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1. Lorentz Group (Oral)
In this exercise, we prove that the Lorentz group is a group as well as we analyze its
properties. First, let us revise the definition of a group.
Definition: A group is a set G together with an operation • (called the group law
of G) that combines any two elements a and b to form another element, denoted
by a • b. To qualify as a group, the set and the operation, (G, •), must satisfy four
requirements known as the group axioms:
1) Closure: For all a, b ∈ G, the result of the operation a • b is also an element of

G.
2) Associativity: For all a, b, c ∈ G the following relation is satisfied (a • b) • c =

a • (b • c).
3) Identity element: There exists an element e ∈ G, such that for every element

a ∈ G, the equality e • a = a • e = a holds. Such an element is unique, and thus
called the identity element.

4) Inverse element: For each a ∈ G, there exists an element b ∈ G such that a • b
= b • a = e, where e is the identity element.

In the lecture, for Lorentz transformations, we defined G as the set characterized by
invariance of the metric tensor g of Minkowski spacetime, i.e.

G := {Λ ∈ R4×4 | ΛtgΛ = g} (1)

and the group operation • as the multiplication of matrices.
a) Show that the Lorentz group is a group.
b) Depending on det(Λ) and sign(Λ0

0) the Lorentz group can be divided into
four components. Show that proper orthochronous Lorentz transformations, i.e.
det(Λ) = 1 and sign(Λ0

0) = 1, form a group.
c) Next, proof that each of three other components does not form a group. Give an

example of the combination of two out of four components which again gives a
proper group.

2. Galilean invariance of handicapped Maxwell equations (Oral)
In the lecture we learned that Maxwell’s equations are not invariant under Galilean
transformations r′ = r + vt, t′ = t. Here, we will show that Maxwell’s equations
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become Galilean invariant if one drops the induction term in the Maxwell-Faraday
equation

∇ · E = ρ/ε0, (2)
∇× E = −���HHH∂tB︸︷︷︸

0

, (3)

∇ ·B = 0, (4)
∇×B = µ0(j + ε0∂E/∂t). (5)

For this purpose show that above equations are form invariant if we define E′,B′ by

E′ = E, B′ = B + ε0µ0v× E. (6)

Hint: You might find the following relations useful:

∇ · (a × b) = b · ∇ × a − a · ∇ × b, (7)
∇× (a × b) = a∇ · b− b∇ · a + (b · ∇)a − (a · ∇)b. (8)

3. Tractor beam (Oral)
A beam of protons flies along the x-axis, wherein the protons have a speed vpr = c/3
and a density n (in protons per unit length).

a) Use the laws of electrostatics and magnetostatics to calculate the fields E(r) and
B(r) generated by the beam as a function of the distance to the beam r.
Tip: The fields produced by the beam are given by I = envpr and the charge
distribution can be approximated for r � 1/n as continuous, what leads to the
charge density λ = en.

Imagine a spaceship flying parallel to the proton beam at the distance R with a
velocity v.
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b) What force F acts on the spacecraft when it carries a negative, point-like charge
−Q? What direction has the force?

Now we look at the same situation from the perspective of the spaceship. We set here
v = vpr = c/3.
c) Transform the electric and magnetic fields into the coordinate system K ′ of the

spacecraft.
d) We can also look at the the proton beam from the perspective of the spaceship

in order to calculate the fields. Show that the fields calculated in K ′ coordinate
system agree with the results from the subtasks c).

e) Calculate the force F ′ acting on the spacecraft. Knowing that the acceleration
transforms like γ2a = a′ show how the mass transforms. We are now demanding
that the equation of motion F = ma is invariant under Lorentz transformations.
Hence, it also holds that F ′ = m′a′.
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