(a) The primitive vectors for a body center cubic (bcc) lattice are

$$
\begin{aligned}
\vec{a}_{1} & =a \vec{x}, \\
\vec{a}_{2} & =a \vec{y}, \\
\vec{a}_{3} & =\frac{a}{2}(\vec{x}+\vec{y}+\vec{z}) .
\end{aligned}
$$

or, in a more symmetric set

$$
\begin{aligned}
\vec{a}_{1} & =\frac{a}{2}(-\vec{x}+\vec{y}+\vec{z}), \\
\vec{a}_{2} & =\frac{a}{2}(\vec{x}-\vec{y}+\vec{z}), \\
\vec{a}_{3} & =\frac{a}{2}(\vec{x}+\vec{y}-\vec{z}) .
\end{aligned}
$$

1. Make a drawing of this lattice,
2. Find the reciprocal lattice vectors and make a drawing of the reciprocal lattice.
(b) The primitive vectors for a face center cubic (fcc) lattice are

$$
\begin{aligned}
& \vec{a}_{1}=\frac{a}{2}(\vec{y}+\vec{z}), \\
& \vec{a}_{2}=\frac{a}{2}(\vec{x}+\vec{z}), \\
& \vec{a}_{3}=\frac{a}{2}(\vec{x}+\vec{y}) .
\end{aligned}
$$

1. Make a drawing of this lattice,
2. Find the reciprocal lattice vectors and make a drawing of the reciprocal lattice.
(c) Graphically construct the Wigner-Seitz cell and the reciprocal lattice of the two dimensional oblique lattice with basis vectors $\vec{a} 1$ and $\vec{a} 2$ shown in the following sketch:

Exercise 2-The Brillouin Zone

Show that the volume of the elementary cell Ω and the volume of the Brillouin Zone Ω_{B} are connected by the following relation:

$$
\begin{equation*}
\Omega_{B}=\frac{(2 \pi)^{3}}{\Omega} \tag{1}
\end{equation*}
$$

Exercise 3 - Tetragonal symmetry
Show that if one streches a fcc lattice along one of its lattice vectors, the resulting lattice is equivalent to a tetragonal body centered lattice. So the point group with the tetragonal symmetry has two Bravais lattices: simple tetragonal and body centered tetragonal, whereas the point group with cubic symmetry has three Bravais lattices: sc, bcc and fcc.

Exercise 4 - Fourier transformations

1. Calculate the Fourier coefficients for a function $f(x)=c, c$ some number, x defined in some one-dimensional interval.
2. Calculate explicitely the Fourier coefficients for a function $f(x)=\exp \left(i p \frac{2 \pi}{a} x\right)$, with p some integer.

Solutions due on: 6 May, 2011

