
Chapter 5

Collective excitations

After we have discussed the structure of one-particle excitations with the one-particle
Green’s function, we consider here other processes that, although in principle in-
cluded in the exact one-particle Green’s function, have a different character since
they are determined by the collective response of the electronic system to exter-
nal excitation. The following discussion is restricted to the limit of weak external
potential, and hence to the so-called linear response theory.

5.1 Linear response theory

We study here the response of a periodic solid to an external potential that leads
to an additional term Hext(t) in general time dependent in the total Hamiltonian
of the system HT . The system on which the external potential acts is described
by a Hamiltonian H , which we assume to be time independent. If Hext(t) is small
enough, we can treat it perturbatively, in a frame similar to the one we developed
for the one-particle Green’s function.

We start with the Schrödinger picture we introduced in Sec. 4.4.1, where

ih̄
∂

∂t
| ΨS(t) >= HT | ΨS(t) > , (5.1)

with the difference, that we now have from the start a time dependent Hamiltonian

HT (t) = H +Hext(t) . (5.2)

Nevertheless, we can still define a time evolution operator, such that

| ΨS(t) >= UT
S (t, t0) | ΨS(t0) > , (5.3)

and replacing this into Schrödinger’s equation, we have quite generally,

ih̄
∂

∂t
UT

S (t, t0) = HT (t)UT
S (t, t0) . (5.4)

If the Hamiltonian were time independent, then the solution of this equation is
(4.263). However, in our case it is definitively time dependent, as shown by (5.2).
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Using the same reasoning we made to reach the solution (4.274) of the Schrödinger-
like equation for the evolution operator in the interaction picture, we can also have
a formal solution here

UT
S (t, t0) = 1 − i

h̄

∫ t

t0
dt′HT (t′)UT

S (t′, t0) , (5.5)

with the difference, that we are still in the Schrödinger picture, and the Hamiltonian
in the integral is the full Hamiltonian. However, in order to have an explicit solution
for UT

S (t, t0), we take a different path. Since the evolution operator for the dynamics
determined by H fulfills

ih̄
∂

∂t
US(t, t0) = H US(t, t0) , (5.6)

we propose the following form for UT
S (t, t0):

UT
S (t, t0) = US(t, t0) Ũ(t, t0) . (5.7)

Inserting this form into (5.4), we have

ih̄
∂

∂t

[

US(t, t0) Ũ(t, t0)
]

=
[

H +Hext(t)
]

US(t, t0) Ũ(t, t0) , (5.8)

that due to (5.6) reduces to

ih̄
∂

∂t
Ũ(t, t0) = U

†
S(t, t0)H

ext(t)US(t, t0) Ũ(t, t0)

≡ H̃ext(t) Ũ(t, t0) . (5.9)

Again, the formal solution has the form (5.5), that up to first order in the pertur-
bation reduces to

Ũ(t, t0) = 1 − i

h̄

∫ t

t0
dt′ H̃ext(t′) . (5.10)

Inserting this into (5.7) we arrive at the final solution for the evolution operator of
the complete problem,

UT
S (t, t0) = US(t, t0)

− i

h̄

∫ t

t0
dt′ US(t, t0)

︸ ︷︷ ︸

=US(t,t′) US(t′,t0)

U
†
S(t′, t0)H

ext(t′)US(t′, t0)

= US(t, t0) −
i

h̄

∫ t

t0
dt′ US(t, t′)Hext(t′)US(t′, t0) . (5.11)

At this point it is convenient to set t0 = 0, and we assume as an initial condition
| ΨS(t = 0) > to be an eigenstate (in general the ground-state) of the system.
Furthermore, we assume that Hext(t) is switched on at a time 0 < t̃0 < t. Here one
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says that we have causal boundary conditions in time. Then, the state at time t is
given by

| ΨS(t) > = exp
(

− i

h̄
Ht

)

| ΨS(t = 0) >

− i

h̄

∫ t

t̃0
dt′ exp

[

− i

h̄
H (t− t′)

]

Hext(t′)

× exp
(

− i

h̄
Ht′

)

| ΨS(t = 0) > . (5.12)

Once we have the state, we can calculate expectation values of different operators.
Let us conisder an operator Ô, and its expectation value

< Ô(t) >HT = < ΨS(t) | Ô | ΨS(t) >

= < ΨS(0) | eiH t/h̄ Ô e−iH t/h̄ | ΨS(0) >

+
i

h̄

∫ t

t̃0
dt′ < ΨS(0) | eiH t′/h̄Hext(t′) eiH(t−t′)/h̄

×Ô e−iH t/h̄ | ΨS(0) >

− i

h̄

∫ t

t̃0
dt′ < ΨS(0) | eiH t/h̄ Ô e−iH(t−t′)/h̄

×Hext(t′)e−iH t′/h̄ | ΨS(0) >

= < ΨH | ÔH(t) | ΨH >

+
i

h̄

∫ t

t̃0
dt′ < ΨH |

[

Hext
H (t′), ÔH(t)

]

| ΨH > , (5.13)

where we used (4.284), i.e. | ΨH >=| ΨS(t = 0) >, and (4.282) that gives the relation
between operators in the Heisenberg and the Schrödinger picture. Furthermore,
only linear contributions in Hext are taken into account. We arrived then, at the
general result in linear response theory, that the causal linear response to an external
perturbation leads to a change of an observable in the ground-state given by

δ < Ô(t) > = < Ô(t) >HT − < Ô(t) >H

=
i

h̄

∫ t

t̃0
dt′ < Ψ0 |

[

Hext
H (t′), ÔH(t)

]

| Ψ0 > . (5.14)

5.1.1 Density-density response function, and dielectric

function

A case that is particularly important is that of the response of an electronic system
to a perturbation that couples to the charge-density of the system. In that case, we
have

Hext(t) =
∫

d3x n̂H (x, t) ϕext (x, t) . (5.15)

The external potential ϕext (x, t) could result from a probe external to the system or
could be given by the ions in a solid, such that the response of the electronic system
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would directly determine the properties of phonons in the system. Inserting the
coupling above into (5.14) for Ô = n̂, we have the change in the density distribution
in the solid that results from applying ϕext,

δ < n̂ (x, t) > =
i

h̄

∫ t

t̃0
dt′
∫

d3x′

× < Ψ0 | [n̂H (x′, t′) , n̂H (x, t)] | Ψ0 > ϕext (x′, t′) . (5.16)

By introducing the response function of the system as a generalized susceptibility,
relating the change in density to the external potential in the form

δ < n̂ (x, t) > =
∫ ∞

−∞
dt′
∫

d3x′χ (x, x′) ϕext (x′) , (5.17)

we have that the density-density correlation function is directly connected with the
linear response function of the system

χ (x, x′) = − i

h̄
θ (t− t′)

< Ψ0 | [ñH (x, t) , ñH (x′, t′)] | Ψ0 >

< Ψ0 | Ψ0 >
, (5.18)

where we introduced the notation

ñH (x, t) ≡ n̂H (x, t)− < n̂H (x, t) > , (5.19)

in order to make explicit the fact that the density-density correlation function mea-
sures the fluctuations around the ground-state density profile in the system. Due to
the fact that c-numbers commute, this change can be trivially made. The θ-function
had to be introduced explicitly after extending the domain of integration over time.
It makes explicit the fact that we are dealing with a retarded correlation function.
Finally, we should add that a normalization was introduced for the ground-state.
We see that in this way, a structure can be reached for general correlation functions
in the system that is very similar to the one already obtained for the one-particle
Green’s function. However, there we have seen that in order to be able to evaluate
the expectation values appearing in perturbation theory, Wick’s theorem was neces-
sary, and for it to be applicable, we need to have a time ordered product. Therefore,
in order to make full contact with the diagrammatic expansion, an associated cor-
relation function with a time-ordered product should be introduced.

In the following we discuss several aspects of the density-density correlation
function related to screening in electronic systems.

Screening and dielectric function

Some of the most important concepts can be already discussed in the frame of the
non-interacting system. We will therefore consider first the Fermi gas, where we
can calculate the density-density correlation function exactly. In this case, we can
proceed as we did in the case of the one-particle Green’s function and use Lehmann’s
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representation. As previously, we assume in the following that the ground-state is
normalized such that < Ψ0 | Ψ0 >= 1 and, hence,

χ (x, x′) = − i

h̄
θ (t− t′) < Ψ0 | [nH (x, t) , nH (x′, t′)] | Ψ0 > , (5.20)

where we go back to the operators without the substraction of < n̂H (x, t) >. We
consider the complete set of eigenstates {| Ψn >} of the Hamiltonian and insert
them between the operators at different times. Since we have a commutator, let us
concentrate on one of the products. The other product can be obtained at the end
by interchanging x↔ x′. We have then

< Ψ0 | nH (x, t) nH (x′, t′) | Ψ0 >

=
∑

n

< Ψ0 | eiHt/h̄
∑

α

ψ̂†
α (x) ψ̂α (x) e−iHt/h̄ | Ψn >

× < Ψn | eiHt′/h̄
∑

β

ψ̂
†
β (x′) ψ̂β (x′) e−iHt′/h̄ | Ψ0 >

=
∑

n

e−i(En−E0)(t−t′)/h̄
∑

α,β

< Ψ0 | ψ̂†
α (x) ψ̂α (x) | Ψn >

× < Ψn | ψ̂†
β (x′) ψ̂β (x′) | Ψ0 >, (5.21)

and for the other product

< Ψ0 | nH (x′, t′) nH (x, t) | Ψ0 >

=
∑

n

e+i(En−E0)(t−t′)/h̄
∑

α,β

< Ψ0 | ψ̂†
α (x′) ψ̂α (x′) | Ψn >

× < Ψn | ψ̂†
β (x) ψ̂β (x) | Ψ0 > . (5.22)

We have to consider further the θ-function, as we did in Sec. 4.4.3 for the one-particle
Green’s function. We do not repeat the calculation and arguments here but give the
final result for the Fourier transformed correlation function:

χ (x,x′;ω)

=
∑

n

α,β




< Ψ0 | ψ̂†

α (x) ψ̂α (x) | Ψn >< Ψn | ψ̂†
β (x′) ψ̂β (x′) | Ψ0 >

h̄ω − (En −E0) + iη

−
< Ψ0 | ψ̂†

α (x′) ψ̂α (x′) | Ψn >< Ψn | ψ̂†
β (x) ψ̂β (x) | Ψ0 >

h̄ω + (En − E0) + iη



 .(5.23)

Until now we did no assumption about the system, such that the expressions above
are valid in general. It is convenient at this point to consider the further development
for the Fermi gas. In this case, we can express the field operators in terms of creation
and annihilation operators in momentum space.

ψ̂α (x) =
1√
V

∑

k

fkα
exp (ik · x) (5.24)

ψ̂
†
β (x) =

1√
V

∑

k

f
†

kβ
exp (−ik · x) . (5.25)
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Then, for the matrix elements in (5.23), we have

< Ψ0 | ψ̂†
α (x) ψ̂α (x) | Ψn >< Ψn | ψ̂†

β (x′) ψ̂β (x′) | Ψ0 >

=
1

V 2

∑

k1,...,k4

exp [−i (k1 − k2) · x] exp [−i (k3 − k4) · x′]

× < Ψ0 | f †

k1α
fk2α

| Ψn >< Ψn | f †

k3β
fk4β

| Ψ0 > . (5.26)

Since | Ψ0 > is the ground-state of the Fermi gas, we have the following relationships
and conditions:

k4 ≡ k , with | k | < kF ,

k3 ≡ k′ , with | k′ | > kF ,

k2 = k3 ,

k1 = k4 ,

(5.27)

where we do not consider the case k = k′ that would give the expectation value of
the density in the ground-state, that should be substracted as we mentioned before.
Inserting these relationships into (5.26), we have

(5.26) =
δαβ

V 2

∑

k,k
′

exp [−i (k − k′) · (x − x′)] θ (kF − k) θ (k′ − kF )

=
δαβ

V 2

∑

k,q

exp [iq · (x − x′)] θ (kF − k) θ (| k + q | −kF ) , (5.28)

where in the last line we just made a change of variables. From the relationships
above, we can also determine the energies of the excited states En. They correspond
to the energy of an electron-hole pair, i.e.

En = E0 + ǫk+q − ǫk , (5.29)

such that, after Fourier transforming in space we have

χ(0) (q, ω) =
1

V

∑

k,α




θ (| k + q | −kF ) θ (kF − k)

h̄ω −
(

ǫk+q − ǫk

)

+ iη

−θ (| k − q | −kF ) θ (kF − k)

h̄ω +
(

ǫk−q − ǫk

)

+ iη





=
2

V

∑

k




θ (| k + q | −kF ) θ (kF − k)

h̄ω −
(

ǫk+q − ǫk

)

+ iη

−θ (k − kF ) θ (kF− | k + q |)
h̄ω −

(

ǫk+q − ǫk

)

+ iη





=
2

V

∑

k




θ (kF − k) − θ (kF− | k + q |)

h̄ω −
(

ǫk+q − ǫk

)

+ iη



 , (5.30)
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where in the second equality we explicitely set a factor 2 due to the summation
over spin and made a change of variables in the k-summation. In the last equality
we used the fact that θ(x) = 1 − θ(−x). The superscript (0) makes evident that
we are dealing with the non-interacting case. Equation (5.30) determines the linear
response of the Fermi gas to an external potential of the form

ϕext (x, t) = ϕ0 exp [i (q · x − ωt)] . (5.31)

By comparing the form of the susceptibility χ with the one-particle Green’s
function in the Lehmann representation in eq. (4.316) or in eq. (4.321), we see that
the difference between the time ordered product and the retarded propagator is
given by the sign of the infinitesimal factor iη. In the case of the retarded function,
all the poles are in the lower half of the complex ω-plane, whereas for the time
ordered product, only one piece should have the poles in the lower half and the
other should have them in the upper half. Therefore, we can construct a density-
density correlation function with a time ordered product by reversing the sign of iη
in the second term in (5.30), or what is the same by the relation

Reχ(T ) = Reχ(R) ,

Imχ(T ) sgnω = Imχ(R) . (5.32)

where the superscripts T and R refer to a time ordered and a retarded correlation
function, respectively. This means, we can also have a diagrammatic representation
of the response function we calculated for the Fermi gas. In this case, we have a
time ordered product that we can reduce to a product of contractions, as follows.

Figure 5.1: Diagram for the density response function of the Fermi gas.

x x′

< Ψ0 | T [ñH (x) ñH (x′)] | Ψ0 >

=< Ψ0 | T [nH (x) nH (x′)] | Ψ0 > − < Ψ0 | nH (x) | Ψ0 >< Ψ0 | nH (x′) | Ψ0 >

=< Ψ0 | T
[

ψ̂
†
Hα (x) ψ̂Hα (x) ψ̂†

Hα (x′) ψ̂Hα (x′)
]

| Ψ0 >

− < Ψ0 | ψ̂†
Hα

(

x+
)

ψ̂Hα

(

x
)

| Ψ0 >< Ψ0 | ψ̂†
Hα

(

x′
+
)

ψ̂Hα

(

x′
)

| Ψ0 >

= iG(0)
αα

(

x, x+
)

iG
(0)
ββ

(

x′, x′
+
)

− iG
(0)
αβ (x, x′) iG

(0)
βα (x′, x)− < n (x) >< n (x′) >

= (2s+ 1)G(0) (x, x′) G(0) (x′, x) . (5.33)
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Here we used the convention that a summation is understood for repeated spin
indices. Figure 5.1 shows the corresponding Feynman diagram.

Until now we considered the electrons as non-interacting particles. Although to
consider the full effect of interaction is as a difficult problem as in the case of the
one-particle Green’s function, we can still consider the consequences of the Coulomb
interaction on an average manner. From Poisson’s equation in electrodynamics, we
know that a change in the electronic density will lead to a corresponding induced
potential.

∇2 Φind = −4π e δ < n (x, t) > . (5.34)

Since we are in the linear regime, the induced potential should have the same wave-
length and frequency as the external potential,

Φind (x, t) = Φ0 exp [i (q · x − ωt)] . (5.35)

This means that

∇2 Φind = −q2Φind , (5.36)

such that

Φ0 =
4πe

q2
χ(0) (q, ω) ϕ0 . (5.37)

Due to the presence of the induced potential, the potential acting on the system is
the superposition of the external and the induced one.

ϕtotal (x, t) = Φind (x, t) + ϕext (x, t) . (5.38)

Again this potential should have the form

ϕtotal (x, t) = ϕ exp [i (q · x − ωt)] . (5.39)

Since this potential will also lead to a change of the density distribution, we should
insert ϕ instead of ϕ0 in (5.37), obtaining thus a self-consistent equation for the
total potential.

ϕ = ϕ0 +
4πe

q2
χ(0) (q, ω) ϕ , (5.40)

This equation can be solved as follows

ϕ =
ϕ0

ε (q, ω)
, (5.41)

with

ε (q, ω) = 1 − 4πe

q2
χ(0) (q, ω) . (5.42)
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The last quantity is the dielectric function that in general describes the screening of
an external potential by a polarizable medium. In the present case, where the density
response is just the one due to non-interacting electrons, but the Coulomb interaction
is considered on a macrosocopic level, as dictated by classical electrodynamics, one
speaks of the time dependent Hartree approximation or Linhard function.

In order to discuss some of the properties of the dielectric function, let us rewrite
χ(0) from eq. (5.30), as follows

χ(0) (q, ω) =
2

V

∑

k




n0
(

ǫk

)

− n0
(

ǫk+q

)

h̄ω −
(

ǫk+q − ǫk

)

+ iη



 , (5.43)

where

n0
(

ǫk

)

=
1

exp
[

β
(

ǫk − µ
)]

+ 1
(5.44)

is the Fermi-Dirac distribution. We introduce this generalization for the non-
interacting case just to make clear the following facts. Let us consider the limit
ω = 0 and q → 0. In this limit, we have for the numerator of (5.43)

n0
(

ǫk

)

− n0
(

ǫk+q

)

→ −
∂n0

(

ǫk

)

∂ǫk
∇kǫk · q

=
∂n0

(

ǫk

)

∂µ
∇kǫk · q . (5.45)

On the other hand, we have for the denominator

ǫk+q − ǫk → ∇kǫk · q . (5.46)

Putting the results above together, we have

ε (q → 0, ω = 0) = 1 +
4πe

q2

∂

∂µ
2
∑

k

n0
(

ǫk

)

︸ ︷︷ ︸

=N

, (5.47)

where N is the number of particles in the system. This form leads us to the Thomas-

Fermi dielectric constant, an approximation appropriate for static, long wavelength
potentials. From (5.47) we see that there is a length squared

κ2
0 = 4πe

∂N

∂µ
, (5.48)

such that the screened potential can be expressed as

ϕ =
ϕ0

1 +
κ2

0

q2

(5.49)
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Let us consider an external potential due to a probe charge Q. Then, we have in
direct space

ϕext (x) =
Q

| x | , (5.50)

and in momentum space

ϕ0 (q) =
4πQ

q2
. (5.51)

Inserting this last result into (5.49), we have

ϕ (q) =
4πQ

q2 + κ2
0

, (5.52)

such that

ϕtotal (x) =
∫

d3q

(2π)3

4πQ

q2 + κ2
0

exp (iq · x) =
Q

| x | exp (−κ0 | x |) . (5.53)

The Thomas-Fermi approximation leads to a screened Coulomb potential, where
κ−1

0 is the screening length.

Susceptibility and polarization

The susceptibility is defined generally by the relation (5.17), that for a homogeneous
system or a model on a lattice becomes

δ < n̂ (q, ω) > = χ (q, ω) ϕext (q, ω) . (5.54)

On the other hand, as discussed above, we can express the total potential as the
sum of the external and the induced one

ϕtotal (q, ω) = ϕext (q, ω) +
4πe

q2
χ (q, ω) ϕext (q, ω)

=

[

1 +
4π

q2
χ (q, ω)

]

ϕext (q, ω) , (5.55)

where now we assume that δ < n̂ (q, ω) > is the total change in electronic density due
to the external potential, taking into account all induction effects. Then, comparing
with (5.41), we have

ε−1 (q, ω) = 1 +
4πe

q2
χ (q, ω) . (5.56)

Both ε−1 and χ describe the total potential given the external one and are therefore,
response functions. There is another quantity that can be defined relating the
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response to the total potential. This quantity is called the polarization propagator

P (q, ω).

δ < n̂ (q, ω) > = P (q, ω) ϕtotal (q, ω) . (5.57)

This is the quantity that defined in general for interacting systems reduces to χ(0)

for a non-interacting one. As we have already seen in (5.40),

ϕtotal (q, ω) = ϕext +
4πe

q2
P (q, ω) ϕtotal (q, ω) , (5.58)

leading to the general form

ε (q, ω) = 1 − 4πe

q2
P (q, ω) . (5.59)

By comparing this equation with (5.56), we can relate the suceptibility with the
polarization propagator. The result is

χ (q, ω) =
P (q, ω)

1 − 4πe
q2 P (q, ω)

= P + PvP + PvPvP + · · · , (5.60)

where

v (q) =
4πe

q2
(5.61)

is the Coulomb interaction. Figure 5.2 gives a diagrammatic representation of

P P P

P P P

�
Figure 5.2: Diagrammatic representation of the integral equation for the suscepti-
bility .

the geometric series that determines the susceptibility in terms of the polarization
propagator. In the case that P = χ(0), it is called the random phase approximation

(RPA). The same equation can be written as an integral equation by noticing that

χ = Pε−1 = P (1 + vχ) = P + Pvχ . (5.62)
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The corresponding diagrammatic representation is shown in Fig. 5.3 The equation

P P� �
Figure 5.3: Self-consistent equation for the susceptibility in terms of the polarization
propagator.

and diagrams above can be seen as follows. The external potential polarizes the
medium. Due to the Coulomb interaction, the induced charge leads to a modified
potential that in turn produces a modified induced charge density. With the intro-
duction of the polarization propagator we have a general frame to discuss screening
processes beyond the non-interacting Fermi gas.

Friedel sum-rule and Friedel oscillations

We can consider now the effect of a stationary point charge Ze in an electron gas
taking into account the interaction fully. In this case the external potential is given
by

ϕext (q, ω) =
4πZe

q2
δ(ω) , (5.63)

such that the induced charge density is

ρind (x) =
∫ d3q

(2π)3
χ (q, ω = 0)

4πZe

q2
exp (−iq · x) . (5.64)

Using (5.60), we have

χ (q, ω = 0)
4π

q2
=

P (q, ω = 0)
q2

4π
− P (q, ω = 0)

. (5.65)

Then, the total induced charge is

Qind =
∫

d3x ρind (x)

= −Ze P (q = 0, ω = 0)

P (q = 0, ω = 0)
= −Ze , (5.66)

since P (q = 0, ω = 0) is regular. Therefore, Friedel’s sum rule shows that in a
metallic system, a point charge is completely screened on large distances. By a
direct calculation, it can be shown furthermore, that due to the presence of a sharp
Fermi surface, the induced charge presents oscillations with a wavevector 2kF , such
that

ρind (x) −→∼ cos(2kF | x |)
| x |3 . (5.67)

These are called Friedel oscillations.
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5.1.2 Collective excitations: plasmons

Recalling again the relation between the induced charge density and the external
perturbation (5.54),

ρind (q, ω) = χ (q, ω) ϕext (q, ω) , (5.68)

and the fact that as was discussed in Sec. 5.1.1, the density-density response function
will have poles at suitable energies and momenta, as shown by eq. (5.23), we see
that at those energies and momenta, the system will have an eigenmode for the
charge degrees of freedom, since even with an infinitesimal corresponding external
perturbation, a finite response is obtained. That is, in general, the poles of the
linear response functions correspond to collective excitations of the system.

Without going into the details of the structure of χ (q, ω), we can discuss one of
the collective modes of an electronic system, namely plasmons. Since as shown in
(5.56), a divergence in χ (q, ω) implies a vanishing of ε (q, ω), instead of looking for
the poles of χ (q, ω), we will focus on the zeros of ε (q, ω). In the RPA, we have

ε (q, ω) = 1 − 4πe

q2
χ(0) (q, ω) , (5.69)

with χ(0) (q, ω) given by (5.43):

χ(0) (q, ω) =
2

V

∑

k




n0
(

ǫk

)

− n0
(

ǫk+q

)

h̄ω −
(

ǫk+q − ǫk

)

+ iη



 . (5.70)

Plasmons being an eigenmode of metallic systems, should lie at rather high energies
since at energies comparable to the plasmon energy, the system should absorb and
not reflect, as most metals do in the range of visible light. We will therefore assume
that at the energies of interest, h̄ω ≫ ǫk+q − ǫk, ∀ k and for q ∼ 0. With this in

mind, we rewrite χ(0) as follows

χ(0) (q, ω) =
2

V

∑

k




n0
(

ǫk

)

h̄ω −
(

ǫk+q − ǫk

)

+ iη
−

n0
(

ǫk

)

h̄ω −
(

ǫk − ǫk−q

)

+ iη





=
2

V

∑

k

n0
(

ǫk

) ǫk+q − ǫk + ǫk−q − ǫk

(h̄ω)2
[

1 + a
h̄ω

+ b
(h̄ω)2

] . (5.71)

For q ∼ 0 we can make the following expansion

ǫk±q ≃ ǫk ± ∇kǫk · q +
1

2

∂2ǫk
∂kα ∂kβ

qαqβ , (5.72)

such that

(5.71) =
1

(h̄ω)2
2

V

∑

k

n0
(

ǫk

) ∂2ǫk
∂kα ∂kβ

qαqβ . (5.73)
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Due to inversion symmetry, ǫk = ǫ
−k, and hence

∑

k

n0
(

ǫk

) ∂2ǫk
∂kα ∂kβ

= 0 (5.74)

for α 6= β. Let us assume further that we have a cubic symmetry, such that

∂2ǫk
∂k2

α

=
∂2ǫk
∂k2

(5.75)

does not depend on the direction. For a parabolic band

ǫk =
h̄2k2

2m∗
, (5.76)

where we introduced the effective mass m∗, we have

∂2ǫk
∂k2

=
h̄2

m∗
. (5.77)

Furthermore, 2
∑

k n
0
(

ǫk

)

= n, where n is the electronic density in the system.
Putting everything together, we have finally

ε (q, ω) = 1 − ω2
p

ω2
, (5.78)

where

ωp =

√

4πne2

m∗2
(5.79)

is the plasma frequency. A further expansion in powers of q up to fourth order!!P
~q

Figure 5.4: Plasmon dispersion for small wavevector q.
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leads to a dispersion of the form

ωp (q) = ωp

(

1 +
3

10

q2v2
F

ω2
p

)

, (5.80)

where vF is the Fermi velocity.
As already seen in electrodynamics, the dielectric function is related to the com-

plex refractive index as follows

κ =
√
ε . (5.81)

This means recalling (5.78) that for ω < ωp, the refractive index is purely imaginary,
and hence, a metal shows total reflexion. On the contrary, for ω > ωp, the metal
can transmit, thus becoming transparent for high enough frequencies (usually in the
ultraviolet region).

We restricted ourselves in this section to metals. However, other collective ex-
citations can be found in semiconductors like excitons, that correspond to bound
electron-hole pairs. Due to lack of time we defer these subjects to elective lectures.
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