Prof. Dr. Hans Peter Büchler
Insitute for Theoretical Physics III, University of Stuttgart

April 5th, 2016 SS 2016

You can find detailed information about the lecture and the exercises on the website http://www.itp3.uni-stuttgart.de/lehre/vorlesungen/QFT.html. Exercises are divided into two different groups. *Written* exercises have to be handed in and will be graded by the tutors. *Oral* exercises have to be prepared for the exercise session and will be presented by one of the students. In order to be admitted to the exam, we require (a) 80% of the written exercises to be solved or treated adequately, (b) 66% of the oral exercises to be prepared and (c) two exercises to be presented at the black board.

The first exercise sheet serves as a repetition for some important concepts from classical field theory.

Exercise 1: Functional derivative (Oral)

For a given manifold \mathcal{M} of functions ϕ and a functional F with $F : \mathcal{M} \to \mathbb{R}$ or \mathbb{C} , the functional derivative $\frac{\delta F[\phi]}{\delta \phi}$ is defined as

$$\int \mathrm{d}x' \, \frac{\delta F[\phi]}{\delta \phi(x')} f(x') = \lim_{\varepsilon \to 0} \frac{F[\phi(x) + \varepsilon f(x)] - F[\phi(x)]}{\varepsilon} = \left. \frac{\mathrm{d}}{\mathrm{d}\varepsilon} F[\phi + \varepsilon f] \right|_{\varepsilon = 0} \tag{1}$$

for all test functions $f \in \mathcal{M}$.

a) Show that for two functionals F and G

$$\frac{\delta(F+\lambda G)[\phi]}{\delta\phi(x)} = \frac{\delta F[\phi]}{\delta\phi(x)} + \lambda \frac{\delta G[\phi]}{\delta\phi(x)} \quad \text{for } \lambda \in \mathbb{R}$$
(2)

$$\frac{\delta(FG)[\phi]}{\delta\phi(x)} = \frac{\delta F[\phi]}{\delta\phi(x)}G[\phi] + F[\phi]\frac{\delta G[\phi]}{\delta\phi(x)}, \text{ with } (FG)[\phi] = F[\phi]G[\phi].$$
(3)

If $G[\phi]$ is a function-like functional, i.e. can be treated as a function itself

$$\frac{\delta F[G[\phi]]}{\delta \phi(y)} = \int \mathrm{d}x \, \frac{\delta F[G]}{\delta G(x)} \frac{\delta G[\phi](x)}{\delta \phi(y)}.$$
(4)

b) Calculate the functional derivative $\frac{\delta F[\phi]}{\delta \phi(x)}$ for the following functionals:

$$F[\phi] = \int dx' K(y, x')\phi(x'), \quad \text{where } K(y, x') \text{ is a so called integral kernel} \quad (5)$$

$$F[\phi] = \phi(y) \tag{6}$$

$$F[\phi] = \phi'(y) \tag{7}$$

$$F[\phi] = \int dy f(\phi(y), \phi'(y)) \text{ for a differentiable function } f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \quad (8)$$

Exercise 2: Lorentz covariance (Oral)

This exercise should serve as a **brief** revision of Lorentz covariance and the covariant formulation of classical electromagnetism. In the following, we will work in units where c = 1. Further, we will make use of *Einstein notation* where summation over indices appearing twice is assumed.

We first introduce the four-vector

$$x^{\mu} = (t, \mathbf{r}), \quad \mu = 0, 1, 2, 3,$$
(9)

which we will call a **contravariant** vector or tensor of first order. The vector x_{μ} is called **covariant** vector. In special relativity, the metric tensor is given by

$$g^{\mu\nu} = g_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(10)

and the relationship between co- and contravariant vectors is given by

$$x_{\mu} = g_{\mu\nu} x^{\nu}. \tag{11}$$

A Lorentz vector is an object that under a Lorentz transformation $\Lambda^{\mu}{}_{\nu}$ transforms like

$$\tilde{x}^{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}.$$
(12)

In tensors of higher order, each index transforms as a Lorentz vector, e.g.

$$\tilde{A}^{\alpha\beta\gamma}{}_{\delta\varepsilon} = \Lambda^{\alpha}{}_{\mu}\Lambda^{\beta}{}_{\nu}\Lambda^{\gamma}{}_{\xi}\Lambda_{\delta}{}^{\rho}\Lambda_{\varepsilon}{}^{\sigma}A^{\mu\nu\xi}{}_{\rho\sigma}.$$
(13)

A Lorentz scalar is a quantity that is invariant under Lorentz transformations.

a) Show that $x^{\mu}x_{\mu}$ is a Lorentz scalar, i.e. show that $x^{\mu}x_{\mu} = \tilde{x}^{\sigma}\tilde{x}_{\sigma}$.

Another important object is the four-gradient

$$\frac{\partial}{\partial x^{\mu}} = \partial_{\mu} = (\partial_t, \nabla). \tag{14}$$

b) Compute the d'Alembert operator $\partial^{\mu}\partial_{\mu}$. Is this quantity a Lorentz scalar?

In a covariant formulation of electromagnetism, the electric and magnetic field \mathbf{E} and \mathbf{B} , respectively, are given by the anti-symmetric field tensor

$$F_{\mu\nu} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & -B_z & B_y \\ -E_y & B_z & 0 & -B_x \\ -E_z & -B_y & B_x & 0 \end{pmatrix} \qquad F^{\mu\nu} = g^{\mu\alpha}g^{\nu\beta}F_{\alpha\beta} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$
(15)

The fields can also be described by the four-potential $A_{\mu} = (\Phi, -\mathbf{A})$, where Φ is a scalar potential and \mathbf{A} is a vector potential.

- c) Show that $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$ reproduces the fields **E** and **B**.
- d) Show that $F_{\mu\nu}$ is invariant under the gauge transformation $A_{\mu} \to A_{\mu} \partial_{\mu} f$, where f is an arbitrary function.
- e) Show that in Lorenz gauge, $\partial_{\nu}A^{\nu} = 0$, and for no external sources, the Maxwell equations $\partial_{\mu}F^{\mu\nu} = 0$ reduce to $\partial^{\mu}\partial_{\mu}A^{\nu} = 0$.

Exercise 3: Maxwell equations (Written, 4 points)

The Maxwell equations for classical electromagnetism in vacuum can be derived from the action

$$S = \int d^4x \mathcal{L} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right), \qquad (16)$$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

- a) Derive the Maxwell equations from the action (16). Use the Euler-Lagrange equations and treat the components $A_{\mu}(x)$ as the dynamic variables. Write the two 'inhomogeneous' Maxwell equations in their standard form by using $E^i = -F^{0i}$ and $\varepsilon^{ijk}B^k = -F^{ij}$, i = x, y, z. What happens with the two homogeneous equations?
- b) Calculate the energy-momentum tensor $T^{\mu\nu}$ for the electromagnetic field

$$T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}A_{\lambda})} \partial^{\nu}A_{\lambda} - g^{\mu\nu}\mathcal{L}.$$
(17)

c) This tensor, however, is not symmetric which can be fixed by adding a term of the form $\partial_{\lambda} K^{\lambda\mu\nu}$, where $K^{\lambda\mu\nu}$ is antisymmetric in its first two indices. Calculate the symmetric energy-momentum tensor

$$\hat{T}^{\mu\nu} = T^{\mu\nu} + \partial_{\lambda} K^{\lambda\mu\nu} \tag{18}$$

with

$$K^{\lambda\mu\nu} = F^{\mu\lambda}A^{\nu}.$$
(19)

d) Show that the symmetrized tensor yields the standard form of the electromagnetic energy density and the momentum density (Poynting vector)

$$\mathcal{E} = \frac{1}{2}(E^2 + B^2) \quad \text{and} \quad \mathbf{S} = \mathbf{E} \times \mathbf{B}.$$
 (20)