
Quantum Field Theory Assignment 1

Prof. Dr. Hans Peter Büchler April 5th, 2016
Insitute for Theoretical Physics III, University of Stuttgart SS 2016

You can find detailed information about the lecture and the exercises on the website
http://www.itp3.uni-stuttgart.de/lehre/vorlesungen/QFT.html. Exercises are
divided into two different groups. Written exercises have to be handed in and will be
graded by the tutors. Oral exercises have to be prepared for the exercise session and
will be presented by one of the students. In order to be admitted to the exam, we
require (a) 80% of the written exercises to be solved or treated adequately, (b) 66%
of the oral exercises to be prepared and (c) two exercises to be presented at the black board.

The first exercise sheet serves as a repetition for some important concepts from classical
field theory.

Exercise 1: Functional derivative (Oral)
For a given manifoldM of functions φ and a functional F with F : M→ R or C, the
functional derivative δF [φ]

δφ
is defined as

∫
dx′ δF [φ]

δφ(x′)f(x′) = lim
ε→0

F [φ(x) + εf(x)]− F [φ(x)]
ε

= d
dεF [φ+ εf ]

∣∣∣∣∣
ε=0

(1)

for all test functions f ∈M.

a) Show that for two functionals F and G

δ(F + λG)[φ]
δφ(x) = δF [φ]

δφ(x) + λ
δG[φ]
δφ(x) for λ ∈ R (2)

δ(FG)[φ]
δφ(x) = δF [φ]

δφ(x)G[φ] + F [φ]δG[φ]
δφ(x) , with (FG)[φ] = F [φ]G[φ]. (3)

If G[φ] is a function-like functional, i.e. can be treated as a function itself

δF [G[φ]]
δφ(y) =

∫
dx δF [G]

δG(x)
δG[φ](x)
δφ(y) . (4)

b) Calculate the functional derivative δF [φ]
δφ(x) for the following functionals:

F [φ] =
∫

dx′ K(y, x′)φ(x′), whereK(y, x′) is a so called integral kernel (5)

F [φ] = φ(y) (6)
F [φ] = φ′(y) (7)

F [φ] =
∫

dy f(φ(y), φ′(y)) for a differentiable function f : R× R→ R (8)
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Exercise 2: Lorentz covariance (Oral)
This exercise should serve as a brief revision of Lorentz covariance and the covariant
formulation of classical electromagnetism. In the following, we will work in units where
c = 1. Further, we will make use of Einstein notation where summation over indices
appearing twice is assumed.

We first introduce the four-vector

xµ = (t, r), µ = 0, 1, 2, 3, (9)

which we will call a contravariant vector or tensor of first order. The vector xµ is called
covariant vector. In special relativity, the metric tensor is given by

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (10)

and the relationship between co- and contravariant vectors is given by

xµ = gµνx
ν . (11)

A Lorentz vector is an object that under a Lorentz transformation Λµ
ν transforms like

x̃µ = Λµ
νx

ν . (12)

In tensors of higher order, each index transforms as a Lorentz vector, e.g.

Ãαβγδε = Λα
µΛβ

νΛγ
ξΛδ

ρΛε
σAµνξρσ. (13)

A Lorentz scalar is a quantity that is invariant under Lorentz transformations.
a) Show that xµxµ is a Lorentz scalar, i.e. show that xµxµ = x̃σx̃σ.

Another important object is the four-gradient
∂

∂xµ
= ∂µ = (∂t,∇). (14)

b) Compute the d’Alembert operator ∂µ∂µ. Is this quantity a Lorentz scalar?
In a covariant formulation of electromagnetism, the electric and magnetic field E and B,
respectively, are given by the anti-symmetric field tensor

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 F µν = gµαgνβFαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


(15)

The fields can also be described by the four-potential Aµ = (Φ,−A), where Φ is a scalar
potential and A is a vector potential.
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c) Show that Fµν = ∂µAν − ∂νAµ reproduces the fields E and B.
d) Show that Fµν is invariant under the gauge transformation Aµ → Aµ − ∂µf , where

f is an arbitrary function.
e) Show that in Lorenz gauge, ∂νAν = 0, and for no external sources, the Maxwell

equations ∂µF µν = 0 reduce to ∂µ∂µAν = 0.

Exercise 3: Maxwell equations (Written, 4 points)
The Maxwell equations for classical electromagnetism in vacuum can be derived from
the action

S =
∫

d4xL =
∫

d4x
(
−1

4FµνF
µν
)
, (16)

with Fµν = ∂µAν − ∂νAµ.

a) Derive the Maxwell equations from the action (16). Use the Euler-Lagrange equa-
tions and treat the components Aµ(x) as the dynamic variables. Write the two
’inhomogeneous’ Maxwell equations in their standard form by using Ei = −F 0i and
εijkBk = −F ij, i = x, y, z. What happens with the two homogeneous equations?

b) Calculate the energy-momentum tensor T µν for the electromagnetic field

T µν = ∂L
∂(∂µAλ)

∂νAλ − gµνL. (17)

c) This tensor, however, is not symmetric which can be fixed by adding a term of the
form ∂λK

λµν , where Kλµν is antisymmetric in its first two indices. Calculate the
symmetric energy-momentum tensor

T̂ µν = T µν + ∂λK
λµν (18)

with

Kλµν = F µλAν . (19)

d) Show that the symmetrized tensor yields the standard form of the electromagnetic
energy density and the momentum density (Poynting vector)

E = 1
2(E2 +B2) and S = E×B. (20)
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