

ni − 1
)(

nk + 1
)

(nℓ + 1)

×cn1,...,ni−2,...,nk+1,...,nℓ+1,...(t)

× | n1, . . . , ni, . . . > . (4.164)

Here we rename the variables as follows:

ni − 2 = n′
i , nk + 1 = n′

k , nℓ + 1 = n′
ℓ

nm = n′
m , for m 6= i, k, ℓ . (4.165)

Then, we have

(4.164) =
1

2

∑

i6=k 6=ℓ

b†ib
†
i < ii | V | kℓ > bkbℓ . (4.166)

We see that it is again not necessary to taken into account the different
cases explicitely, since the algebra of creation and annihilation operators
does this automatically. Finally, we have for the interaction term

1

2

N∑

i,j=1

i6=j

Vij =
1

2

∑

i,j,k,ℓ

b†ib
†
j < ij | V | kℓ > bkbℓ . (4.167)

After having discussed the different terms, we can summarize the Schrödinger
equation in second quantization:

ih̄
∂

∂t
| ψ(t) >= H | ψ(t) > , (4.168)

where the Hamiltonian in second quantization is

H =
∑

i,j

b†i < i | T | j > bj +
1

2

∑

i,j,k,ℓ

b†ib
†
j < ij | V | kℓ > bkbℓ . (4.169)

The statistics of the particles is now contained in the commutation relation of the
creation and annihilation operators. To see this explicitely, let us consider the
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vacuum, i.e. the state that is annihilates by any annihilation operator. This is the
generalization of the ground state of the harmonic oscillator | 0 >:

b | 0 >= 0 −→ bi | 0 >= 0 . (4.170)

A particle in state i is obtained by acting with a creation operator on the vacuum:

b†i | 0 >=| i > . (4.171)

Due to the commutation relation obeyed by bosons, we have

b†ib
†
j = b†jb

†
i ⇒ b†ib

†
j | 0 >= b†jb

†
i | 0 > ⇒ | ij >=| ji > , (4.172)

such that a transposition does not lead to a different state.

4.2.2 Fermions in second quantization

In the case of fermions, we can also define creation and annihilation operators f †
i , fi,

such that an occupation-number operator is given by n̂i = f †
i fi, with the property

n̂i | n1, . . . , ni, . . . > = ni | n1, . . . , ni, . . . > . (4.173)

We have seen in the case of bosons, that the commutation relations guarantee that
the properties that result from the symmtrization postulate are respected. We can
try here to look for commutation relations that also lead to states that respect the
symmetrization postulate for fully antisymmetric states. A main property in this
respect is that fermions should be antisymmetric with respect to transpositions. Let
us ask as in the case of bosons that a vacuum exists, such that

fi | 0 >= 0 . (4.174)

On this vacuum we can create a particle

f †
i | 0 >=| i > . (4.175)

We can as well create two particles and ask the corresponding states to be antisym-
metric with respect to a transposition.

f †
i f

†
j | 0 > = | ij >

→֒ f †
j f

†
i | 0 > = | ji >= − | ij >= −f †

i f
†
j | 0 >

=⇒ f †
i f

†
j + f †

j f
†
i ≡

{

f †
i , f

†
j

}

= 0 . (4.176)

Therefore, fermion creation and annihilation operators anticommute. This property,
that results from the symmetry properties under transpositions, also leads to Pauli’s
exclusion principle. In order to see this, we just need to take i = j. In this case we
have

f †
i f

†
i + f †

i f
†
i = 2f †

i f
†
i = 0 , (4.177)
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showing that two fermions cannot be created in the same state. Taking the hermitian
conjugate of (4.176), we arrive at

{

f †
i , f

†
j

}†
=

(

f †
i f

†
j + f †

j f
†
i

)†

= fjfi + fifj = {fi, fj} = 0 . (4.178)

Next we have to discuss the commutation relations between creation and anni-
hilation operators for fermions. Since the occupation number operator counts the
number of particles in a given state, we have

n̂i | 0 > = f †
i fi | 0 >= 0 ,

n̂i | i > = f †
i fi | i >=| i > . (4.179)

On the other hand, from (4.175), we have

fi | i > = fif
†
i | 0 >=| 0 > ,

fif
†
i | i > = fif

†
i f

†
i | 0 >= 0 . (4.180)

Then,
(

fif
†
i + f †

i fi
)

| 0 > = | 0 > ,
(

fif
†
i + f †

i fi
)

| i > = | i > , (4.181)

such that

fif
†
j + f †

j fi =
{

fi, f
†
j

}

= δij . (4.182)

We arrived then, at the anticommutation relations fulfilled by fermion creation and
annihilation operators:

{

fi, f
†
j

}

= δij ,
{

f †
i , f

†
j

}

=
{

fi, fj
}

= 0 . (4.183)

With the anticommutation relations obtained above, we can go back to the
Schrödinger equation for fermions, where, as in the case of bosons, we start with a
general state

| ψ(t) >=
∑

n1,...,ni,...

cn1,...,ni,...(t) | n1, . . . , ni, . . . > , (4.184)

the difference with bosonic states being that ni = 0, 1. We restrict the discussion to
the kinetic term in order to see how the transformation is done. Recalling (4.142)
we have to see whether the creation and annihilation operators introduced here are
able to take into account the phase factors that appeared there. Let us then express
the occupation number states in terms of the creation operators:

| n1, . . . , ni, . . . > =
(

f †
1

)n1 · · ·
(

f †
i

)ni · · · | 0 > , (4.185)
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with the constraint that
∑

i ni = N . As we already discussed in Sec. 4.1.7, in the
case of fermions it is important to keep track of the ordering of states. This is done
above by applying the creation operators in a definite order. Let us now look at the
action of an annihilation operator on such a state

fj | n1, . . . , ni, . . . > = fj
(

f †
1

)n1 · · ·
(

f †
i

)ni · · · | 0 >

= (−1)n1+n2+···+nj−1

×
(

f †
1

)n1 · · ·
(

f †
j−1

)nj−1

fj
(

f †
j

)nj · · · | 0 > . (4.186)

Here we have to distinguish two cases

i) nj = 0. In this case the result is zero since fj | 0 >= 0.

ii) nj = 1. In this case we would have

fjf
†
j = 1 − f †

j fj , (4.187)

where the second term cancels because again the annihilation operator acts on
the vacuum.

Going back to (4.186) we have

(4.186) = (−1)n1+n2+···+nj−1

(

f †
1

)n1 · · ·
(

f †
j−1

)nj−1
(

f †
j+1

)nj+1 · · · | 0 >

= (−1)n1+n2+···+nj−1 | n1, . . . , nj−1, nj − 1, nj+1, . . . > . (4.188)

The same happens when considering the action of a creation operator, where in this
case, zero results if nj = 1. The result is

f †
i | n1, . . . , ni, . . . > = (−1)n1+n2+···+ni−1

× | n1, . . . , ni−1, ni + 1, ni+1, . . . > . (4.189)

Putting together (4.188) and (4.189) we have

f †
i fj | n1, . . . , ni, . . . , nj , . . . > = (−1)ni+1+ni+2+···+nj−1

× | n1, . . . , ni + 1, . . . , nj − 1, . . . > .(4.190)

With this result, we can rewrite the kinetic term (4.142):
∑

n1,...,ni,...

∑

i,j

< i | T | j > (−1)ni+1+ni+2+···+nj−1

×cn1,...,ni+1,...,nj−1,...(t) | n1, . . . , ni + 1, . . . , nj − 1, . . . >

=
∑

i,j

f †
i < i | T | j > fj

∑

n1,...,ni,...

cn1,...,ni,...,nj ,...(t) | n1, . . . , ni, . . . >

︸ ︷︷ ︸

|ψ(t)>

,(4.191)

where we performed a change of variables in the summation over n1, . . ., with ni+1 →
ni and nj − 1 → nj , as we did in the bosonic case.
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The interaction can be transformed in a similar way. The final result for the
Schrödinger equation is

ih̄
∂

∂t
| ψ(t) >= H | ψ(t) > , (4.192)

where the Hamiltonian in second quantization is

H =
∑

i,j

f †
i < i | T | j > fj +

1

2

∑

i,j,k,ℓ

f †
i f

†
j < ij | V | kℓ > fℓfk . (4.193)

We see that the Hamiltonian the same form has for bosons as well as for fermions.
The information about the statistical properties of the particles considered resides
solely in the commutation or anticommutation relations of the creation and annihi-
lation operators.

4.2.3 Field operators

The creation and annihilation operators b†i , bi for bosons and f †
i , fi for fermions

create and annihilate a particle in a state | i >, that was taken from a certain one-
particle basis. In the following we discuss changes of basis and since the same steps
are valid both for bosons and for fermions, let us use as a notation operators c†i , ci
for particles, without specifying their statistics.

We introduce now a linear combination of operators as follows,

ψ̂ (x) ≡
∑

i

ψi (x) ci ,

ψ̂† (x) ≡
∑

i

ψ∗
i (x) c†i , (4.194)

where the coefficients of the expansion ψi (x) are one-particle wavefunctions for the
quantum numbers i and the summation goes over a complete set of states associated
with the quantum number i. These are called field operators.

With the definitions above we can rewrite the kinetic energy term:

∑

i,j

c†i < i | T | j > cj

=
∫

dx dx′
∑

i,j

c†i < i | x >< x | T | x′ >< x′ | j > cj

=
∫

dx ψ̂† (x)

(

− h̄2

2m
∇

2

)

ψ̂ (x) , (4.195)

where in going from the second to the third line we used that

< x | T | x′ >= δ (x − x′)

(

− h̄2

2m
∇

2
x

)

. (4.196)
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We see that using the field operators, the kinetic energy term has exactly the same
form as the expectation value in first quantization but instead of the wavefunctions
we have operators that act on states of the Fock space. Hence the name second
quantization. We can depict this situation as follows

Hclassic
q,p→q̂,p̂−→ H1st quantization

ψ→ψ̂−→ H2nd quantization . (4.197)

For the interaction term we have

∑

i,j,k,ℓ

c†i c
†
j < ij | V | kℓ > cℓ ck

=
∫

dx dx′ dx′′ dx′′′
∑

i,j,k,ℓ

c†i c
†
j < i | x >< j | x′ >

× < xx′ | V | x′′x′′′ >< x′′ | k >< x′′′ | ℓ > cℓck . (4.198)

Since V is a two-particle interaction potential, it can only depend on two coordinates.
This means

< xx′ | V | x′′x′′′ > = < xx′ | V | x′x > δ (x′′′ − x′) δ (x′′ − x) . (4.199)

With this choice we have

(4.198) =
∫

dx dx′ ψ̂† (x) ψ̂† (x′) V (x,x′) ψ̂ (x′) ψ̂ (x) . (4.200)

There are of course other possible choices to group four coordinates into two. How-
ever the choice above is the one that guarantees that H is hermitian. Putting
together the results for the kinetic energy (4.195) and interaction (4.200) terms, we
have the Hamiltonian in terms of field operators:

H =
∫

dx ψ̂† (x)

(

− h̄2

2m
∇

2

)

ψ̂ (x)

+
1

2

∫

dx dx′ ψ̂† (x) ψ̂† (x′) V (x,x′) ψ̂ (x′) ψ̂ (x) . (4.201)

The commutation and anticommutation relations for field operators can be easily
deduced from the respective relations for creation and annihilation operators:

[

ψ̂ (x) , ψ̂† (x′)
]

∓
=

∑

i,j

ψi (x) ψ∗
j (x′)

[

ci, c
†
j

]

∓
︸ ︷︷ ︸

=δij

=
∑

i

ψi (x) ψ∗
i (x′) = δ (x − x′) , (4.202)

where the upper (lower) sign in the square brackets corresponds to bosons (fermions),
and to obtain the final result we used that {ψi (x)} build a complete set of wave-
functions.
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What we did above with the Hamiltonian can be done for any operator in first
quantization, giving a form in second quantization. For example, for any one-particle
operator,

J =
N∑

i=1

Ji (4.203)

we have in second quantization, following the same steps we performed for the kinetic
energy term,

Ĵ =
∑

i,j

< i | J | j > c†i cj

=
∫

dx dx′
∑

i

ψ∗
i (x) c†i < x | J | x′ >

∑

j

ψj (x′) cj

=
∫

dx ψ̂† (x) J (x) ψ̂ (x) , (4.204)

where we used, as we did for the kinetic energy term that

< x | J | x′ > = J (x) δ (x − x′) . (4.205)

A particularly important one-particle operator is the density operator. In first quan-
tization it is

n (x) =
N∑

i=1

δ (x − xi) . (4.206)

Using the prescription above, we have

n̂ (x) =
∫

dx̃ dx̃′
∑

i

ψ∗
i (x̃) c†i < x̃ | δ (x̃ − x) | x̃′ >

∑

j

ψj (x̃′) cj ,(4.207)

where for the matrix element we know that

< x̃ | δ (x̃ − x) | x̃′ >= δ (x̃ − x) δ (x̃ − x̃′) , (4.208)

such that

n̂ (x) = ψ̂† (x) ψ̂ (x) . (4.209)

Given the density operator with the field operators, we can obtain the particle

number operator

N̂ =
∫

dx̃ n̂ (x) =
∫

dx̃ ψ̂† (x) ψ̂ (x) . (4.210)

It can be easily shown, that N̂ commutes with the Hamiltonian (4.201).
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4.3 Non-interacting electrons. The Fermi gas

As a first application of second quantization, we consider the simplest model for
electrons in a metal, namely non-interacting, free electrons, i.e. not even in the
presence of a periodic potential, as is normaly the case in solids. We have already
seen in Chapter 3 the consequences of such a potential and also introduced some
concepts like Fermi energy, Fermi surface, and density of states. We will calculate
them now for the simplest possible situation. Although this seems to be an oversim-
plification, it is rather surprising that such results obtained by Sommerfeld around
1926, could explain the behavior of specific heat and also Pauli paramagnetism for
simple metals at low temperatures. As we have seen in Sec. 3.2, if the periodic
potential is weak enough, the electronic band-structure can be well described over
most of the Brillouin by essentially free electrons, and therefore, this could be in
these cases a good approximation. Only those points where degeneracies appear will
present departures, since there a band gap opens. The Coulomb interaction, how-
ever, cannot be considered as weak since it diverges when two electrons come close
together. It is one of Landau’s merits to have clarified the situation by introducing
the idea of a Fermi liquid. Although we are not going to look at it in detail, we
will try at least to give a general idea, why most fermionic systems (simple metals,
3He, nuclear matter) can be regarded as composed of weakly interacting fermions,
namely quasi-particles with the same quantum numbers as the original constituents
but with renormalized masses.

4.3.1 Hamiltonian, Fermi momentum and Fermi energy

We consider non-interacting electrons in a homogeneous three-dimensional box with
sides of length L, with periodic boundary conditions, as introduced in Sec. 1.2.2.
Then, only the following wavevectors are allowed

ki =
2πni
L

, i = x, y, z , ni integer . (4.211)

The Hamiltonian has the following form in first quantization

H =
N∑

i=1

p2
i

2m
. (4.212)

As we have seen in Sec. 4.2, in second quantization, the Hamiltonian takes the form

H =
∑

α,β

f †
α < α | p2

i

2m
| β > fβ , (4.213)

where the indices α and β denote quantum numbers of a one-particle basis. In our
case, the quantum number is the wavevector k and it also contains the spin of the
electrons, such that

| α >−→| k, σ > , (4.214)
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where k takes the values given in (4.211) and σ = ±1/2 gives the possible projections
of the spin along a certain quantization axis. Then, the matrix elements to be
calculated are

< α | p2
i

2m
| β > → < k1, σ1 | −

h̄2
∇

2

2m
| k2, σ2 >

=
1

2mL3

∫

dx exp (−ik1 · x)
(

−h̄2
∇

2
)

exp (ik2 · x)

× < σ1 | σ2 >

=
h̄2k2

2

2mV
δσ1,σ2

∫

dx exp [i (k2 − k1) · x]

=
h̄2k2

2

2m
δσ1,σ2

δk1,k2
, (4.215)

leading to the Hamiltonian in second quantization

H =
∑

k,σ

ǫk f
†

k,σ
fk,σ , (4.216)

with

ǫk =
h̄2k2

2m
. (4.217)

Given N electrons, the ground state energy is obtained by filling up the lowest levels
with them. As a consequence of Pauli’s exclusion principle, we can have up to two
electrons per level, since for the same momentum we have two possibilities for the
spin. In this case one speaks of a degenerate electron gas.

Figure 4.1: Dispersion relation for free electrons.

k

ǫk

As seen in Fig. 4.1, given N electrons, there is a maximal wavevector that cor-
responds to the last occupied states. It is the Fermi wavevector and its energy is
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the Fermi energy. In order to determine the Fermi wavevector, we can calculate the
expectation value of the particle number operator.

N = < G | N̂ | G >

=
∑

k,σ

< G | f †

k,σ
fk,σ | G >=

∑

k,σ

θ (kF− | k |) , (4.218)

where θ(x) is the Heavyside function defined as

θ(x) =

{

1 x ≥ 0 ,
0 x < 0 .

(4.219)

This leads to

(4.218) = g
(
L

2π

)3 ∫

d3k θ (kF− | k |)

=
gV

2π2

∫ kF

0
k2 dk =

gV

6π2
k3
F , (4.220)

where g is the degree of degeneracy (in this case g = 2). From the result above we
can obtain the Fermi-wavevector

kF =

(

6π2

g

N

V

) 1

3

, (4.221)

that is, kF is proportional to the cubic root of the density of particles. Actually,
(V/N)1/3 defines a length, the average separation of particles, such that kF can be
thought as the inverse of the average separation of electrons.

Once we obtained the Fermi wavevector, it is straightforward to calculate the
Fermi energy:

EF =
h̄2k2

F

2m
=

h̄2

2m

(

6π2

g

N

V

) 2

3

. (4.222)

4.3.2 Ground-state properties of the Fermi gas

Here we will concentrate on the ground-state energy and the density of states.

Ground-state energy

It is given by the expectation value of H :

EG = < G | H | G >

=
h̄2

2m

∑

k,σ

k2 < G | f †

k,σ
fk,σ | G >

= g
h̄2

2m

(
L

2π

)3 ∫

d3k k2 θ (kF− | k |)
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=
h̄2

m

V

2π2

∫ kF

0
k4 dk =

h̄2

2m

V

π2

k5
F

5

=
h̄2k2

F

2m
︸ ︷︷ ︸

=EF

1

5

V k3
F

π2
︸ ︷︷ ︸

=3N

=
3

5
NEF , (4.223)

such that the ground-state energy per particle is

EG
N

=
3

5
EF . (4.224)

This last result shows that the Fermi energy is the only energy scale in the system.

Density of states

In the particular case of the Fermi gas, it is very easy to calculate the density of
states, since in this case we know that the surfaces of constant energy are given by
the surface of spheres with radius k. Then, we can use the same reasoning as in Sec.
3.1.3 based on Fig. 3.6, where

N(E)dE =
g

(2π)3

4π

3







[
2m

h̄2 (E + dE)
] 3

2

−
(

2m

h̄2 E
) 3

2







≃ g

(2π)3

4π

3

(
2mE

h̄2

) 3

2





(

1 +
dE

E

) 3

2

− 1





→֒ N(E) =
g

(2π)2

(
2m

h̄2

) 3

2

E
1

2 . (4.225)

This is a result that is valid for simple metals.

4.3.3 Low temperature properties of the Fermi gas

We have already seen in Sec. 4.1.6 some elementary properties of fermions at finite
temperatures, where we obtained the Fermi-Dirac distribution. In the following we
consider several thermodynamic quantities at low temperatures.

We focus first on the so-called thermodynamic potential, that is defined as fol-
lows:

Ω (T, V, µ) = −kBT lnZG , (4.226)

where we denote with ZG the partition function in the grand canonical ensemble,
with

ZG = Tr exp
[

−β
(

H − µN̂
)]

. (4.227)

The thermodynamic potential is related with entropy as follows

Ω (T, V, µ) = E − TS − µN . (4.228)
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Since the independent variables of the thermodynamic potential are T, V , and µ,
the entropy can be obtained as

S = −
(

∂Ω

∂T

)

V,µ

. (4.229)

From the entropy, finally, we can obtain the specific heat. Another quantity that
we may need in the calculation of the specific heat is the chemical potential. Since
it is one of the independent variables in Ω, we can obtain it from the relation

N = −
(

∂Ω

∂µ

)

T,V

. (4.230)

We therefore need as a first step to calculate the thermodynamic potential. For this
we just need to recall our previous calculation for the Fermi gas (4.102), and insert
the corresponding quantum numbers, such that

Ω = −kBT
∑

k,σ

ln
{

1 + exp
[

β
(

µ− ǫk

)]}

. (4.231)

A procedure that is very often usefull is to go from a summation over wavevectors
over to an integral over energy with the help of the density of states. This is
especially easy in the case of the Fermi gas. Let us first consider a summation over
states.

∑

k,σ

=
V

(2π)3
g
∫

d3k =
V

(2π)3
g 4π

∫

k2 dk , (4.232)

where for the last equality we assumed that the quantity to be summed over depends
only on the dispersion, and use explicitely, that the Fermi gas has an isotropic energy
dispersion. On the other hand, we have the relation (3.19), such that

N(E) dE =
g

(2π)3 4πk2 dk . (4.233)

In this way, for some function f
(

ǫk

)

, we can go over to an integral over energies:

∑

k,σ

f
(

ǫk

)

= V
∫

N(E) f(E) dE . (4.234)

For the summation (4.231) we are interested in, this means

Ω = −kBTV
g

(2π)2

(
2m

h̄2

) 3

2
∫ ∞

0
E

1

2 ln {1 + exp [β (µ−E)]} dE

= − gV

(2π)2

(
2m

h̄2

) 3

2 2

3

∫ ∞

0
dE

E
3

2

exp [β(E − µ)] + 1
. (4.235)
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Next we calculate the integral in the limit of low temperatures.

I =
∫ ∞

0
dE

E
3

2

1 + exp [ − β(µ− E)]
(4.236)

First we introduce a change of variables

x ≡ E − µ

kBT
(4.237)

and define

α ≡ µ

kBT
. (4.238)

With the changes above, we have

I = (kBT )
5

2 I(α) , (4.239)

with

I(α) ≡
∫ ∞

−α
dx

(x+ α)
3

2

ex + 1

=
∫ 0

−α
dx

(x+ α)
3

2

ex + 1
+
∫ ∞

0
dx

(x+ α)
3

2

ex + 1

=
∫ α

0
dx

(α− x)
3

2

e−x + 1
+
∫ ∞

0
dx

(x+ α)
3

2

ex + 1

=
∫ α

0
dx (α− x)

3

2

+
∫ ∞

0
dx

(x+ α)
3

2 − (α− x)
3

2

ex + 1
+
∫ ∞

α
dx

(α− x)
3

2

ex + 1
. (4.240)

The three integrals can be computed in the low temperature limit, where, since
µ −→ EF , with EF finite, α −→ ∞. In this limit we have for the last integral,

∫ ∞

α
dx

(α− x)
3

2

ex + 1
∼ e−α −→ 0 . (4.241)

Furthermore, we have

(x+ α)
3

2 − (α− x)
3

2
α→∞−→ 3xα

1

2 + O
(

α− 1

2

)

, (4.242)

such that the corresponding integral gives

3α
1

2

∫ ∞

0
dx

x

ex + 1
= 3α

1

2

1

2
Γ(2) ζ(2) , (4.243)

where Γ(n) = n!, for n a positive integer, is the Gamma function (i.e. Γ(2) = 2),
and

ζ(z) =
∞∑

p=1

p−z , Re z > 1 , (4.244)
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is the Riemann zeta function. It turns out that (see tables) that ζ(2) = π2/6. For
the first integral we have

∫ α

0
dx (α− x)

3

2 = − 2

5
(α− x)

5

2

∣
∣
∣
∣

α

0
=

2

5
α

5

2 . (4.245)

Putting all the results together we have finally

I = (kBT )
5

2

[

2

5

(
µ

kBT

) 5

2

+
π2

4

(
µ

kBT

) 1

2

+ · · ·
]

, (4.246)

leading to

Ω = − gV

(2π)2

(
2m

h̄2

) 3

2 2

3

[

2

5
µ

5

2 +
π2

4
µ

1

2 (kBT )2 + · · ·
]

. (4.247)

Once we obtained the thermodynamic potential, we can proceed to calculate differ-
ent thermodynamic quantities.

Chemical potential

As already anticipated in eq. (4.230), given the number of particles N , we should in
principle be able to calculate the temperature dependence of the chemical potential,
at least in the limit of low temperatures. Using (4.230), we have

N = −
(

∂Ω

∂µ

)

T,V

=
gV

(2π)2

(
2m

h̄2

) 3

2 2

3

[

µ
3

2 +
π2

8
µ− 1

2 (kBT )2 + · · ·
]

. (4.248)

From eq. (4.222), and the result above, we have

N

V
=

(

EF
2m

h̄2

) 3

2 g

6π2

=
g

(2π)2

(
2m

h̄2

) 3

2 2

3

[

µ
3

2 +
π2

8
µ− 1

2 (kBT )2 + · · ·
]

, (4.249)

leading to

µ = EF



1 +
π2

8

(

kBT

µ

)2

+ · · ·




− 2

3

. (4.250)

Up to O (T 2),

µ = EF



1 − π2

12

(

kBT

EF

)2

+ · · ·


 . (4.251)

Since in general EF ∼ 1− 10 eV ∼ 104 − 105K, it is a good approximation for most
relevant temperatures in condensed matter physics to set µ ≃ EF .
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Specific heat

The specific heat is defined as

cV =

(

∂E

∂T

)

V,N

, (4.252)

where the internal energy E = E(S, V,N). This quantity can be extracted from the
thermodynamic potential, since as we have already seen in (4.228), E = Ω+TS+µN .
From this, and taking into account that Ω = Ω (T, V, µ), we have

cV = T

(

∂S

∂T

)

V,N

. (4.253)

On the other hand, knowing the thermodynamic potential, we can obtain the entropy
as in (4.229)

S = −
(

∂Ω

∂T

)

V,µ

=
gV

4π2

(
2m

h̄2

) 3

2 2

3

[

π2

2
k2
BTµ

1

2 + . . .

]

(4.254)

From (4.248), we have in lowest order,

N =
gV

(2π)2

(
2m

h̄2

) 3

2 2

3
µ

3

2 (4.255)

such that we can now express S as a function of T , V , and N , as we need it in order
to calculate the specific heat according to (4.253):

S(T, V,N) ≃ NkB
π2

2

kBT

EF
,

→֒ cV = NkB
π2

2

kBT

EF
. (4.256)

We can express also the specific heat in another way by recalling the form of the
density of states (4.225) and noticing that

N(EF ) =
g

(2π)2

(
2m

h̄2

) 3

2

E
1

2

F , (4.257)

such that

cV = V
π2kB

3
N(EF ) kBT . (4.258)

Both forms of the specific heat show that the specific heat of a Fermi gas increases
linearly with temperature for kBT ≪ EF . This is in clear contrast to the behavior
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of a classical system of free particles, where the equipartition theorem states that
each degree of freedom carries an energy kBT/2, and hence, predicts a total internal
energy

E(classical) =
1

2
NkBT , (4.259)

such that

c
(classical)
V =

(

∂E

∂T

)

V

= cte . (4.260)

The difference between the classical and the quantum mechanical prediction is a
direct consequence of Pauli’s exclussion principle. The fraction of the total number
of degrees of freedom that can contribute to the specific heat for a given temperature
is of the order of kBT , such that

∆E(T ) = N
kBT

EF
kBT , (4.261)

leading to the linear temperature dependence of the specific heat. Equation (4.258)
also shows that the specific heat is a measure of the density of states at the Fermi
energy. Certainly this is so in a metal, but for an insulator where at low temperatures
the Fermi energy is generally in the band gap, this linear contribution vanishes, since
the density of states should also vanish at the Fermi energy.

4.4 Green’s functions for many-body systems.

The solution of the Schrödinger equation for an interacting system should be the next
step, after having discussed non-interacting electrons. In this section we consider
formal solutions of the Schrödinger equation in the form of a Green’s function, one of
the central objects in quantum field theory. Although no direct calculations will be
performed before discussing perturbation theory in the next section, a great deal of
physical information can be extracted from the Green’s function on general grounds.

4.4.1 Evolution operator in different pictures

A central role in the development of quantum field theory is played by the evolution
operator, that, as we shall see, can be formulated in different ways. Here one speaks
of the Schrödinger picture, where states are in general time dependent but the
Hamiltonian and in general operators are not. There is also the Heisenberg picture,
where the states is time independent but the operators are time dependent, and
finally, the interaction picture, where the time evolution of the operators and states
is determined by the part of the Hamiltonian around which the perturbation theory
is developed, in general, the non-interacting system.
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Schrödinger picture

This is the usual formulation used in elementary quantum mechanics, where the
states are in general time dependent but operators are not. The operators are
obtained applying the usual rules of quantization, i.e. elevating to operators with
appropriate commutation rules the dynamical variables of a classical system. Of
course, in the following discussion we assume that they are expressed in second
quantization as discussed in Sec. 4.2. Then, the Schrödinger equation is

ih̄
∂

∂t
| ΨS(t) >= H | ΨS(t) > . (4.262)

The solution of this equation in the case of a time independent Hamiltonian can be
written formally, given the initial state at time t0, as

| ΨS(t) >= exp
[

− i

h̄
H (t− t0)

]

| ΨS(t0) > . (4.263)

Therefore, the evolution operator is in this case

US(t, t0) = exp
[

− i

h̄
H (t− t0)

]

. (4.264)

Since the evolution operator is unitary, it preserves the norm of the wavefunction.

Interaction picture

Let us assume that the Hamiltonian is given by a part H0 that can be solved exactly
and an interaction term HI .

H = H0 +HI . (4.265)

Let us define a state vector from the one in the Schrödinger picture as follows

| ΨI(t) >= exp
[
i

h̄
H0 t

]

| ΨS(t) > , (4.266)

and consider its time evolution

ih̄
∂

∂t
| ΨI(t) > = −H0 exp

[
i

h̄
H0 t

]

| ΨS(t) >

+ exp
[
i

h̄
H0 t

]

ih̄
∂

∂t
| ΨS(t) >

=
{

−H0

+ exp
[
i

h̄
H0 t

]

H exp
[

− i

h̄
H0 t

] }

| ΨI(t) >

= HI(t) | ΨI(t) > , (4.267)
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where we defined

HI(t) ≡ exp
[
i

h̄
H0 t

]

HI exp
[

− i

h̄
H0 t

]

. (4.268)

Since in general H0 and HI do not commute, we have to respect the order in which
they appear. The definition we introduced for HI(t) can be extended to other
operators. To see this, we consider an arbitrary matrix element of some operator

< ΨS(t) | ÔS | ΨS(t) > = < ΨI(t) | eiH0 t/h̄ÔS e−iH0 t/h̄

︸ ︷︷ ︸

≡ÔI(t)

| ΨI(t) >

= < ΨI(t) | ÔI(t) | ΨI(t) > . (4.269)

We see then, that in the interaction picture both states and operators depend on
time. The time evolution of the operators can be easily obtained,

ih̄
∂

∂t
ÔI(t) = eiH0 t/h̄

(

ÔSH0 −H0ÔS

)

e−iH0 t/h̄

=
[

ÔI(t), H0

]

, (4.270)

that is, it is simply determined by the non-interacting part.
Next we consider an evolution operator for the state in the interaction picture.

It should be unitary and able to give the state at time t, knowing the state at time
t0:

| ΨI(t) >= U(t, t0) | ΨI(t0) > . (4.271)

Apart from the condition of being unitary, U should also fulfill

U(t0, t0) = 1 . (4.272)

From (4.267) and (4.271), we have

ih̄
∂

∂t
U(t, t0) = HI(t)U(t, t0) . (4.273)

Integrating this equation from time t0 to time t, we have

U(t, t0) − U(t0, t0) = − i

h̄

∫ t

t0
dt′HI(t

′)U(t′, t0) , (4.274)

or, given the initial condition,

U(t, t0) = 1 − i

h̄

∫ t

t0
dt′HI(t

′)U(t′, t0) . (4.275)

This is an integral equation, and an iterative solution can be at least formally pro-
posed.

U(t, t0) = 1 − i

h̄

∫ t

t0
dt′HI(t

′)

+
(
i

h̄

)2 ∫ t

t0
dt′
∫ t′

t0
dt′′HI(t

′)HI(t
′′) + · · · (4.276)
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Since, as we remarked earlier, in general H0 and HI do not commute, the time
ordering of the operators should be respected. We can, nevertheless, try to bring
the expressions above to a more symmetric appearance. For this, let us consider the
term with two integrals above.

∫ t

t0
dt′
∫ t′

t0
dt′′HI(t

′)HI(t
′′) =

∫ t

t0
dt′′

∫ t

t′′
dt′HI(t

′)HI(t
′′)

=
∫ t

t0
dt′
∫ t

t′
dt′′HI(t

′′)HI(t
′) , (4.277)

where the first equality is due to the fact that the integration regions are equal as
shown in Fig. 4.2. The last equality is obtained by a simple change of variables.

t0

t0
tt0

t00 t00 t00
t
t0

Figure 4.2: Regions of integration for the first two integrals in eq. (4.277).

Using (4.277), we can write for the contribution in second order for the evolution
operator

∫ t

t0
dt′
∫ t′

t0
dt′′HI(t

′)HI(t
′′) =

1

2

∫ t

t0
dt′
∫ t

t0
dt′′

[

HI (t′) HI (t′′) θ (t′ − t′′)

+HI (t′′) HI (t′) θ (t′′ − t′)
]

=
1

2

∫ t

t0
dt′
∫ t

t0
dt′′ T [HI (t′) HI (t′′)] , (4.278)

where we introduced a time ordered product of operators, denoted by T standing in
front of the operators affected by it, with the operator at later time to the left of the
operator at earlier time. This can be generalized to all orders, by properly taking
into account the number of possible time orderings at each order, which is given by
the permutations of n time variables at order n, i.e. we have to devide by n!.

U(t, t0) =
∞∑

n=0

1

n!

(

− i

h̄

)n ∫ t

t0
dt1 · · ·

∫ t

t0
dtn T [HI (t1) · · ·HI (tn)]

= T exp
[

− i

h̄

∫ t

t0
dt′HI (t′)

]

. (4.279)
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Heisenberg picture

In this case we define a state vector as follows

| ΨH(t) > ≡ exp
[
i

h̄
H t

]

| ΨS(t) > , (4.280)

Using the Schrödinger equation for | ΨS(t) >, one can immediately see that

ih̄
∂

∂t
| ΨH(t) > = 0 , (4.281)

i.e. the state in the Heisenberg picture is time independent. As in the interaction
picture, by considering an arbitrary matrix element, we can obtain the operators in
the Heisenberg picture.

< ΨS(t) | ÔS | ΨS(t) > = < ΨH(t) | eiH t/h̄ÔS e−iH t/h̄ | ΨH(t) > , (4.282)

such that operators in the Heisenberg picture are related to operators in the Schrödinger
picture as follows

ÔH(t) = eiH t/h̄ÔS e−iH t/h̄ . (4.283)

Therefore, in the Heisenberg picture, the state is time independent, whereas the
whole time dependence is contained in the operators, as oppossed to the Schrödinger
picture. The evolution of the system is given by

ih̄
∂

∂t
ÔH(t) = eiH t/h̄

(

ÔSH −HÔS

)

e−iH t/h̄

=
[

ÔH(t), H
]

. (4.284)

This equation tells us immediately, which operators correspond to a constant of
motion.

From the definitions of the state vectors in all three pictures, it is readily seen
that

| ΨH >=| ΨS(t = 0) >=| ΨI(t = 0) > . (4.285)

Since the eigenstates of the Hamiltonian correspond to stationary solutions of the
Schrödinger equation, the relation above shows that the states in the Heisenberg
representation are the exact eigenstates of the system.

4.4.2 The one-particle Green’s function

Let us first define the Green’s function and then proceed to discuss the motivation
to introduce it. We will consider in these lectures only the T = 0 case, since it is
somewhat simpler than the general case of finite temperatures and will serve as a
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first step to get an insight in theoretical techniques for a many-body system. The
one-particle Green’s function is defined as

iGαβ (x, t; x′, t′) ≡
< Ψ0 | T

[

ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′)

]

| Ψ0 >

< Ψ0 | Ψ0 >
, (4.286)

where | Ψ0 > is the ground-state of the interacting system, and ψ̂Hα (x, t) is a field
operator in the Heisenberg picture

ψ̂Hα (x, t) = eiH t/h̄ ψ̂Sα (x) e−iH t/h̄ , (4.287)

with α a set of quantum numbers characterizing the particle, like spin in the case
of electrons. In the following we are going to concentrate on electrons for definit-
ness, such that α can only take the values ±1/2 corresponding to the possible spin
projections. Furthermore, the field operators are anticommuting ones.

The name ‘one-particle’ comes from the fact that the object defined in (4.286)
can be seen as giving the evolution in the exact ground-state of a particle with spin β
that is created at x′ at time t′ and annihilated at x at time t with spin α. Therefore,
it is also called the one-particle propagator. The time ordered product is as follows

T
[

ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′)

]

=







ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′) t > t′

−ψ̂†
Hβ (x′, t′) ψ̂Hα (x, t) t′ > t

(4.288)

The minus sign corresponds to the fact that the field operators anticommute, such
that a permutation in their order has to carry the corresponding phase factor.

Equation of motion for the Green’s function

Since we are interested in the behavior of interacting electrons in condensed matter
physics, let us concentrate on a specific Hamiltonian, namely the one correspond-
ing to a two-particle interaction as given in (4.201). Taking into account spins, it
becomes

H =
∫

dx ψ̂†
α (x)

[

− h̄2

2m
∇

2 + U (x)

]

ψ̂α (x)

+
1

2

∫

dx dx′ ψ̂†
α (x) ψ̂†

β (x′) V (| x − x′ |) ψ̂β (x′) ψ̂α (x) , (4.289)

where again we use the convention that a summation takes place for repeated indices,
and included a potential acting on the electrons as in the case of electrons in a lattice.
The field operators in (4.286) obey an equation of motion as in (4.284):

ih̄
∂

∂t
ψ̂Hα (x, t) =

[

ψ̂Hα (x, t) , H
]

, (4.290)
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and similarly for the creation operator. With this, we can obtain an equation of
motion for the Green’s function.

ih̄
∂

∂t
Gαβ (x, t; x′, t′) = (−i) ih̄ ∂

∂t

[

θ (t− t′) < ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′) >

−θ (t′ − t) < ψ̂†
Hβ (x′, t′) ψ̂Hα (x, t) >

]

, (4.291)

where we introduced the notation

< Ô > =
< Ψ0 | Ô | Ψ0 >

< Ψ0 | Ψ0 >
. (4.292)

On performing the time derivative, we have

(4.291) = h̄

[

δ (t− t′) < ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′) + ψ̂†

Hβ (x′, t′) ψ̂Hα (x, t) >

+θ (t− t′) <
∂

∂t
ψ̂Hα (x, t) ψ̂†

Hβ (x′, t′) >

−θ (t′ − t) < ψ̂†
Hβ (x′, t′)

∂

∂t
ψ̂Hα (x, t) >

]

. (4.293)

Since at equal times

ψ̂Hα (x, t) ψ̂†
Hβ (x′, t) + ψ̂†

Hβ (x′, t) ψ̂Hα (x, t)

= eiH t/h̄
{

ψ̂Sα (x) , ψ̂†
Sβ (x′)

}

e−iH t/h̄ = δ (x − x′) δαβ , (4.294)

and using (4.290) in (4.293), we have for the Green’s function

i
∂

∂t
Gαβ (x, t; x′, t′) = δ (x − x′) δ (t− t′) δαβ

+ < T
{

− i

h̄

[

ψ̂Hα (x, t) , H
]

ψ̂†
Hβ (x′, t′)

}

> .(4.295)

The commutator can be easily transformed in a commutator for field operators in
the Schrödinger picture:

[

ψ̂Hα (x, t) , H
]

= eiH t/h̄
[

ψ̂Sα (x) , H
]

e−iH t/h̄ . (4.296)

For the last commutator, we have

[

ψ̂α (x) , H
]

=

[

− h̄2

2m
∇

2 + U (x)

]

ψ̂α (x)

+
∫

dx′ ψ̂†
β (x′) V (| x − x′ |) ψ̂β (x′) ψ̂α (x) , (4.297)
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and going back to the Heisenberg picture, we have

[

ψ̂Hα (x, t) , H
]

=

[

− h̄2

2m
∇

2 + U (x)

]

ψ̂Hα (x, t)

+
∫

dx′ ψ̂†
Hβ (x′, t) V (| x − x′ |)

×ψ̂Hβ (x′, t) ψ̂Hα (x, t) . (4.298)

For the last term, we can make a simple change that will be usefull later, namely
we introduce

V (x, t; x′, t′) ≡ V (| x − x′ |) δ (t− t′) , (4.299)

such that finally, inserting the results obtained above into (4.295), the equation of
motion for the Green’s function is as follows

1 =

{

i
∂

∂t
− 1

h̄

[

− h̄2

2m
∇

2 + U (x)

]}

Gαβ (x, t; x′, t′)

+
i

h̄

∫

dx′′ dt′′ V (x, t; x′′, t′′)

× < T
[

ψ̂†
Hγ (x′′, t′′) ψ̂Hγ (x′′, t′′) ψ̂Hα (x, t) ψ̂†

Hβ (x′, t′)
]

>,(4.300)

where we introduced the notation

1 = δ (x − x′) δ (t− t′) δαβ . (4.301)

This is an integro-differential equation for the Green’s function, that in general has
no explicit solution. In the non-interacting case, the equation above reduces to

{

i
∂

∂t
− 1

h̄

[

− h̄2

2m
∇

2 + U (x)

]}

G
(0)
αβ (x, t; x′, t′) = 1 , (4.302)

i.e. G
(0)
αβ (x, t; x′, t′) is the resolvent of a differential equation, and hence, the name

Green’s function, as in e.g. electrodynamics. Formally, the solution is

G
(0)
αβ (x, t; x′, t′) =

{

i
∂

∂t
− 1

h̄

[

− h̄2

2m
∇

2 + U (x)

]}−1

, (4.303)

where we can view the linear differential equation above as a matrix equation with
an infinite number of continuous and discrete indices. Given the potential U (x),
it is in many cases (as in the case of a periodic potential), possible to obtain an
explicit solution for the propagator.

We can in the same spirit express the whole eq. (4.300) in such a way that a
formal solution can be obtained as in the non-interacting case. For that purpose, a
new quantity is introduced.

i

h̄

∫

dx′′ dt′′ V (x, t; x′′, t′′)

× < T
[

ψ̂†
Hγ (x′′, t′′) ψ̂Hγ (x′′, t′′) ψ̂Hα (x, t) ψ̂†

Hβ (x′, t′)
]

>

≡ −
∫

dx′′ dt′′ Σ∗
αγ (x, t; x′′, t′′) Gγβ (x′′, t′′; x′, t′) . (4.304)
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Going back to (4.300), we can write

[

G(0)−1 − Σ∗
]

G = 1 , (4.305)

where we use the matrix notation mentioned above. Again a formal solution is

G =
[

G(0)−1 − Σ∗
]−1

, (4.306)

or

G = G(0) +G(0) Σ∗G . (4.307)

The last equation is an integral equation for the one-particle Green’s function, that
is called Dyson equation. The kernel of the integral equation is the so-called one-
particle irreducible part of the self-energy. We will discuss the Dyson equation when
we arrive at the development of a perturbation theory and diagrams. The physical
meaning of the self-energy should become clear in the next section.

4.4.3 Physical interpretation of the one-particle Green’s

function and the self-energy

Without still considering the full structure of the formalism that gives the frame for
the Green’s function theory, we discuss a number of features on a general level that
allow us to understand the physical meaning of the different quantities introduced
before and make conexion to their experimental relevance.

The Lehmann representation

We consider again the exact Green’s function given by eq. (4.286). We assume in
the following that the ground-state is normalized such that < Ψ0 | Ψ0 >= 1 and,
hence,

iGαβ (x, t; x′, t′) = < Ψ0 | T
[

ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′)

]

| Ψ0 > . (4.308)

We assume further, that we have the complete set of eigenstates {| Ψn >} of the
Hamiltonian and insert them between the creation and annihilation operators.

iGαβ (x, t; x′, t′) =
∑

n

[

θ (t− t′) < Ψ0 | ψ̂Hα (x, t) | Ψn >

× < Ψn | ψ̂†
Hβ (x′, t′) | Ψ0 >

−θ (t′ − t) < Ψ0 | ψ̂†
Hβ (x′, t′) | Ψn >

× < Ψn | ψ̂Hα (x, t) | Ψ0 >
]

. (4.309)
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Since the creation and annihilation operators are in the Heisenberg picture, as given
by (4.283), and the set of states considered here are eigenstates of H , we have

iGαβ (x, t; x′, t′) =
∑

n

[

θ (t− t′) exp
[

− i

h̄
(En −E0) (t− t′)

]

× < Ψ0 | ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) | Ψ0 >

−θ (t′ − t) exp
[
i

h̄
(En −E0) (t− t′)

]

× < Ψ0 | ψ̂†
β (x′) | Ψn >< Ψn | ψ̂α (x) | Ψ0 >,(4.310)

where En is the eigenvalue of H for | Ψn >, and E0 is the ground-state energy. Since
we assumed a time independent Hamiltonian, G depends only on the difference t−t′.

Next we consider the θ functions that appear as a consequence of time ordering.
It will be usefull for the discussion right after, to give an integral representation of
this function that looks as follows

θ (t− t′) = lim
η→0+

−
∫ ∞

−∞

dω

2πi

e−iω(t−t′)

ω + iη
. (4.311)

Figure 4.3: a) Contour integral for t > t′.b) Contour integral for t < t′.

a) b)

−iη −iη

As shown by Fig. 4.3, after an analytic continuation in the complex ω-plane and
applying the theorem of residues, the desired result is obtained. After having in-
troduced the integral representation of the θ function, we can perform a Fourier
transformation of the Green’s function. Let us consider explicitely the first term in
(4.310), where we use the notation τ ≡ t− t′.

∫

dτ eiωτGαβ (x,x′; τ) → (−i)
∫

dτ eiωτ θ(τ) e−i(En−E0)τ/h̄

= −(−i)
∫

dω′

2πi

1

ω′ + iη

×
∫

dτ eiωτ e−iω
′τ e−i(En−E0)τ/h̄

=
1

ω − 1
h̄

(En − E0) + iη
. (4.312)
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Let us give a close look to the energy difference that appeared in the denominator
above. This energy denominator belong to a term with matrix elements

(En − E0) ↔ < Ψ0 | ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) | Ψ0 > . (4.313)

Since | Ψ0 > is the ground-state for N particles, the state | Ψn > should correspond
to an excited state with N + 1 particles. This means that En corresponds to the
energy of an excited state of the system with N + 1 particles, and we denote it
explicitely as En → En(N + 1). Then, the energy denominator in (4.312) can be
written as follows.

En − E0 = En(N + 1) −E0(N)

= En(N + 1) −E0(N + 1) + E0(N + 1) −E0(N)

= ǫn(N + 1) + µ , (4.314)

where

ǫn(N + 1) = En(N + 1) −E0(N + 1) (4.315)

is the excitation energy of the system with N + 1 particles, and

µ = E0(N + 1) −E0(N) , (4.316)

is the chemical potential, and since we are working at T = 0, it is the Fermi energy. A
similar calculation leads to the corresponding results for the second term in (4.310).
The final result is

Gαβ (x,x′;ω) = h̄
∑

n

[

< Ψ0 | ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) | Ψ0 >

h̄ω − µ− ǫn(N + 1) + iη

+
< Ψ0 | ψ̂†

β (x′) | Ψn >< Ψn | ψ̂α (x) | Ψ0 >

h̄ω − µ+ ǫn(N − 1) − iη

]

.(4.317)

The expression above shows, that the poles of the one-particle Green’s function
give the exact one-particle excitations of the interacting system. The first term
correspond to the excitations of a particle added to the system, and hence, are
particle excitations, that have energies above the chemical potential since ǫn > 0.
The second term corresponds to one particle less in the system, and hence they
are hole excitations, with energies below the chemical potential. Figure 4.4 shows
location of the singularities of the Green’s function in the Lehmann representation.

We can easily calculate the Green’s function in the case of the Fermi gas, since
there, all the excited states are known, and we can express the field operators in
terms of creation and annihilation operators in momentum space.

ψ̂α (x) =
1√
V

∑

k

fkα exp (ik · x) (4.318)

ψ̂†
β (x) =

1√
V

∑

k

f †

kβ
exp (−ik · x) (4.319)
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�
!

Figure 4.4: Schematic location of the poles of G(ω) in the complex ω plane. The
red crosses correspond to hole excitations below the chemical potential, whereas the
blue crosses correspond to particle excitations.

Then, for the matrix elements in (4.317), we have

< Ψ0 | ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) | Ψ0 >

=
1

V

∑

k,k
′

exp (ik · x) exp (−ik · x′)

× < Ψ0 | fkα | Ψn >< Ψn | f †

kβ
| Ψ0 > , (4.320)

and with eigenstates | Ψn >=| kα >,

(4.320) =
1

V

∑

k

exp [ik · (x − x′)]

× < Ψ0 | fkα | k >< k | f †

kα
| Ψ0 > δαβ . (4.321)

Inserting this expression into (4.317) would lead to a propagator that depends only
on the difference x − x′, as it should, since the Fermi gas corresponds to a ho-
mogeneous system. This means that we can Fourier transform the corresponding
expression, obtaining the following result.

Gαβ (k, ω) = δαβ h̄

[

|< Ψ0 | fkα | k >|2
h̄ω − ǫk + iη

+
|< Ψ0 | f †

kα
| k >|2

h̄ω − ǫk − iη

]

. (4.322)

Here we see explicitely that the poles of the one-particle Green’s function correspond
to the one-particle excitation energies for particles and holes, where the energies of
particle states are above the chemical potential whereas the states for holes have
energies below the chemical potential, since ǫk > 0, as anticipated in the general
discussion above. Notice that after inserting the actual values for ǫn(N ± 1), the
chemical potetial is cancelled, since ǫn(N ± 1) = En(N ± 1) − E0(N ± 1) gives the
difference in energy for a particle (hole) created above (below) the Fermi energy,
with respect to the Fermi energy.
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We can also obtain the matrix elements, since, as we have already seen, the
ground state of the Fermi gas corresponds to all states occupied up to EF , i.e. up
to | k |= kF . Therefore, in this specially simple case,

|< Ψ0 | fkα | k >|2 = θ (k − kF ) ,

|< Ψ0 | f †

kα
| k >|2 = θ (kF − k) . (4.323)

Once we have seen how the propagator of free electrons looks like, let us, before
we go into the discussion of further many-body formalism, consider the case of a
solid, i.e. electrons in the presence of a periodic potential, as we have at least partly
discussed in Chapter 3. As we have shown in Sec. 4.2.3, field operators are related
to a one-particle basis with appropriate quantum numbers. As we have seen in
Chapter 3, the quantum numbers for a one-particle basis in a periodic potential
are wavevectors in the first Brillouin zone, as a consequence of Bloch’s theorem,
and eventually an index for the bands. Furthermore, without external fields, the
Hamiltonian of a solid in the very general form given in (4.289) conserves spin,
and, hence, the states can be also labeled by the spin projection. Therefore, quite
generally, we have very similarly as for the Fermi gas,

ψ̂α (x) =
∑

n,k

f
nkα unk exp (ik · x) ,

ψ̂†
β (x) =

∑

n,k

f †

nkβ
u∗
nk exp (−ik · x) , (4.324)

with the difference, that the summation over k is now restricted to the first Brillouin
zone.

As in the case of the Fermi gas, we focus now on the matrix elements in (4.317),

< Ψ0 | ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) | Ψ0 >

=
∑

n,n′

k,k
′

u
nk (x) u∗

n′k
′ (x′) exp (ik · x) exp (−ik′ · x′)

× < Ψ0 | fnkα | Ψn >< Ψn | f †

n′k
′
β
| Ψ0 > , (4.325)

From the matrix element < Ψ0 | f
nkα

| Ψn >, we see that | Ψn > should be a
state that differs from the ground-state by one particle in the one-particle state
with quantum numbers n, k, α. We name it accordingly

| Ψn >→| nkα > , (4.326)

and consequently, β = α, k′ = k, n′ = n, and

ǫn(N + 1) → ǫ
nk . (4.327)

Inserting those modifications in the matrix elements (4.325), and the matrix ele-
ments together with the one-particle excitations in (4.317), we have finally for the
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Green’s function of a periodic system,

Gαβ (x,x′;ω) = h̄δαβ
∑

nk

u
nk (x) u∗

n′k
′ (x′) exp [ik · (x − x′)]

×



< Ψ0 | fnkα | nkα >< nkα | f †

nkα
| Ψ0 >

h̄ω − ǫ
nk + iη

+
< Ψ0 | f †

nkα
| nkα >< nkα | f

nkα
| Ψ0 >

h̄ω − ǫ
nk − iη



 . (4.328)

In order to obtain the form of the Green’s function in reciprocal space, we recall
the fact that the functions u

nk
(x) are periodic with the periodicity of the lattice,

and hence, as shown in (3.22), they can be expanded in a Fourier summation over
reciprocal lattice vectors, such that

Gαβ (x,x′;ω) ∼ 1

Ω

∑

k,G,G
′

vG v∗
G

′

× exp [i (k + G) · x] exp [−i (k + G′) · x′] · · · (4.329)

where Ω is the volume of the unit cell. This shows that in general, the Fourier-
transform of a non-local function on a lattice will be of the form

G(x,x′) → G (k + G,k + G′) . (4.330)

This can be seen quite generally, since if G(x,x′) describes a periodic system, the
following should be fulfilled

G(x,x′) = G(x + R,x′ + R) . (4.331)

Then, a double Fourier transformation leads to

G (k,k′) =
1

V

∫

d3x d3x′ exp (−ik · x) exp (ik′ · x′) G(x,x′)

= exp [i (k − k′) · R]

× 1

V

∫

d3x d3x′ exp (−ik · x) exp (ik′ · x′) G(x,x′) , (4.332)

i.e. k − k′ = G. Therefore, a non-local function in a periodic system will be in
general a function of k ∈ first Brillouin zone, G, and G′.

In the case of models on a lattice, as frequently used by theoreticians, the degrees
of freedom are only defined on the lattice sites. This means, that a natural choice is
to go over to Wannier functions. As shown in (3.63), Bloch functions are the lattice
Fourier-transform of Wannier functions, such that

u
nk (x) =

1√
N

∑

R

ϕn (x − R) exp [i (R − x) · k] . (4.333)
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A possible choice of a Wannier function is

ϕn (x − R) = δ (x − R) exp [−i (R − x) · k] , (4.334)

such that the phase factor is cancelled out. Inserting the resulting u
nk (x) into

(4.328), we can consider again the double Fourier transform (4.332), and obtain,

G (k,k′) =
1

NV

∑

R,R
′

∫

d3x d3x′ δ (x − R) δ (x − R′)

×
∑

n,
˜k

exp
[

−i
(

k − k̃
)

· x
]

exp
[

i
(

k′ − k̃
)

· x′
]

× · · ·

=
1

NV

∑

n,
˜k

∑

R,R
′

exp
[

−i
(

k − k̃
)

· R
]

exp
[

i
(

k′ − k̃
)

· R′
]

× · · ·
=

N

V
δk,k′

∑

n

· · · (4.335)

Therefore, in the case of a model on a lattice, where the degrees of freedom are only
defined on the lattice sites, we have for the one-particle Green’s function,

Gαβ (k, ω) =
h̄

Ω
δαβ

∑

n

[ |< Ψ0 | fnkα | nkα >|2

h̄ω − ǫ
nk + iη

+
|< Ψ0 | f †

nkα
| nkα >|2

h̄ω − ǫ
nk − iη

]

. (4.336)

In particular, in the case of a non-interacting system, with only one band, say a
tight binding model with only nearest neighbor hopping on a hypercubic lattice in
d dimensions, where the dispersion relation is given by

ǫk = −2t
d∑

i=1

cos (k · ai) , (4.337)

the Green’s function is

Gαβ (k, ω) =
h̄

Ω
δαβ

[

θ (k − kF )

h̄ω − ǫ
nk + iη

+
θ (kF − k)

h̄ω − ǫ
nk − iη

]

. (4.338)

Spectral functions

For the following discussion we concentrate on the case of a lattice model (4.336),
in order to keep the notation simple, and not to be restricted to a homogeneous
system.

Let us introduce two spectral functions A+ (k, ω) and A− (k, ω) that give the
probability of a particle (+) or a hole (−) with momentum k and energy ω to be in
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an exact eigenstate of the system with N + 1 or N − 1 particles respectively. They
are defined as

A+ (k, ω) ≡ 1

Ω

∑

n

|< Ψ0 | fnkα | nkα >|2 δ
(

h̄ω − ǫ
nk

)

,

A− (k, ω) ≡ 1

Ω

∑

n

|< Ψ0 | f †

nkα
| nkα >|2 δ

(

h̄ω − ǫ
nk

)

, (4.339)

From the definitions above it is clear that these functions are real and positive
definite. These expressions are very similar to those of the density of states we dis-
cussed in Chapter 3, with the difference that in that chapter, we were dealing with
non-interacting particles, and hence, all the possible eigenstates of the system were
one-particle states. In this case, the matrix elements specify that we are considering
only those states related with one particle more or less in the system, and therefore,
we are looking at the density of states of one-particle states resolved in momentum.
These quantities are in fact accessible experimentally with angular resolved photoe-

mission or inverse photoemission spectroscopy, in short ARPES for photoemission.
For inverse photoemission progress has still to be reached in order to have accurate
results. The density of states for one-particle excitations is obtained by integrating
over momentum.

N(ω) =
1

N

∑

k

[

A+ (k, ω) + A− (k, ω)
]

, (4.340)

where this quantity measures the density of states of both states above and below
the Fermi energy.

By comparing (4.339) with (4.336), we see that the spectral functions and the
one-particle Green’s function are related as follows

G (k, ω) =
∫ ∞

−∞
dω′

[

A+ (k, ω′)

ω − µ
h̄
− ω′ + iη

+
A− (k, ω′)

ω − µ
h̄

+ ω′ − iη

]

(4.341)

Since we have an integral that passes through a singularity, we have to use the
concept of a principal value of an integral, that is summarized symbolically for real
ω as follows

1

ω ± iη
= P 1

ω
∓ iπ δ(ω) . (4.342)

Here P means that the real part of the integral is to be calculated as a principal
value, e.g.

G (k, ω) = P
∫ ∞

−∞
dω′ A

+ (k, ω′)

ω − µ
h̄
− ω′

− iπA+
(

k, ω − µ

h̄

)

(4.343)

for h̄ω > µ = EF . Since the integral in now real, we can summarize the result above
as

A+
(

k, ω − µ

h̄

)

= −1

π
ImG (k, ω) for ω >

µ

h̄
,

A−
(

k,
µ

h̄
− ω

)

=
1

π
ImG (k, ω) for ω <

µ

h̄
. (4.344)
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That is, the one particle Green’s function gives the spectral function for particles
and holes measured from the chemical potential (or Fermi energy). Since the density
of states is given by the sum over momentum of the spectral functions, it is given
by the local Green’s function

N
(

ω − µ

h̄

)

= −1

π
ImG (R,R ;ω) for ω >

µ

h̄
,

N
(
µ

h̄
− ω

)

=
1

π
ImG (R,R ;ω) for ω <

µ

h̄
, (4.345)

where again, we made explicit, that the energies are measured from the Fermi en-
ergy. We therefore see, that the one-particle Green’s function is directly related
to experimentally accessible quantities like the spectral function (angular resolved
photoemission and inverse phototemission), and the density of states (integrated
photoemission).

Quasiparticles

Once we have seen that the Green’ function allows to access the one-particle states,
we discuss here, which are the signals and characteristics of those states.

We consider first non-interacting fermions with some dispersion relation ǫk.

  0 �a
EF

��a
Figure 4.5: Dispersion relation for free electrons in one dimension.

Figure 4.5 displays an example in one dimension for a tight-binding model with
nearest neighbor hopping t and a dispersion ǫk = −2t cos ka. The Green’s function
for a non interacting case was already calculated in (4.338), with the result

G (k, ω) =
h̄

Ω

[

θ (k − kF )

h̄ω − ǫk + iη
+

θ (kF − k)

h̄ω − ǫk − iη

]

, (4.346)
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and according to (4.344), we have

A+ (k, h̄ω − EF ) =
h̄

Ω
δ
(

h̄ω − ǫk

)

for k > kF ,

A− (k, EF − h̄ω) =
h̄

Ω
δ
(

h̄ω − ǫk

)

for k < kF . (4.347)

0 !�k � �F

A+(k; !)

Figure 4.6: Spectral weight for free fermions.

|

Each state has a weight that is unity apart from the normalization factor. Since
we are dealing with a non-interacting system, all the weight is on the one-particle
state. This corresponds to a particle (or a hole) in that state.

Let us now consider an interacting system. As we saw in (4.306), a formal
solution is obtained in the form

G =
[

G(0)−1 − Σ∗
]−1

, (4.348)

where in general the propagators and the self-energy have to be considered as non-
local functions depending in general on two point in space and time or in momenta
and energies. However, as we have discussed in the case of the Green’s function,
being on a lattice renders these quantities diagonal in momentum, such that we can
write (without paying attention to the normalization factors)

G (k, ω) =
1

h̄ω − ǫ0
k
− Σ∗ (k, ω)

, (4.349)

where ǫ0
k

correspond to the dispersion obtained for the non-interacting fermions,

i.e. the dispersion contained in G(0). In general, Σ∗ (k, ω) is a complicated complex
function but let us assume that at least a part of Σ∗ (k, ω) is well behaved, meaning
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that it is a function with a finite range in momentum and energy, and it can be
isolated such that the energy dispersion is modified as

ǫk = ǫ0k + ReΣ̃ (k, ω) . (4.350)

and also an imaginary part can be separated, such that

G (k, ω) =
z (k)

h̄ω − ǫk + iΓ
+Ginc , (4.351)

where Γ gives a lifetime to the particle with dispersion ǫk. Ginc contains the rest,
where no poles are present, and is called the incoherent part since it does not describe
a particle that propagates coherently. In contrast to it, we call the first term Gc,
the coherent part, since it corresponds to a coherently propagating particle at least
for times t < 1/Γ. This can be seen by taking the Fourier transform of Gc (k, ω) in
order to see its evolution in time. Here we take t > 0 and Γ > 0.

Gc (k, t) =
∫ ∞

−∞
dω e−iωt

z (k)

ω − ǫk + iΓ

∼ z (k) exp
{

−i
[

ǫk − iΓ
]

t
}

, (4.352)

The contour integral can be performed in the lower half-plane for t > 0. Since

�(~k)� i�

Figure 4.7: Contour used to evaluate Gc(t) for t > 0 .

Γ was assumed to be positive, we see that the Green’s function describes a plane
wave that decays with the lifetime 1/Γ. Furthermore, the residue of the pole z (k)
gives the weight of the particle. Since in this case, the particle has not an infinite
lifetime like in the non-interacting case, one speaks of a quasiparticle. Accordingly,
z (k) is called the quasiparticle weight. In the case that it vanishes, there are no
quasiparticles, i.e. an electron with momentum k and spin α has not finite overlap
with the excitations of the system.

We can consider now the contribution of Gc to the spectral function. We can
rewrite it as follows

Gc =
z (k)

(

h̄ω − ǫk − iΓ
)

(

h̄ω − ǫk

)2
+ Γ2

, (4.353)
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such that

A+ (k, h̄ω −EF ) = −1

π
ImG (k, ω)

→ z (k) Γ
(

h̄ω − ǫk

)2
+ Γ2

. (4.354)

The coherent part of the one-particle propagator leads to a Lorentzian peaked at
ǫk, with a width that is given by the inverse of the lifetime and proportional to the
quasiparticle weight. A similar result is obtained for the hole, taking into account
that there, Γ < 0.
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Figure 4.8: . Sketch of the spectral function for a quasiparticle with finite lifetime.

A+ (k, ω)

ω|

Figure 4.8 gives a sketch of the contribution from the coherent part of the propagator
to the spectral function. The background is due to the incoherent part of the
propagator. If the quasiparticle weight vanishes, then the background is the only
remaining par of the spectral function.

Momentum distribution function

The momentum distribution function plays an important role for fermionic systems
since it determines whether a Fermi surface is present or not, at least in translational
invariant systems, where momentum is a good quantum number. It is defined as
follows

nσ (k) = < Ψ0 | f †

k,σ
fk,σ | Ψ0 > , (4.355)

where we use a definition that distinguishes the spin projection. As we have already
discussed in Sec. 4.3, in the ground-state of a non-interacting system all electrons
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are sitting in the lowest levels, up to the Fermi momentum, such that in this case,

nσ (k) =

{

1 for k < kF
0 for k > kF

(4.356)

where we assume that the number of electrons with for each spin projection is equal.
In the interacting case, we have to look for the relation of this quantity with the

Green’ function. Since for the evaluation of the Green’s function, the time ordering
of operators matters, we can obtain (4.355), where the creation operator is at the
left of the destruction operator by the follwing limiting procedure

nσ (k) = −iG
(

k; t, t+
)

, (4.357)

where t+ is an infinitesimal later that t, such that the operators appear in the
desired order. The minus sign compensates the sign due to the application of the
time ordering operator. We can now insert the Green’s function on the Lehman
representation and Fourier trnasform it from frequency back to time.

(4.357) =
−i
2π

∫

dωG (k, ω) e−iω(t−t
+)

=
1

2πi

∫

C
dωG (k, ω)

=
1

2πi

∫

C
dω [Gc (k, ω) +Ginc (k, ω)] . (4.358)

Figure 4.9 show the contour of integration C in (4.358) that is appropriate for

t0 > t

Figure 4.9: Contour of integration C for t′ > t.

t − t+ < 0. In the last equality we explicitely wrote the coherent and incoherent
parts of the Green’s function, since they give different contributions to the integral.
The coherent part has a pole that is on the upper half of the complex plane for
energies below EF , and hence for k < kF , since in that case Γ < 0. Therefore,
given the contour C, Gc gives a contribution to n (k) that is the residue of the
pole, namely z (k). On the other hand, for energies above EF , the poles of Gc lie
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in the lower half-plane since Γ > 0. Therefore, there is no contribution from the
coherent part to n (k). On the other hand, the incoherent part has no poles and
gives a continuous contribution to the integral. The result of the discussion above
is summarized in Fig. 4.10, where the blue line shows n (k) for the non-interacting
case, and the red line the result for the interacting case. In the non-interacting

kkF

1
n(k)

Figure 4.10: n (k) for non-interacting fermions (blue line) and for interacting ones
(red line).

case, the Green’s function has only a coherent part and the residue of the poles is
z (k) = 1. This gives a jump at the Fermi momentum kF as shown by the blue line.
For the interacting case, however, z (k) < 1 and there is moreover an additional
continuous contribution from Ginc. Nevertheless, as long as z (k) 6= 0, there is a
jump at the Fermi momentum and, hence a sharp Fermi surface. Only in the case
that z (k) = 0, the jump disappears, signaling that there are no quasiparticles.
Therefore, the existence of a Fermi surface is directly related to the existence of
quasiparticles. In this case, one speaks of a Fermi liquid.

There is a well known case and well defined at least from the theoretical side,
where z (k) = 0 and close to kF ,

n (k) =
1

2
− sign (k − kF ) | k − kF |α , (4.359)

where the exponent α > 0. This case corresponds to a universality class called
Luttinger liquid, that encompasses interacting one-dimensional fermionic systems.
Although Luttinger liquids are beyond the scope of these lectures, let us mention that
in this case it can be proved that z (k) = 0, and therefore, one-particle excitations are
not connected to quasiparticles. Instead, in the case of electrons in one-dimension, it
can be shown at least in generic models, that they decay in two kind of excitations.
One group is called holons, and they carry charge +e but no spin and the others
are called spinons with spin S = 1/2 but zero charge. This phenomenon is known
as charge-spin separation.
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At present, materials that present deviations from Fermi liquids are at the center
of research in solid state, one of the most prominent candidates being high temper-
ature superconductors. To which extent charge-spin separation plays a role in these
systems is a matter of active debate.

Lifetime close to the Fermi surface

In the discussion above we have shown that if there is a coherent part of the Green’s
function, then, there are quasiparticles and their existence implies a Fermi surface.
We should still discuss, how the lifetime of the quasiparticles behaves when we
approach the Fermi surface, since if it would tend to zero or remain finite at the
Fermi surface, such a concept would be of doubtfull value.

In the following we will assume that z (k) 6= 0, such that a Fermi surface exists.
For simplicity, we can think of a homogeneous and isotropic system such that the
Fermi surface is a sphere. Let us focus on a quasiparticle with energy close to the
Fermi surface, i.e.

ǫ = EF + δ , with
δ

EF
≪ 1 , (4.360)

In general, the quasiparticle will be scattered by particles in the Fermi sea, i.e. with
ǫ′ < EF . We denote the final states with a subscript ‘1’. The scattering rate

~k0 ~k01

~k ~k1

Figure 4.11: Schematic representation of a scattering event.

should be proportional to the number of available initial and final states, given by
the momenta depicted in Fig. 4.11, such that

Γk ∝
∫

dk′
∫

dk1

∫

dk′
1 δ [k + k′ − (k1 + k′

1)] , (4.361)

where we took into account explicitely momentum conservation. Since all the states
below the Fermi energy are occupied, both particles should be in general scattered
to states above the Fermi energy. During the scattering process also energy conser-
vation should be respected, i.e.

ǫ+ ǫ′ = ǫ1 + ǫ′1 . (4.362)
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Taking

ǫ = EF + δ ǫ1 = EF + δ1 ,
ǫ′ = EF + δ′ ǫ′1 = EF + δ′1 ,

(4.363)

we have δ′ = δ1+δ
′
1−δ. Since δ/EF ≪ 1, and δ′ < 0, it follows that δ1, δ

′
1, | δ′ |≪ EF .

We can now go back to (4.361) and change the integrations over momenta into
integrations over energy intoducing density of states

Γk ∝
∫ EF

−∞
dǫ′N(ǫ′)

∫ ∞

EF

dǫ1N(ǫ1)
∫ ∞

EF

dǫ′1 N(ǫ′1) δ [ǫ+ ǫ′ − (ǫ1 + ǫ′1)]

≤
∫ EF +δ

EF

dǫ1N(ǫ1)
∫ EF +δ

EF

dǫ′1 N(ǫ′1)N(ǫ1 + ǫ′1 − ǫ)

∼ N(EF )3 δ2 . (4.364)

We therefore see that Γ ∼ (ǫ−EF )2, as we get closer to the Fermi energy, showing
that as long as a Fermi surface exists, quasiparticles become better and better defined
as we approach the Fermi surface and they have infinite lifetime on it, since we
know on the other hand, that Γ has to change sign on crossing the Fermi surface.
The phase space arguments used above do not depend on the specific form of the
interaction, but only on Fermi statistics and are, therefore, quite general. They
were shown to be valid in all orders of perturbation theory by Luttinger (J.M.
Luttinger, Phys. Rev. 121 (1961), 942). They were also rederived in the frame
of renormalization group theory by Shankar (). The arguments above fail, when
divergencies appear in some form, such that except for the free system, the Fermi
surface is destroyed, as in the one-dimensional case.

4.4.4 Perturbation theory and Feynman diagrams

After having discussed general features of the Green’s function, we give in this
subsection the basic arguments needed in order to perform a perturbation expansion
and to discuss Feynman diagrams for a fermionic system. The exposition is far from
complete, the main aim being to give a basis to understand diagrams. A thorough
discussion may be found e.g. in Quantum Theory of Many-Particle Systems by A.
Fetter and J.D. Walecka.

Adiabatic ”switching on” and the Gell-Mann and Low theorem

The results discussed here will give a link between the Green’s function as defined
in (4.286) and perturbation theory through the evolution operator (4.279) defined
in the interaction picture.

We already discussed the adiabatic theorem in Chapter 2 and have seen, how
the eigenstates of a Hamiltonian at a time t0 are connected to the eigenstates of
the Hamitltonian at a later time, if the Hamiltonian is time dependent but this
time dependence is sufficiently slow. In the present case, the interest is to connect
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the states of the exactly soluble Hamiltonian H0, where in principle everything is
known, and the ones of the full Hamiltonian H = H0 + HI . For this purpose, we
introduce the following time-dependent Hamiltonian

H = H0 + e−ǫ|t|HI , (4.365)

where ǫ > 0 and very small. For | t |→ ∞, the Hamiltonian (4.365) reduces to H0,
whereas at t = 0, it becomes the interacting problem we are interested in. Therefore
it is said that in the limit ǫ→ 0, the interaction is switched on adiabatically.

Given the Hamiltonian (4.365), we can go to the interaction picture and replace
in the results obtained in Sec. 4.4.1

HI −→ e−ǫ|t|HI . (4.366)

This leads to an evolution operator like (4.279), with the corresponding changes

Uǫ(t, t0) =
∞∑

n=0

1

n!

(

− i

h̄

)n ∫ t

t0
dt1 · · ·

∫ t

t0
dtn

×e−ǫ(|t1|+···+|tn|) T [HI (t1) · · ·HI (tn)] . (4.367)

As t0 → −∞, the effect of the interaction vanishes and one approaches H0, with

H0 | Φ0 >= E(0) | Φ0 > . (4.368)

Therefore, as t0 → −∞, | ΨI (t0) >→| Φ0 >. Recalling the relation among state
vectors in the different pictures (4.285), we have in particular for the states vectors
in the Heisenberg and interaction pictures,

| ΨH >=| ΨI(0) >= Uǫ (0,−∞) | Φ0 > , (4.369)

such that the evolution operator in the interaction picture gives us the link between
the eigenstates of the non-interacting system and the eigenstates of the full interact-
ing one, since as we already mentioned, the states vectors in the Heisenberg picture
correspond to the eigenvectors of the interacting system.

It only remains to see what happens in the limit ǫ → 0. This is shown by the
Gell-Mann and Low theorem that states the following. If the following quantity

exists to all orders in perturbation theory,

lim
ǫ→0

Uǫ (0,−∞) | Φ0 >

< Φ0 | Uǫ (0,−∞) | Φ0 >
≡ | Ψ0 >

< Φ0 | Ψ0 >
, (4.370)

then, it is an eigenstate of H

H
| Ψ0 >

< Φ0 | Ψ0 >
= E

| Ψ0 >

< Φ0 | Ψ0 >
. (4.371)

The theorem demonstrates that starting with an eigenstates ofH0, in the limit ǫ→ 0,
an eigenstate of the full Hamiltonian develops from | Φ0 >. In order to avoid an
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exceedingly formal presentation, we defer the reader to Sec. 3.6 of the book by Fetter
and Walecka for a demonstration of this theorem. Since the adiabatic switching on
was defined in such a way that also for t→ ∞, we reach the non-interacting system,
the proof applies equally well to

Uǫ (0,∞) | Φ0 >

< Φ0 | Uǫ (0,∞) | Φ0 >
, (4.372)

where

Uǫ (0,∞) = U †
ǫ (∞, 0) . (4.373)

One-particle Green’s function as power series in the interaction

Once we could connect the eigenstates of the non-interacting system with the ones
of the full interacting one, by appropriately passing through the interaction picture,
we still have to somehow relate operators in the Heisenberg picture, as they appear
in the definition of the Green’s function, to the evolution operators that belong to
the interaction picture. For this, it is usefull to relate an operator in the Heisenberg
picture to an operator in the interaction picture. We recall the relations between
operators in the Heisenberg picture and those in the Schroedinger picture (4.283)
and between operators in the interaction picture and the Schrödinger picture

ÔH(t) = eiH t/h̄ ÔS e−iH t/h̄

= eiH t/h̄ e−iH0 t/h̄ ÔI(t) eiH0 t/h̄ e−iH t/h̄ . (4.374)

In order to identify the product of exponentials, we need to recall the definition of
a state in the interaction picture (4.266), and the evolution operator there (4.271).
From (4.266) we have

| ΨI(t) > = exp
[
i

h̄
H0 t

]

| ΨS(t) >

= exp
[
i

h̄
H0 t

]

exp
[

− i

h̄
H (t− t0)

]

| ΨS(t0) >

= exp
[
i

h̄
H0 t

]

exp
[

− i

h̄
H (t− t0)

]

exp
[

− i

h̄
H0 t0

]

| ΨI(t0) > .(4.375)

But, due to (4.271),

U(t, t0) = exp
[
i

h̄
H0 t

]

exp
[

− i

h̄
H (t− t0)

]

exp
[

− i

h̄
H0 t0

]

. (4.376)

We have here another way to express the evolution operator in the interaction pic-
ture. This form is usefull in connection with (4.374), since it shows that

ÔH(t) = U(0, t) ÔI(t)U(t, 0) . (4.377)
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In the case of two operators, the case that is of interest to calculate the Green’s
function, we would have

ÔH(t) ÔH(t′) = U(0, t) ÔI(t)U(t, 0)U(0, t′) ÔI(t
′)U(t′, 0)

= U(0, t) ÔI(t)U(t, t′) ÔI(t
′)U(t′, 0) , (4.378)

where in going from the first to the second line we used the fact that

U(t, t′) = U(t, t1)U(t1, t
′) , (4.379)

for any t, t1, and t′, since for any pair of states fulfilling (4.271), we can perform the
evolution in one step, i.e.

| ΨI(t) > = U(t, t1) | ΨI(t1) >

= U(t, t1)U(t1, t
′) | ΨI(t

′) > . (4.380)

We have now the elements to formulate a perturbative form for the Green’s
function. There we need recalling eq. (4.286) on the one hand, the ground-state of
the interacting system. According to the Gell-Mann and Low theorem we have for
the normalization of the Green’ function

< Ψ0 | Ψ0 >

|< Φ0 | Ψ0 >|2
=

< Φ0 | Uǫ (∞, 0) Uǫ (0,−∞) | Φ0 >

|< Φ0 | Ψ0 >|2

=
< Φ0 | Ŝ | Φ0 >

|< Φ0 | Ψ0 >|2
, (4.381)

where we defined

Ŝ = Uǫ (∞, 0) Uǫ (0,−∞) = Uǫ (∞,−∞) . (4.382)

Since from the Gell-Mann and Low theorem we only know that the ratio exists in the
limit ǫ→ 0, we keep the denominator in calculating the norm of the ground-state.

We need on the other hand, the expectation value in the ground-state of the field
operators. Again we keep the denominator coming from (4.370).

< Ψ0 | ψ̂Hα (x, t) ψ̂†
Hβ (x′, t′) | Ψ0 >

|< Φ0 | Ψ0 >|2

=
1

|< Φ0 | Ψ0 >|2
< Φ0 | Uǫ (∞, 0) U(0, t) ψ̂Iα (x, t) U(t, t′)

×ψ̂†
Iβ (x′, t′) U(t′, 0)Uǫ (0,−∞) | Φ0 >

=
< Φ0 | Uǫ (∞, t) ψ̂Iα (x, t) U(t, t′) ψ̂†

Iβ (x′, t′) Uǫ (t
′,−∞) | Φ0 >

|< Φ0 | Ψ0 >|2
.(4.383)

Then, the Green’s function defined in (4.286) can be expressed as

iGαβ (x, x′) =
< Φ0 | Uǫ (∞, t) ψ̂Iα (x) U(t, t′) ψ̂†

Iβ (x′) Uǫ (t
′,−∞) | Φ0 >

< Φ0 | Ŝ | Φ0 >
,(4.384)
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where the denominator coming from (4.370) is cancelled out. We also introduced
the short writing (x, t) −→ x.

In order to explicitely show that (4.384) corresponds to a perturbative expansion,
we recall the form of the evolution operator (4.279), where a series expansion in
HI appears. Each of the three evolution operators above gives rise to such a series
expansion with a time ordering operator. Since the definition of the Green’s function
itself also contains a time ordering operator, we can use the time ordered product
for all the terms, such that the proper ordering is kept. Without writing the whole
expression explicitely, let us concentrate on the main elements we have to reconsider
in order to find a compact expression. As shown in eq. (4.279), from each evolution
operator we have an infinite summation, such that in the numerator of (4.384) we
should have

Uǫ (∞, t) ψ̂Iα (x) U(t, t′) ψ̂†
Iβ (x′) Uǫ (t

′,−∞)

→
∑

ℓ

1

ℓ!

(

− i

h̄

)ℓ ∑

m

1

m!

(

− i

h̄

)m ∑

p

1

p!

(

− i

h̄

)p

× · · · ,(4.385)

where · · · correspond to the various integrals and time ordered products of HI ’s
and field operators. Now we notice that an infinite summation with all possible r!
ordering of times (denoted by · · ·), can be split in the following way

∑

r

1

r!

(

− i

h̄

)r

× · · · =
∑

m

∑

p

∑

r

1

r!
δr,m+p

(

r

m

)(

− i

h̄

)r

× · · ·

=
∑

m

(

− i

h̄

)m ∑

p

(

− i

h̄

)p

× 1

(m+ p)!

(

m+ p

m

)

× · · ·

=
∑

m

1

m!

(

− i

h̄

)m ∑

p

1

p!

(

− i

h̄

)p

× · · · (4.386)

That is, all three summations in (4.385) can be reduced to one single summation by
applying repeatedly the reasoning above. Since we had time ordered products, we
can view the whole product as time ordered and extend the integral to the outermost
limits, i.e. from −∞ to ∞. Finally, returning to (4.384), we have for the one-particle
Green’s function,

iGαβ (x, x′) =
∑

n

1

n!

(

− i

h̄

)n ∫ ∞

−∞
dt1 · · ·dtn

×
< Φ0 | T

[

HI (t1) · · ·HI (tn) ψ̂Iα (x) ψ̂†
Iβ (x′)

]

| Φ0 >

< Φ0 | Ŝ | Φ0 >
.(4.387)

Thus, we arrive at an expression appropriate for perturbation theory, where the
one-particle Green’s function is explicitely written as an expansion in powers of the
perturbation HI .
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Once an explicit expansion in powers of the interaction was achieved, it remains
to perform the evaluations of the different terms entering (4.387). For this, we
need Wick’s theorem, that will allow us to reduce the time ordered products into
c-numbers, and hence, expressions that can be readily evaluated.

Wick’s theorem

Although this is the central theorem for the posterior diagrammatic expansion for the
one-particle Green’s function and all other imaginable physical quantities, its explicit
demonstration will not be presented here to avoid an overloading on the formal side.
The demonstration can be found in Sec. 3.8 of the above mentioned book by Fetter
and Walecka. Nevertheless, we will discuss here the necessary elements to be able
to understand the demonstration and also to reach a general understanding of the
elements entering in the construction of diagrams.

As a first step, we will realize that a large number of terms in (4.387) are actually
zero. For this, let us consider what happens when we act with a destruction field
operator on a certain eigenstate of H0. In general it will destroy a particle at some
point x, where this particle can have some weight on states above the Fermi energy
and some below the it. As we discussed in the previous section, the states above
the Fermi energy, are particle states (i.e. states that can be occupied ba a particle
added to the system), and hence, acting with ψ̂ on these states corresponds to the
destruction of a particle. On the other hand, the states below the Fermi energy
correspond to hole states. That is, destroying a particle below the Fermi energy
corresponds to the creation of a hole. We can therefore, formally distinguish these
two different kind of actions of a destruction operator by splitting ψ̂ as follows

ψ̂(x) = ψ̂(+)(x) + ψ̂(−)†(x) , (4.388)

where the superscritp (+) corresponds to particle states and (−) to hole states. In
particular for the non-interacting ground-state | Φ0 > entering (4.387) we have

ψ̂(+) | Φ0 >= 0 , (4.389)

such that | Φ0 > is the vacuum for ψ̂(+). For the Fermi gas, we can give explicitely
the form of ψ̂(+) and ψ̂(−)†:

ψ̂α(x) =
∑

k>kF

1√
V

exp
[

i
(

k · x − ǫk
h̄
t
)]

a
αk

+
∑

k<kF

1√
V

exp
[

i
(

k · x − ǫk
h̄
t
)]

b†
αk

≡ ψ̂(+)(x) + ψ̂(−)†(x) . (4.390)

In the same way, if we consider a creation field operator, it can create a particle on
a particle state or one on a hole state, i.e. destroy a hole. Just taking the hermitian
conjugate of (4.388), we have

ψ̂†(x) = ψ̂(+)†(x) + ψ̂(−)(x) , (4.391)
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and again

ψ̂(−) | Φ0 >= 0 , (4.392)

since in the ground-state there are no holes present.
The fact that ψ̂(±) annihilate the non-interacting ground-state, leads us to try to

shift allway such operators to the right until they encounter | Φ0 > giving thus zero.
A product of operators in second quantization, where all the creation operators are
on the left and destruction operators on the right, is called a normal ordered product,
and denoted by N (not to be confused with the number of particles). As in the case
of the time ordering, it takes into account the statistics of the particles considered,
such that

N
(

ÂB̂
)

= −N
(

B̂Â
)

(4.393)

for Â and B̂ creation or annihilation operators for fermions. In the case of the
creation and annihilation operators introduced above, we have

N
[

ψ̂(+)(x) ψ̂(−)†(x′)
]

= −ψ̂(−)†(x′) ψ̂(+)(x) . (4.394)

We need now to see how to go from a time ordered product as it appears in e.g.
(4.387) to normal ordered products. Since the expectation value in the ground-state
of normal ordered products vanishes, the rest is what needs to be evaluated. The
difference between a time ordered product of two operators and the normal product
is called contraction

Â•B̂• ≡ T
(

ÂB̂
)

−N
(

ÂB̂
)

(4.395)

In order to see the meaning of a contraction, let us apply the definition above to the
Green’s function of a non-interacting system G(0) (x, x′), where since the interaction
part is absent, the operators in the interaction picture and the Heisenberg picture
are identical, and hence, all the discussion above can be applied.

iG(0) (x, x′) = < Φ0 | T
[

ψ(x)ψ†(x′)
]

| Φ0 >

= < Φ0 | ψ(x)• ψ†(x′)• | Φ0 >

+ < Φ0 | N
[

ψ(x)ψ†(x′)
]

| Φ0 > . (4.396)

Since the expectation value in the ground-state of the normal ordered product is zero,
it turns out that each contraction of two field operators leads to a non-interacting
Green’s function. This happens whenever we have a creation and an annihilation
operator. It remains to see what happens when we have two creation or annihilation
operators. We look at a pair of annihilation operators since from there, we can also
obtain the result for a couple of creation operators.

< Φ0 | ψ(x)• ψ(x′)• | Φ0 > = < Φ0 | T [ψ(x)ψ(x′)] | Φ0 >

− < Φ0 | N [ψ(x)ψ(x′)] | Φ0 > . (4.397)
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Again the normal ordered product vanishes, but now the time ordered product also
vanishes, since the number of particles in ψ(x)ψ(x′) | Φ0 > is different from the
number of particles in < Φ0 |, and hence, these states are orthogonal. Therefore,
in this case the contraction is zero and similarly when two creation operators are
present.

After having seen what happens with the time ordered product of two operators,
we need to have the result for an arbitrary number of operators, as they occur in
(4.387). For this, we have Wick’s theorem:

T
(

Â1 · · · Ân
)

= N
(

Â1 · · · Ân
)

+N (sum over all possible contractions) . (4.398)

From what we said above, when we take the expectation value in the ground-state,
we need only to consider contractions between a creation and an annihilation op-
erator. Furthermore, from all normal ordered products only those containing only
contractions will survive. This is the basis for a diagramatic expansion.

Feynman diagrams

In order to see how diagrams can be used to describe the different terms in pertur-
bation theory, we go back to the expansion of the Green’s function in powers of HI ,
eq. (4.387). Let us consider first the numerator up to O (HI),

iGαβ → iG
(0)
αβ + iG̃

(1)
αβ , (4.399)

with

iG̃
(1)
αβ = − i

h̄

∫ ∞

−∞
dt1 < Φ0 | T

[

HI (t1) ψ̂α (x) ψ̂†
β (x′)

]

| Φ0 > , (4.400)

where we introduced the tilde in order to remember that we are considering only the
numerator in (4.387). Recalling the form of HI in eq. (4.289), and using a notation
similar to (4.299),

Vµνν′µ′ (x, t; x
′, t′) ≡ V (| x − x′ |) δ (t− t′) δµµ′δνν′ , (4.401)

we have

iG̃
(1)
αβ = − i

h̄

1

2

∑

µµ′

νν′

∫ ∞

−∞
d4x1 d4x′1 Vµνν′µ′ (x1, x

′
1)

× < Φ0 | T
[

ψ̂†
µ (x1) ψ̂

†
ν (x′1) ψ̂ν′ (x

′
1) ψ̂µ′ (x1)

×ψ̂α (x) ψ̂†
β (x′)

]

| Φ0 > . (4.402)

Since we have to contract creation and annihilation operators in pairs, we have here
six possible different ways of contracting all six operators. For each contraction we
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have a non-interacting Green’s function, such that

(4.402) = − i

h̄

1

2

∑

µµ′

νν′

∫ ∞

−∞
d4x1 d4x′1 Vµνν′µ′ (x1, x

′
1)

×
{

iG
(0)
αβ (x, x′)

[

iG
(0)
µ′µ (x1, x1) iG

(0)
ν′ν (x′1, x

′
1)

−iG(0)
µ′ν (x1, x

′
1) iG

(0)
ν′µ′ (x

′
1, x1)

]

+iG(0)
αµ (x, x1)

[

iG
(0)
µ′ν (x1, x

′
1) iG

(0)
ν′β (x′1, x

′)

−iG(0)
µ′β (x1, x

′) iG
(0)
ν′ν (x′1, x

′
1)
]

+iG(0)
αν (x, x′1)

[

iG
(0)
ν′µ (x′1, x1) iG

(0)
µ′β (x1, x

′)

−iG(0)
ν′β (x′1, x

′) iG
(0)
µ′µ (x1, x1)

]
}

.(4.403)

At this stage we see that expressions in perturbation theory become rather lengthy,
so that a short description of the different contributions would be usefull. This is
achieved by Feynman diagrams.

Let us start by introducing a graph for the interaction. The wavy line represents

~r0~r 	(~r0; t)
	y(~r0; t)	y(~r; t)

	(~r; t)
Figure 4.12: Graph representing the interaction vertex.

the Coulomb interaction between two points. As can be seen from (4.289), there are
two field operators at one point and two on the other. Destruction operators are
represented by the lines ending at the interaction vertex, whereas creation operators
are depicted by lines starting there. On performing a contraction, creation and
annihilation operators build up a non-interacting Green’s function. The different

r1
rr01r0

Figure 4.13: Lines to be joined in first order.

contractions are obtained by joining starting and ending lines. Figure (4.13) shows
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these lines prior to the contraction. The contractions written in (4.403) can be
obtained by performing all possible connection of the lines starting at r′ in Fig. 4.13
and joining them with the lines ending at r1, r

′
i or r. In doing so, there are two

kinds of diagrams as depicted in Fig. 4.14. There is a set of diagrams with all

1 )

3 )

2 ) 

a)

b)

a)

b)

r01 rr1r0
r01r0 r

r0 rr01 r
r0r0 r

r
r

r1
r01r1

r0
r0

r0

Figure 4.14: Diagrams obtained in first order. For further explanation see the text.

parts connected, like those corresponding to 1). In 2) the same diagrams as in 1)
are obtained but with r1 and r′1 exchanged. The other set depicted under 3) has
disconnected parts. Furthermore, there are pairs of diagrams where an exchange
occurs in the contraction with r, whereas the point r′ has the same contraction.
One speaks in this case of exchange diagrams. This will be discussed in more detail
when we arrive at the treatment of the so-called Hartree-Fock approximation. From
the way in which diagrams are built up, it is natural to have a sense of time, given
by the arrows in each line. We have as a convention that time increases to the right,
such that particles propagate from left to right, whereas holes do so from right to
left. In the diagrams depicted in Fig. 4.14 there are lines starting and ending at the
same point. They correspond to contributions of the form G

(0)
µ′µ (x1, x1) in (4.403).

In order to have a definite order of the corresponding times, we have to recall that
they stem from the interaction term, where the creation operators were standing at
the left of the annihilation ones. Therefore, they should be understood in the same
way as in (4.357), corresponding to electronic densities. Figure 4.15 shows that after
evaluating all the contributions up to O (HI), a common factor can be extracted, as
can be directly verified from (4.403). The common factor can be indeed identified
with the denominator of (4.387). There we have no external points, such that all
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the diagrams arising from that term should be closed ones. Up to first order in HI ,

  1 

rr0 r0 r r0 r r0 r r0 r

Figure 4.15: A common factor can be extracted from the first order diagrams.

it gives

< Φ0 | Ŝ | Φ0 >

=< Φ0 | Uǫ (∞,−∞) | Φ0 >

=< Φ0 | Φ0 > − i

h̄

∫ ∞

−∞
dt1 < Φ0 | T HI (t1) | Φ0 >

= 1 − i

h̄

∫ ∞

−∞
d4x1 d4x′1 Vµνν′µ′ (x1, x

′
1)

× < Φ0 | T
[

ψ̂†
µ (x1) ψ̂

†
ν (x′1) ψ̂ν′ (x

′
1) ψ̂µ′ (x1)

]

| Φ0 > . (4.404)

Figure 4.16 shows the diagrams corresponding to the first order contribution of the

Figure 4.16: Diagrams for the denominator of the Green’s function in first order.

denominator of (4.387). This means that at least to this order, the denominator can-
cels the disconnected diagrams in the numerator of (4.387), leaving only connected
diagrams. In fact, it can be proved (see Fetter-Walecka Sec. 3.8) that disconnected
diagrams are cancelled to all orders, such that, the Green’s functions is given by
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the sum of all connected diagrams. Here one speaks of the linked cluster theorem or
expansion.

iGαβ (x, x′)

=
∑

n

1

n!

(

− i

h̄

)n ∫ ∞

−∞
dt1 · · ·dtn

× < Φ0 | T
[

HI (t1) · · ·HI (tn) ψ̂Iα (x) ψ̂†
Iβ (x′)

]

| Φ0 >connected . (4.405)

We can finally give the rules for Feynman diagrams. We give them first in direct
space and then in momentum space. For direct space we have for the n-th order
contribution to the one-particle Green’s function:

a) Draw all topologically distinct connected diagrams with n interaction lines V
and 2n+ 1 Green’s functions G(0).

b) Label each vertex with a point in space-time xi.

c) Each solid line represents a Green’s function G(0) (x, x′) running from x′ to x.

d) Each wavy line corresponds to the interaction (4.401).

e) Integrate all internal variables over space and time. Sum over all internal spin
indices.

f) Each diagram carries a factor (−1)L, where L is the number of closed fermion
loops in the diagram.

g) Each diagram contributes to G(x, x′) with a factor −i(−i/h̄)n(i)2n+1 = (i/h̄)n.

For the Feynman diagrams in momentum space we restrict ourselves to homoge-
neous systems or models on a lattice, such that the Green’s function is diagonal in
momentum and frequency. Furthermore, we assume the interaction to be such that
it is also diagonal in momentum, and being instantaneous, such that its Fourier-
transform has no frequency dependence. Then, the rules in this case are as follows.

a) Draw all topologically distinct connected diagrams with n interaction lines V
and 2n+ 1 Green’s functions G(0).

b) Assign a direction to each interaction line; associate directed momentum and
frequency to each line and conserve energy and momentum at each vertex.

c) Each solid line represents a Green’s function G
(0)
αβ (k, ω).

d) Each wavy line corresponds to the Fourier trnsform of the interaction (4.401).

e) Integrate over the n internal momenta and frequencies. Sum over all internal
spin indices.
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f) Each diagram carries a factor (−1)L, where L is the number of closed fermion
loops in the diagram. From the Fourier transformations there is an additional
factor (2π)−4n.

g) Each diagram contributes to G(k, ω) with a factor −i(−i/h̄)n(i)2n+1 = (i/h̄)n.

4.5 The Hartree-Fock approximation

After having discussed in general the treatment of a many-body fermionic system,
we deal here with one of the most popular approximations for a such systems, the
Hartree-Fock approximation. This approximation is the first one that is generally
used for nuclear, atomic and solid-state systems. As we will see, it is not perturbative
in the sense that the Green’s function will contain all powers in the interaction, but
only a selected class of diagrams enters. This approximation gives a first sight
of interacting systems, giving in the case of atoms, metals and semiconductors a
qualitative first picture but with quantitative failures. Although not accurate, this
approximation fulfills a variational principle, and hence is to some extent controlled.

4.5.1 Self-energy in the Hartree-Fock approximation

As we have seen in the previous section, up to first order in the interaction, the
one-particle Green’s function is given by the diagrams depicted in Fig. 4.17. We

r0 r r0r0 r rG(~rt; ~r0t0)
Figure 4.17: One-particle Green’s function up to first order in the interaction.

can view the propagator in Fig. 4.17 as the lowest order contribution for the one-
particle Green’s function with a self-energy that corresponds to the two diagrams
shown there, i.e.

G = G(0) +G(0)Σ∗G(0) + · · · (4.406)
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In this case, the self-energy is given by Fig. 4.18.
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Figure 4.18: Self-energy in first order of the interaction.

∑ *

Using Dyson’s eq. (4.307), which we repeat here for clarity,

G = G(0) +G(0) Σ∗G , (4.407)

we can now generate a Green’s function with the interaction in all orders but with
just a restricted set of diagrams. The diagramatic representation of Dyson’s equation
is given in Fig. 4.19, where the double line represents the full one-particle Green’s
function and the fact that it appears on both sides of the equation corresponds to the
fact that we are dealing with a self-consistent equation. The shaded circle represents
the one-particle irreducible self-energy. We will discuss this denomination later. For
the moment it just contains the diagrams shown in Fig. 4.18. The explicit solution
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Figure 4.19: Diagramatic representation of Dyson’s equation.

of Dyson’s equation with the self-energy depicted in Fig. 4.18 is shown in Fig. 4.20
At this point, it is instructive to calculate the actual expression for the self-energy.
Since we have already calculated all the contributions in first order, we need just to
recall the result (4.403), where we have to consider only those contributions related
with connected diagrams. The result for the first order contribution to the Green’s
function is

G
(1)
αβ (x, x′) =

i

h̄

∑

µµ′

νν′

∫ ∞

−∞
d4x1 d4x′1 Vµνν′µ′ (x1, x

′
1)

×G(0)
αµ (x, x1)

[

G
(0)
µ′ν (x1, x

′
1) G

(0)
ν′β (x′1, x

′)

−G(0)
µ′β (x1, x

′) G
(0)
ν′ν (x′1, x

′
1)
]

.(4.408)
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We recall the fact that the zero-th order Green’s function is diagonal in spin, such
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Figure 4.20: Expansion of the Green’s function with the irreducible self-energy given
by Fig. 4.18.

that it is convenient to introduce the following notation:

G
(0)
αβ ≡ δαβ Ḡ

(0) , (4.409)

where Ḡ(0) contains the rest. Furthermore, recalling (4.401), the spin dependence
of the interaction has the form Vµνν′µ′ ∼ δµµ′δνν′ , whereas the time dependence is
∼ δ (t− t′). Putting all these facts together, we obtain

Σ
∗(1)
αβ (x, x′) = −1

h̄
δαβ δ (t− t′)

×
[

δ (x − x′) (2S + 1)
∫

d3x1 iḠ
(0)
(

x1, x
+
1

)

V (| x − x1 |)

−V (| x − x′ |) iḠ(0)
(

x, t; x′, t+
)
]

, (4.410)

where S is the spin of the fermions, i.e S = 1/2 in the case of electrons. In order to
grasp the physical meaning of these terms, let us concentrate on the first one. From
the definition of the Green’s function (4.286), we have

iGαβ

(

x, x+
)

= −
< Ψ0 | ψ̂†

Hβ (x) ψ̂Hα (x) | Ψ0 >

< Ψ0 | Ψ0 >

= −δαβ < nα(x) > , (4.411)

in the case of a system with spin rotational invariance. This means that

iḠ(0)
(

x1, x
+
1

)

= −n(0)(x1) , (4.412)
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the density per spin of the non-interacting system. That is, this term of the self-
energy gives the Coulomb interaction of the particle we consider with the density
of all other particles, since we integrate in space over the whole system. But this
cannot be correct, since if the particle we consider interacts with the other particles,
they themselve should interact with each other. In order to correct for this, we
should consider the density of the interacting system. This is easily done, if we
replace G(0) by the full G in (4.410). Although at this point we still do not clearly
see the role of the second term in (4.410), we include it and discuss it at the end.
This leads to

Σ∗
HF (x, x′) = −1

h̄
δ (t− t′)

×
[

δ (x − x′) (2S + 1)
∫

d3x1 iG
(

x1, x
+
1

)

V (| x − x1 |)

−V (| x − x′ |) iG
(

x, t; x′, t+
)
]

, (4.413)

The result is depicted in Fig. 4.21. Before we discuss the physical meaning of these
diagrams, let us first remark a clear difference between the diagrams appearing in
Fig. 4.20 and in Fig. 4.21. Whereas in the diagrams of Fig. 4.20, we could devide
diagrams by cutting one propagator, this is not possible in the diagrams of Fig.
4.21. The diagrams in Fig. 4.20 are therefore called one-particle reducible diagrams,
whereas those of Fig. 4.21 are one-particle irreducible, and hence the name one-
particle irreducible self-energy. We can now try to understand the physical meaning
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Figure 4.21: Hartree-Fock irreducible part of the self-energy .

of the terms entering 4.413. As a first step we notice that Σ∗ is proportional to
δ (t− t′), and hence, will be frequency independent. It will be therefore, convenient
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to perform a Fourier transformation in time. For this, we have

G (x, t; x′, t′) =
1

2π

∫

dω e−iω(t−t′)G (x,x′, ω) , (4.414)

such that

G
(

x, t; x′, t+
)

= lim
δ→0+

1

2π

∫

dω eiωδ G (x,x′, ω) . (4.415)

Then, we can write after Fourier transforming in time,

h̄Σ∗ (x,x′) = −i (2S + 1) δ (x − x′)

×
∫

d3x1 V (| x − x1 |)
1

2π

∫

dω eiωδ G (x1,x1, ω)

+iV (| x − x′ |) 1

2π

∫

dω eiωδ G (x,x′, ω) , (4.416)

where it is understood that we take the limit δ → 0+. To proceed further, let
us consider the Lehmann representation of the fully interacting Green’s function
(4.317)

G (x,x′, ω) = h̄
∑

n

[

< Ψ0 | ψ̂ (x) | Ψn >< Ψn | ψ̂† (x′) | Ψ0 >

h̄ω − µ− ǫn(N + 1) + iη

+
< Ψ0 | ψ̂† (x′) | Ψn >< Ψn | ψ̂ (x) | Ψ0 >

h̄ω − µ+ ǫn(N − 1) − iη

]

. (4.417)

Since Σ∗ is frequency independent, we will look for a solution that has the same
form as the non-interacting Green’s function, but with the corresponding changes
due to interaction. Since we are at T = 0, µ = EF . Furthermore, we set

ǫn(N + 1) = ǫ̃n − EF ,

ǫn(N − 1) = EF − ǫ̃n , (4.418)

and

G (x,x′, ω) = h̄
∑

n

ψn (x) ψ∗
n (x′)

[

θ (ǫ̃n −EF )

h̄ω − ǫ̃n + iη
+

θ (EF − ǫ̃n)

h̄ω − ǫ̃n − iη

]

.(4.419)

Here we introduced a complete set of orthonormal wavefunctions {ψn (x)}, which
we should determine in order to solve the problem. With such a form for the Green’s
function, we can now evaluate Σ∗. For this we need only to perform the ω-integration
in (4.416). The integrals we have to perform have the form

∫

dω eiωδ G (x,x′, ω) , (4.420)
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where since δ > 0, the contour of integration has to close on the upper half plane,
i.e. Im ω > 0, such that only poles on the upper half-plane give a contribution, that
is, according to (4.419), the terms proportional to θ (EF − ǫ̃n). Therefore, we have

h̄Σ∗ (x,x′) = (2S + 1) δ (x − x′)
∫

d3x1 V (| x − x1 |)

×
∑

n

| ψn (x1) |2 θ (EF − ǫ̃n)

−V (| x − x′ |)
∑

n

ψn (x) ψ∗
n (x′) θ (EF − ǫ̃n) . (4.421)

The one-particle wavefunctions were chosen in a similar way as in the non-interacting
system. They are the one-particle wavefunctions to be determined from the equation
of motion of the Green’s function. In particular, as we already mentioned,

(2S + 1)G
(

x, t; x, t+
)

= lim
δ→0+

(2S + 1)
1

2π

∫

dω eiωδ G (x,x, ω)

= (2S + 1)
∑

n

| ψn (x1) |2 θ (EF − ǫ̃n)

= n(x) . (4.422)

We therefore have a self-energy that reflects the fact that the particle in question is
interacting with a density of interacting particles.

In order to find the solution for the wavefunctions introduced, we can go to the
explicit form of Dyson’s equation, i.e. to the equation of motion for the Green’s
function, as already deduced in (4.305).

G(0)−1
G− Σ∗G = 1 . (4.423)

Let us recall the general form of G(0), as given by (4.303), where we take into account
the possibility of an external static potential. Then,

G(0)−1
(x,x′;ω) = ω − 1

h̄

[

− h̄2

2m
∇

2 + U (x)

]

. (4.424)

Inserting the form chosen for the Green’s function (4.419), and the result above for

G(0)−1
into (4.423), we have

δ (x − x′) =

[

h̄ω +
h̄2

2m
∇

2 − U (x)

]

×
∑

n

ψn (x) ψ∗
n (x′)

[

θ (ǫ̃n − EF )

h̄ω − ǫ̃n + iη
+

θ (EF − ǫ̃n)

h̄ω − ǫ̃n − iη

]

−
∫

d3x1 h̄Σ
∗ (x,x1)

×
∑

n

ψn (x1) ψ
∗
n (x′)

[

θ (ǫ̃n − EF )

h̄ω − ǫ̃n + iη
+

θ (EF − ǫ̃n)

h̄ω − ǫ̃n − iη

]

.(4.425)
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Finally, we use the fact that the wavefunctions ψn (x) are assumed to be orthonormal
and multiply both sides of the equation by ψj (x′) and integrate over x′. Then, we
are left with a set of Schrödinger-like equations for the eigenfunctions ψj (x) and
eigenvalues ǫ̃j .

[

− h̄2

2m
∇

2 + U (x)

]

ψj (x)

+ (2S + 1)
∑

n

∫

d3x1 V (| x − x1 |) | ψn (x1) |2 ψj (x) θ (EF − ǫ̃n)

−
∑

n

∫

d3x1 V (| x − x1 |)ψn (x) ψ∗
n (x1) ψj (x1) θ (EF − ǫ̃n)

= ǫ̃j ψj (x) . (4.426)

These are the Hartree-Fock equations as they were originally obtained. Since there
is a non-local part (the last term), the solution of these equations is in general not
straightforward. Furthermore, the fact that they have to be solved self-consistently,
since the solution determines the potentials, corresponds to the fact that the Coulomb
interaction is taken into account in all orders. However, not all possible scatter-
ing processes are included, only those shown by Fig. 4.21. The effect of Coulomb
interaction (or any other two-particle interaction due to a potential of the form
V (| x − x1 |)), is given by two distinct parts. The first one corresponds as we al-
ready mentioned, to an interaction with the density and is given by a local potential,
in the case of Coulomb interaction corresponding to an electrostatic potential. The
second part is characterized by a non-local potential, and is called the exchange
term, since it differs from the first one by an exchange ψn (x1) ↔ ψj (x).
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