Prof. Hans Peter Büchler WS 09/10, 9. Februar 2010

1. Freies Elektron im Magnetfeld

- (a) Im Allgemeinen ist der kinetische Impuls gegeben durch $\hat{\mathbf{\Pi}} = \hat{\mathbf{p}} \mathbf{e}\hat{\mathbf{A}}/\mathbf{c}$, wobei $\hat{\mathbf{A}} = \mathbf{A}(\hat{\mathbf{x}})$. Berechne die Kommutatoren $[\hat{x}_i, \hat{\Pi}_j]$ und $[\hat{\Pi}_i, \hat{\Pi}_j]$ und zeige, dass die kinetischen Impulse in einem konstanten Magnetfeld konjugierte Variablen sind. Der Hamiltonoperator eines freien Teilchens im Magnfetfeld ist $H = \hat{\mathbf{\Pi}}^2/2m$. Zeige, dass $\hat{\mathbf{\Pi}} = m\hat{\mathbf{v}}$, wobei $\hat{\mathbf{v}} = \mathbf{i}\hbar[\hat{\mathbf{H}},\hat{\mathbf{x}}]$ der Geschwindigkeitsoperator ist.
- (b) Wir betrachten nun den Fall eines homogenen Magnetfeldes $\mathbf{B} = \mathbf{Be_z}$. Zeige unter Benutzung von Teil a), dass $H_{senk} = (\hat{\Pi}_x^2 + \hat{\Pi}_y^2)/2m$ und $H_{para} = \hat{\Pi}_z^2$ Erhaltungsgrößen sind. Betrachten wir ein klassisches Teilchen in einem Magnetfeld so beschreibt dieses eine Zyklotronbahn, welche der Bewegungsgleichung $m\mathbf{v} = m\omega_c\mathbf{e_z} \times (\mathbf{x} \mathbf{x_0})$ genügt, wobei $\omega_c = eB/mc$ die Zyklotronfrequenz ist. Daher erwarten wir, dass $\hat{\mathbf{\Theta}} = \hat{\mathbf{\Pi}} \mathbf{m}\omega_c\mathbf{e_z} \times \hat{\mathbf{x}}$ ebefalls eine Erhaltungsgröße ist. Zeige, dass dies zutrifft und berechne die Kommutatoren $[\hat{\Theta}_i, \hat{\Theta}_j]$ und $[\hat{\Theta}_i, \hat{\Pi}_j]$ für $i, j \in \{x, y\}$.
- (c) Wir können für die beiden Paare konjugierter Operatoren $\hat{\Pi}$ und $\hat{\Theta}$ die Operatoren $a=(\hat{\Pi}_x-i\hat{\Pi}_y)/\sqrt{2\hbar\omega_c m}$ und $b=(\hat{\Theta}_x+i\hat{\Theta}_y)/\sqrt{2\hbar\omega_c m}$ definieren. Zeige, dass $[a,a^+]=1$ und $[b,b^+]=1$ wie beim harmonischen Oszillator und benutze dies um zu zeigen, dass die Eigenwerte von H gegeben sind durch $E(n,k)=(n+1/2)\hbar\omega_c+\hbar^2k^2/2m$ mit $\omega_c=eB/mc$. Bestimme auch die Entartungen.
- (d) Löse nun den Hamiltonoperator von b) explizit in der Landau-Eichung $\hat{\mathbf{A}} = B_x \hat{x} \mathbf{e_y}$. Bestimme die Energie-Eigenwerte und Wellenfunktionen der Landau-Orbitale und diskutiere die Entartung.

2. Spin-Orbit-Kopplung und Zeeman-Effekt

Wir betrachten den Hamilton-Operator des Wasserstoffatoms \hat{H}_0 , welcher durch die Terme

$$\begin{array}{rcl} \hat{H}_{SO} & = & \frac{1}{2m_e^2c^2}\frac{1}{r}\frac{\partial}{\partial r}V(r)\hat{\mathbf{L}}\cdot\hat{\mathbf{S}}\\ und\\ \hat{H}_B & = & \frac{2}{2m_e}\mathbf{B}\cdot(\hat{\mathbf{L}}+\mathbf{2\hat{S}}) \end{array}$$

gestört wird, wobei $\hat{\mathbf{L}}$ der kinetische Drehimpuls und $\hat{\mathbf{S}}$ der Spin ist. V(r) ist das elektrische Potential des Kernes. Der erste Term beschreibt die Spin-Orbit Kopplung

- und der Zweite die Kopplung an ein äußeres magnetisches Feld, welches hier konstant und entlang der z-Richtung sei.
- (a) Zeige, dass die beiden Störterme mit \hat{L}^2 kommutieren und dass \hat{H}_{SO} aber nicht mit H_0 kommutiert. Erkläre, wie die Störungsrechnung in erster Ordnung verwendet wird.
- (b) Diskutiere die partielle Aufspaltung des Energie-Niveau's 2p unter dem Störterm \hat{H}_{SO} .
- (c) Sei nun ein schwaches Magnetfeld gegeben, so dass $\langle \hat{H}_B \rangle \ll \langle \hat{H}_{SO} \rangle$. Zeige, wie die Energie-Niveau's aus b) weiter aufspalten. Tip: Benütz das Wigner-Eckhardt Theorem.
- (d) Betrachte nun den Fall eines starken Magnetfeldes, i.e. $\langle \hat{H}_B \rangle \gg \langle \hat{H}_{SO} \rangle$, sodass \hat{H}_{SO} zunächst vernachlässigt werden kann. In diesem Falle hat man den Zeeman-Effekt. Diskutiere wiederum die Aufspaltung der 2p Niveau's. Zeichne schematisch die Evolution der Energie-Niveau's von schwachem Feld zu starkem Feld.
- (e)* Berechne die Evolution der Energie-Niveaus exakt innerhalb dem 2p Unterraum (Falls nötig mit Maple oder Mathematica). Beütze dazu den dimensionslosen Hamiltonoperator

$$\hat{H}_I(\lambda_B) = \frac{1}{\hbar^2} \hat{\mathbf{L}} \cdot \hat{\mathbf{S}} + \frac{\lambda_b}{\hbar} (\hat{\mathbf{L}}_z + 2\hat{\mathbf{S}}_z)$$
 (1)

und zeichne die Energie-Niveau's als Funktion von λ_b .