Prof. Dr. Alejandro Muramatsu WS 2014/15, 22. Januar 2015

1. Tight-Binding-Modell

Wir betrachten nun Tight-Binding-Modell für ein eindimensionales Gitter mit $N_s = 2 + 4n$ Plätzen $(n \in \mathbb{N}_0)$ und periodischen Randbedingungen, sowie ohne Wechselwirkung (U = 0). Die einzelnen Gitterplätze befinden sich an den Orten $x_j = a \cdot j$ mit $j = 0, \ldots, N_s - 1$ und der Gitterkonstante a.

Der Hamilton-Operator in zweiter Quantisierung lautet

$$H = -t \sum_{j,\sigma} \left(c_{j,\sigma}^{\dagger} c_{j+1,\sigma} + h.c. \right),$$

wobei die Summe über alle Gitterplätze j, sowie die beiden Spin-Richtungen $\sigma = \uparrow, \downarrow$ ausgeführt wird.

(a) Zeige, dass sich der Hamilton-Operator auf Diagonalform

$$H = \sum_{k,\sigma} \epsilon(k) \, b_{k,\sigma}^{\dagger} b_{k,\sigma}^{}$$

bringen lässt, indem man eine (diskrete) Fourier-Transformation durchführt und die Vernichter und Erzeuger durch die entsprechenden k-Raum Operatoren $b_{k,\sigma}$ bzw. $b_{k,\sigma}^{\dagger}$ ausdrückt:

$$c_{j,\sigma} = \frac{1}{\sqrt{N_s}} \sum_{k} e^{-ikx_j} b_{k,\sigma}$$

Wie lautet $\epsilon(k)$?

- (b) Zeichne die Dispersionsrelation innerhalb der 1. Brillouin-Zone für $N_s \to \infty$.
- (c) Gebe den Grundzustand für N_s Fermionen an, jeweils $N_s/2$ mit $\sigma=\uparrow$ bzw. $\sigma=\downarrow$. Bis zu welcher Energie ist das "Band" gefüllt?
- (d) Für Bosonen unterdrücken wir den Index σ und ersetzen die fermionischen Operatoren durch bosonische. Wie lautet der Grundzustand des Tight-Binding-Modells für M Bosonen $(M \in \mathbb{N})$?

2. Entropie idealer Quanten-Gase

- a) Berechne die Entropie $S(T, V, \mu)$ des idealen Fermi-Gases. Drücke $S(T, V, \mu)$ dabei durch die mittlere Besetzungszahl $\langle n_r \rangle$ aus.
- b) Betrachte das Verhalten von S für $T \to 0$
- c) Berechne die Entropie S eines idealen Bose-Gases. Drücke $S(T,V,\mu)$ dabei durch die mittlere Besetzungszahl $\langle n_r \rangle$ aus.
- d) Überprüfe das Verhalten von S für $T \to 0$, und zwar für den Fall fester Teilchenzahl N(T) = const. und für den Fall $N(T) \to 0$. Nenne Beispiele für die Teilchen im zweiten Fall.