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1. Structure factor and form factor (Written) [4pts]
We model a simple crystal through identical little dielectric spheres of the size of an
atom (radius ∝ 1

◦
A = 10−10m) placed in a regular fashion on the points of a lattice.

A plane (monochromatic) wave is incident on this crystal and gets scattered. We
want to compute the differential scattering cross section of the scattered radiation.
Of paramount importance is the structure factor for the distribution of scatterers.
For a crystalline arrangement, a characteristic pattern of diffraction angles (points of
scattered light on a screen) is obtained. This is the Laue diffraction pattern, which
allows to determine the crystal structure.

a) Compute the differential scattering cross section for a simple cubic (sc) crystal
of edge length Na where a is the distance between two atoms. Assume that the
incident electric field induces dipole moments pj and mj in the atom at lattice
point xj. The plane wave is at normal incidence to one of the surfaces of the
crystal (xy-plane) and has wave vector kin.

b) Compute the structure factor S(q) = ∑
x∈Γ e

iq·x, where Γ denotes the set of lattice
points. The scattering vector q = kin − |kin|r̂ depends on the position of the
observer; r̂ is a unit vector pointing towards the observer. In which direction will
the observer see maxima of diffracted intensity ? Use polar coordinates (θ, φ).

c) Take the limit N →∞ for the structure factor S(q).
d) Now compute the structure factor for a body centered cubic (bcc) crystal, that is,

a cubic crystal as the one in a) where additionally an atom is placed at the center
of each cubic unit cell. Which scattering peaks appear or disappear compared to
the simple cubic lattice ?
Hint: Write the bcc lattice as a sc lattice with a two-atomic basis. Mathematically,
this amounts to a convolution operation.

2. Fraunhofer diffraction from a circular aperture (Oral)

a) The ordinary Bessel function Jn(x) is a solution to the second order differential
equation

x2 d
2y

dx2 + x
dy

dx
+ (x2 − n2)y = 0. (1)

Prove the recurrence relation

d

dx

[
xn+1Jn+1(x)

]
= xn+1Jn(x) (2)
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by showing that x±n d
dx

(x∓nJn(x)) is a solution of the Bessel equation of order
n± 1 if Jn(x) is a solution of order n. Deduce that upon integration, for n = 0,∫ x

0
x′J0(x′)dx′ = xJ1(x). (3)

b) In the Fraunhofer limit the diffracted scalar amplitude u(p, q) is the 2D Fourier
transform of the characteristic function C(ξ, η) of the aperture

u(p, q) =
√
I0

SA

∫
C(ξ, η)dξdη e−ik(pξ+qη) (4)

with wave vector k ≡ 2π
λ

and p ≡ α − α0, q ≡ β − β0 denoting the difference of
directional cosines (see lecture notes). SA is the surface area of the aperture and
I0 is the intensity at the center, I0 ≡ |u(0, 0)|2 = S2

A. Consider a circular aperture
of radius a whose characteristic function is

C(ξ, η) =
{

1 for
√
ξ2 + η2 ≤ a

0 otherwise (5)

and compute the diffracted intensity I(p, q) = |u(p, q)|2 in the Fraunhofer limit.
Go to cylindrical coordinates and use an integral representation of the Bessel
function

Jn(x) = 1
2πin

∫ 2π

0
eix cosφeinφdφ, (6)

and (3) from task a).

3. Fourier optics (Oral)
In this exercise we are going to use the properties of Fourier transforms to obtain the
Fraunhofer diffraction pattern of more complicated structures in a systematic way.

a) Show that an aperture consisting of two circular holes of radius a with their
centers located at (η, ξ) = (−d

2 , 0) and (η, ξ) = (+d
2 , 0), respectively, can be

written as a convolution of one circular hole with two delta functions located
at (η, ξ) = (−d

2 , 0) and (η, ξ) = (+d
2 , 0). Write down the Fraunhofer diffraction

pattern of this aperture using the convolution theorem for Fourier transforms.
Remark: An arbitrarily shaped aperture A(r = (η, ξ)) can be replicated at
positions {ri} by a convolution operation with an array of delta functions Ωδ =∑
i δ(r′ − ri). Schematically:

Tiling of apertures A = (Ωδ ∗A)(r) ≡
∫ ∑

i

δ(r′−ri)A(r−r′)d2r′ =
∑
i

A(r−ri).

(7)
b) Let A1 and A2 be two apertures such that the extension of A2 in a particular

direction, e.g. in ξ-direction, is µ times that of A1. Show by a suitable change of
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variables of integration from (ξ, η) to (ξ′, η′) in the Fraunhofer integral that the
diffracted amplitudes obey

U2(p, q) = µU1(µp, q). (8)

Using this result, write down the Fraunhofer diffraction pattern of an aperture
which has the shape of an ellipse.

c) Using the results of a) and b), write down the Fraunhofer diffraction pattern of
the aperture shown in the figure below on the left which consists of three elliptical
holes placed at the vertices of an equilateral triangle.

d) Write down the Fraunhofer diffraction pattern for the aperture shown in the figure
below on the right. There the three holes have been replicated on a 4× 4 square
grid to give a regular arrangement of holes.
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