1. Electric field of a dipole (Oral)

a) Recall the important result \(\nabla^2 \frac{1}{|r|} = -4\pi \delta^3(r) \) from Ex. 2.1 and generalize it to

\[
\partial_\alpha \partial_\beta \frac{1}{|r|} = -\frac{\delta_{\alpha\beta}}{|r|^3} + \frac{3}{|r|^5} \delta_{\alpha\beta} \delta^3(r).
\]

Hint: Use a symmetry argument and the result from exercise 2.1 to derive the last term in equation (1).

b) In the lecture, it was demonstrated that the electric potential for a dipole \(p \) is given by

\[
\phi(r) = \frac{p \cdot r}{4\pi \varepsilon_0 |r|^3} = -\left(p \cdot \nabla \right) \frac{1}{4\pi \varepsilon_0 |r|^3}.
\]

Using relation (1), show that the electric field of the dipole can be written as (\(\hat{r} = r/|r| \)):

\[
E(r) = \frac{1}{4\pi \varepsilon_0} \left[3(\hat{r} \cdot p) \hat{r} - \frac{p}{|r|^3} \right].
\]

The \(\delta \)-function term in equation (2) is a correction for \(r = 0 \). In the following, we are going to re-derive it in a different way to understand its physical origin.

Prove the following **Theorem:** The average electric field over a spherical volume of radius \(R \), due to an arbitrary charge distribution within the sphere, is given by

\[
\overline{E} = -\frac{1}{4\pi \varepsilon_0} \frac{P}{R^3},
\]

where \(P \) is the total dipole moment with respect to the center of the sphere.

c) To do this, first calculate the average electric field due to a single charge \(q \) at position \(r_q \) within the sphere (with volume \(V \)):

\[
\overline{E}_q = \frac{1}{V} \int_V \mathrm{d}^3r \overline{E}_q(r) = \frac{1}{4\pi \varepsilon_0} \frac{q}{V} \int_V \mathrm{d}^3r \frac{r - r_q}{|r - r_q|^3}.
\]

Realize that this expression can also be considered as the electric field at the position \(r_q \), that is generated by a (fictional) sphere with a uniform charge density \(\rho = q/V \). Use this analogy to calculate \(\overline{E}_q \) via Gauss’s law.

d) Use the superposition principle to generalize the result for the point charge \(q \) to arbitrary charge distributions and prove equation (3).

e) Explicitly calculate the average electric field that is generated by a point-like dipole, by integrating the electric field from equation (2) over a sphere. In your integration, start by excluding a small region around the origin.
f) Finally, show that the \(\delta \)-function term in equation (3) is essential to satisfy the average-value theorem.

Remark: Another approach is to calculate the electric field of a homogeneously polarized sphere of radius \(a \). Outside of the sphere, the field is exactly given by equation (2). Inside the sphere, the field has a constant value \(E_{in} = -1/4\pi \epsilon_0 \cdot p/a^3 \), where \(p \) is the dipole moment of the sphere. As the size of the sphere goes to zero, the field strength goes to infinity in such a way that the integral over the sphere remains constant, giving the prefactor of the \(\delta \)-function: \(-p/3\epsilon_0\).

2. Magnetic field of a finite coil (Written) \([3pt]\)

Consider a wire coiled up cylindrically around the \(z \)-axis. Let \(R \) be the radius of this cylindrical coil and \(L \) its length (it starts at \(z = -L/2 \) and ends at \(z = +L/2 \)). Let \(n = N/L \) be the winding number per unit length and \(I \) be the (constant) current flowing through the wire. You may neglect boundary effects.

a) Calculate the \(z \)-component of the magnetic flux density \(B \) for points on the symmetry axis.

b) Determine the magnetic field for \(L \to \infty \) at constant \(n \).

Hint: \(\int dx \frac{1}{(x^2 + w^2)^{3/2}} = \frac{x}{w\sqrt{x^2 + w^2}} \)

3. Spherical multipole moment (Oral)

The goal of this exercise is to calculate the spherical multipole moments \(q_{lm} \) of the following distribution of charges.

![Figure 1: Two charge distributions (A) and (B) with four charges in the \(xy \) plane, placed at a distance \(a \) from the origin.](image)

a) Write down the charge distribution \(\rho(r) \) in spherical coordinates. The relation between the charge distribution in Cartesian coordinates and spherical coordinates is given by (why?):

\[
\rho(r, \theta, \phi) = \frac{\rho(x, y, z)}{r^2 \sin \theta}
\]

b) Compute the spherical monopole, dipole and quadrupole moments for both arrangements.