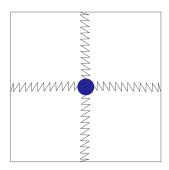
Theoretische Physik I: Mechanik, Übung 3

Prof. Hans Peter Büchler SS 2009, 05. Mai 2009

1. Harmonischer Oszillator in zwei Dimensionen (Schriftlich)

Eine Masse m befindet sich einem 2-dimensionalen isotropen harmonischen Potential $V(\vec{x}) = \frac{1}{2}\vec{D}\vec{x}^2$



- (a) Bestimme in geeigneten Koordinaten die kinetische Energie T und die potenzielle Energie V des Teilchens. Berechne die Lagrange-Funktion L=T-V.
- (b) Zeige, dass der kanonische Impuls zu einer Koordinaten eine Erhaltungsgröße ist. Stelle die Bewegungsgleichungen auf. (Tip: Verwende Polarkoordinaten)
- (c) Löse die Bewegungsgleichungen für beliebige Anfangsbedingungen einmal in Kartesischen Koordinaten und einmal in Polarkoordinaten.(Tip: Verwende die Erhaltungsgröße aus (b))

2. Variationsrechnung (Schriftlich)

Bestimme die Geodäten auf einem Kreiszylinder mit dem Radius r und einer Sphäre mit dem Radius R. Hinweis: Benutze die Parameterdarstellung

(a) Zylinder:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \\ z \end{pmatrix}$$
, $(\varphi, z) \in [0, 2\pi] \times [0, l]$.

Die Kurven auf den Zylindermantel sollen durch die Kurven $z=z(t), \varphi=\varphi(t)$ über einen Parameterbereich $t\in[t_1,t_2]$ erzeugt werden.

(b) Sphäre:
$$\begin{pmatrix} x(\varphi, \vartheta) \\ y(\varphi, \vartheta) \\ z(\varphi, \vartheta) \end{pmatrix} = R \begin{pmatrix} \cos \varphi \cos \vartheta \\ \sin \varphi \cos \vartheta \\ \sin \vartheta \end{pmatrix}, \ (\varphi, \vartheta) \in [0, 2\pi] \times [-\frac{\pi}{2}, \frac{\pi}{2}] =: P.$$

 $\varphi = \varphi(\vartheta)$ im Parameterraum P erzeugt eine Kurve.

Für diese Raumkurven ist die Bogenlänge $L = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt$ zu minimieren.

Zeige ausserdem, dass die Geodäte auf der Sphäre in einer Ebene durch den Nullpunkt liegt.

3. Abfallentsorgung an Bord der ISS (Übungstunde)

Die ISS beschreibt näherungsweise eine Kreisbahn um die Erde, mit Radius R und Kreisfrequenz ω . Zur Zeit t=0 werfen die Astronauten einen Abfallsack mit relativer Anfangsgeschwindigkeit v_0 in Richtung Erde weg. In der Näherung $v_0 \ll \omega R$ kann angenommen werden, dass gilt: $r(t) = R + r_1(t)$ mit $r_1(t) \ll R$ und $\phi(t) = \omega t + \phi_1(t)$ mit $\phi_1 \ll 2\pi$. Bestimme und löse die Bewegungsgleichungen für r_1 , ϕ_1 bis zur ersten Ordnung der Störung.