Nastasia Makki
(Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada)

Weyl Semimetal as an Intermediate Phase between a Trivial Insulator and a Topological Insulator

We study a topological phase transition through looking at the surface states. We demonstrate the coexistence of open energy contours, the Fermi arcs, and closed Fermi pockets corresponding to Dirac cones on the surface of a Weyl semimetal. This surface configuration was predicted to exist due to restrictions imposed by Z_2 topological invariants characterizing the time-invariant topological phase. We verify this result for a generic tight-binding Hamiltonian with broken inversion symmetry introduced in Ref [1] (A. Lau et al., Physical review letters 119, 076801 (2017)). We present visualizations of the surface Fermi arcs in the intermediate Weyl phase while the system undergoes a topological phase transition from a trivial insulator to a topological insulator.