Exercise 1: Landau functional for the classical Heisenberg-model
The Hamilton function for the classical Heisenberg-model is as follows:

$$
\begin{equation*}
H=-\frac{1}{2} \sum_{i, j} J_{i j} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}-\sum_{i} \boldsymbol{h}_{i} \cdot \boldsymbol{S}_{i} \tag{1}
\end{equation*}
$$

where $\boldsymbol{S}_{i}=\left(S_{i}^{(1)}, S_{i}^{(2)}, \ldots, S_{i}^{(N)}\right)$ is a classical vector with length $\left|\boldsymbol{S}_{i}\right|=1 \forall i$. For $J_{i j}$ we consider a general form satisfying $J_{i j}=J_{j i}$ and such that its Fourier-transform exists. The physical relevant cases are $N=2$ (XY-model) and $N=3$ (Heisenberg model). However, it is useful to consider N as a parameter, since an exact solution can be obtained in the limit $N=\infty$ (spherical model) and a controlled expansion can be performed around this solution ($1 / N$-expansion).

Find the Landau functional for the model above with the help of the Hubbard-Stratonovich transformation

$$
\begin{align*}
\exp & \left\{\frac{\beta}{2} \sum_{i, j} \sum_{a=1}^{N} S_{i}^{a} J_{i j} S_{j}^{a}\right\}= \\
& \frac{1}{(2 \pi)^{M N / 2}(\sqrt{\operatorname{det} J})^{N}} \int \prod_{i=1}^{M} d \phi_{i} \exp \left\{-\frac{1}{2 \beta} \sum_{i, j} \sum_{a=1}^{N} \phi_{i}^{a}\left(J^{-1}\right)_{i j} \phi_{j}^{a}+\sum_{i=1}^{M} \sum_{a=1}^{N} \phi_{i}^{a} S_{i}^{a}\right\} \tag{2}
\end{align*}
$$

where M is the number of lattice sites and $a=1, \ldots, N$ denotes the components of \boldsymbol{S}_{i} and $\boldsymbol{\phi}_{i}$.

Hints:

i) Take into account the fact that the variables \boldsymbol{S}_{i} are subjected to a constraint.

$$
\begin{equation*}
\sum_{\left\{\boldsymbol{S}_{i}\right\}} \longrightarrow \int_{-\infty}^{\infty} \prod_{i} d^{N} S_{i} \delta\left(\boldsymbol{S}_{i}^{2}-1\right) \tag{3}
\end{equation*}
$$

ii) In order to fulfill the constraint above, it is better to go over to spherical coordinates.

$$
\begin{array}{llr}
S^{(1)} & = & \cos \phi \sin \theta_{1} \ldots \sin \theta_{N-2} \tag{4}\\
S^{(2)} & = & \sin \phi \sin \theta_{1} \ldots \sin \theta_{N-2} \\
S^{(3)} & = & \cos \theta_{1} \ldots \sin \theta_{N-2} \\
\vdots & & \\
S^{(N-1)} & = & \cos \theta_{N-3} \sin \theta_{N-2} \\
S^{(N)} & = & \cos \theta_{N-2}
\end{array}
$$

with $0 \leq \phi<2 \pi$ and $0 \leq \theta_{i} \leq \pi$ for $i=1, \ldots, N-2$. The volume element goes over to an area element

$$
d^{N} S \rightarrow d \phi \sin \theta_{1} d \theta_{1} \sin ^{2} \theta_{2} d \theta_{2} \ldots \sin ^{N-2} \theta_{N-2} d \theta_{N-2}
$$

iii) The following integrals are usefull:
a)

$$
\begin{equation*}
\int_{0}^{\pi} \sin ^{k} \theta d \theta=\frac{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+2}{2}\right)} \tag{5}
\end{equation*}
$$

Accordingly, the area of an N-dimensional sphere of radius unity is

$$
S_{N}=\frac{2 \pi^{N / 2}}{\Gamma\left(\frac{N}{2}\right)}
$$

b)

$$
\begin{equation*}
\int_{0}^{\pi} \sin ^{N-2} \theta e^{B \cos \theta} d \theta=\sqrt{\pi}\left(\frac{2}{B}\right)^{\frac{N}{2}-1} \Gamma\left(\frac{N-1}{2}\right) I_{\frac{N}{2}-1}(B) \tag{6}
\end{equation*}
$$

where $I_{\nu}(z)$ is a modified Bessel-function, with

$$
\begin{equation*}
I_{\nu}(z)=\left(\frac{z}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{(z / 2)^{2 k}}{k!\Gamma(\nu+k+1)} \tag{7}
\end{equation*}
$$

where $\nu \neq-1,-2, \ldots$
c) Using a) and b) one has

$$
\begin{align*}
& \int \mathcal{D} \boldsymbol{S} \delta\left(\boldsymbol{S}^{2}-1\right) \exp \left\{\beta \sum_{i}^{M} \boldsymbol{\phi}_{i} \cdot \boldsymbol{S}_{i}\right\}= \\
& \quad \prod_{i=1}^{M}\left\{2 \pi^{\frac{N}{2}}\left(\frac{2}{\beta\left|\boldsymbol{\phi}_{i}\right|}\right)^{\frac{N}{2}-1} I_{\frac{N}{2}-1}\left(\beta\left|\boldsymbol{\phi}_{i}\right|\right)\right\} \tag{8}
\end{align*}
$$

Exercise 2: ϕ^{3}-theory

The Action for the ϕ^{3}-theory in d-dimensions is given by

$$
\begin{equation*}
S=\int \mathrm{d}^{d} r\left[\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m_{0}^{2} \phi^{2}+\frac{\lambda}{3!} \phi^{3}\right] \tag{9}
\end{equation*}
$$

i) Find the upper critical dimension of the theory.
ii) Find the Hamiltonian density corresponding to the given ϕ^{3}-action.
iii) Can the action in (9) describe a real physical system? why?
iv) For the case of $\lambda=0$ (non-interacting theory), compute explicitly the 6-point correlation function $\left\langle\phi\left(\mathrm{x}_{1}\right) \phi\left(\mathrm{x}_{2}\right) \phi\left(\mathrm{x}_{3}\right) \phi\left(\mathrm{x}_{4}\right) \phi\left(\mathrm{x}_{5}\right) \phi\left(\mathrm{x}_{6}\right)\right\rangle$.

