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Exercise 1: Plane Wave Solutions for the Dirac Equation (Oral)
In this exercise we will study in detail the Dirac equation and its solutions in the Weyl
or chiral representation.
Let us start by writing the Dirac equation for a relativistic massive particle, m 6= 0, with
wave function ψ,

(iγµ∂µ −m)ψ = 0, (1)

Notice that the Klein-Gordon equation is just obtained by multiplying by (iγµ∂µ +m).
We shall choose the Weyl (also called chiral) representation for the generators of the
Dirac algebra,

γ0 =
(

0 I
I 0

)
, γi =

(
0 σi

−σi 0

)
(2)

where I and σi stand for the 2× 2 unit matrix and the Pauli matrices, respectively. In
this four-dimensional representation, the wave function ψ may be written as a bispinor

ψ =
(
φ
χ

)
(3)

where φ and χ are two-component spinors. We seek plane wave solutions of (1), i.e.
solutions of the form

ψ(+)(x) = e−ik·xu(k) positive energy
ψ(−)(x) = eik·xv(k) negative energy, (4)

with the condition that k0 > 0. To verify the Klein-Gordon equation, we also must have
k2 = m2. In the following, we will express all quantities in units of ~ = 1.

a) Starting from the Dirac equation in the chiral representation, write the equations
that u(k) and v(k) must satisfy.

b) Write the reduced equations for u(m,0), and v(m,0) in the rest frame of the particle,
i.e. kµ = (m,0).

c) There are clearly two linearly independent solutions for u and two for v. In the chiral
representation (2), write the solutions for u(α)(m,0) and v(α)(m,0), where α is the
index of two linearly independent solutions.
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d) We shall write the complete solution as

u(α)(k) = U (α)(k)u(α)(m,0), (5)
v(α)(k) = V (α)(k)v(α)(m,0), (6)

show what are the equations that U (α)(k) and V (α)(k) must satisfy.
e) We shall define the conjugate wave function as

ψ̄ ≡ ψ†γ0, (7)

write the equations that ūα(k) and v̄α(k) must satisfy.
f) In evaluating Feynman diagrams, we will often wish to sum over the polarization

states of fermion. We can derive the relevant completeness relations with the following
sums:

Λ+(k) ≡
∑
α=1,2

uα(k)ūα(k)

Λ−(k) ≡ −
∑
α=1,2

vα(k)v̄α(k). (8)

please calculate them.

Exercise 2: Relativistic Hydrogen-like atoms (Written, 5 points)
In this exercise, we want to calculate the spectrum of the relativistic hydrogen atom
with the Dirac equation (therefore including spin). To this end, we consider the coupling
to an external electromagnetic field characterized by its potential Aµ via the minimal
coupling prescription

∂µ → ∂µ + ieAµ, (9)

where e is the (negative) electric charge. In quantum electrodynamics, the electric charge
is considered as a coupling constant and in natural units is dimensionless. It is related to
the fine-structure constant (also known as Sommerfeld’s constant) by α = e2

4π .

a) Consider the Klein-Gordon equation with minimal coupling and a static vector
potential A0 = Ze

4πr . Use the ansatz φ(t, r) = e−iEtφ(r) and show that the Klein-
Gordon equation in spherical coordinates reduces to(

−∂2
r −

2
r
∂r + L2 − Z2α2

r2 − 2ZαE
r
− (E2 −m2)

)
φ = 0, (10)

with L2 the angular momentum operator.
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b) Use the substitutions

L2 → L2 − Z2α2 (11)

α → α
E

m
(12)

ε → E2 −m2

2m (13)

to get an equation which is equivalent to the Schrödinger equation for the non-
relativistic hydrogen atom. Show that the spectrum of the relativistic hydrogen atom
without spin is then given by

Enl = m√
1 + (Z2α2/(n− δl)2)

, (14)

with

δl = l + 1
2 −

√(
l + 1

2

)2
− Z2α2. (15)

c) In order to include the spin, we turn to the Dirac equation. Write down the Dirac
equation with the minimal coupling prescription (9). Multiply the equation by
iγµ∂µ − eγµAµ +m and bring your result into the form[

(i∂µ − eAµ)2 − e

2σ
µνFµν −m2

]
ψ = 0, (16)

with

σµν = i

2 [γµ, γν ] . (17)

We choose for the four-potential Aµ again A0 = − Ze
4πr , A = 0. Using the Weyl

representation for the γ matrices, show that (16) reduces to[
−
(
∂2
r + 2

r
∂r

)
+ L2 − Z2α2 ∓ iZασ · r̂

r2 − 2ZαE
r
− (E2 −m2)

]
ψ± = 0, (18)

where r̂ = r/r.
d) In order to diagonalize the Hamiltonian in (18), we introduce the total angular

momentum operator J = L+ σ/2 which commutes with the Hamiltonian and L2.
Consider now the subspace where J2 = j(j + 1), Jz = m (j = 1

2 ,
3
2 , . . .; −j ≤ m ≤ j)

and L2 = l(l + 1). Which values the integer l can take? Show that in this subspace
the operator L2 − Z2α2 ∓ iZασr̂ takes the following form

L2−Z2α2∓ iZασr̂ =
(

(j + 1
2)(j + 3

2)− Z2α2 ∓iZα
∓iZα (j − 1

2)(j + 1
2)− Z2α2

)
. (19)

Page 3 of 4



Quantum Field Theory Assignment 4

Assume this matrix has eigenvalues λ(λ+ 1) and show that they can be written

λ =
(
j ± 1

2

)
− δj (20)

with

δj = j + 1
2 −

√(
j + 1

2

)2
− Z2α2. (21)

Calculate the spectrum similar to the case of the Klein-Gordon field and show that
the energies are given by

Enj = m√
1 + (Z2α2/(n− δj)2)

. (22)

e) Expand the energies Enl and Enj up to O(α4) and discuss the spectrum in both
cases. What are the differences with respect to the non-relativistic spectrum?
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