Prof. Dr. Hans Peter Büchler

Institute for Theoretical Physics III, University of Stuttgart

Exercise 1: Correlation functions in a Fermi sea (Oral)

Consider a gas of N identical fermions with spin $\frac{1}{2}$. The fermions are free and non-interacting and the ground state of the system is given by the Fermi sea

$$|\text{FS}\rangle = \prod_{|\boldsymbol{k}| < k_F, \sigma} c_{\boldsymbol{k}, \sigma}^{\dagger} |0\rangle \,. \tag{1}$$

One defines the one-particle correlation function $G_{\sigma}(\boldsymbol{r}-\boldsymbol{r}')$ as

$$G_{\sigma}(\boldsymbol{r}-\boldsymbol{r}') = \frac{n}{2}g_{\sigma}(\boldsymbol{r}-\boldsymbol{r}') = \langle \mathrm{FS}|\Psi_{\sigma}^{\dagger}(\boldsymbol{r})\Psi_{\sigma}(\boldsymbol{r}')|\mathrm{FS}\rangle.$$
⁽²⁾

This is the amplitude of creating a fermion of spin σ at position r when one was annihilated at position r' with the same spin.

a) Express the field operators in the natural basis, that is

$$\Psi_{\sigma}(\boldsymbol{r}) = \frac{1}{\sqrt{V}} \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\boldsymbol{r}} c_{\boldsymbol{k},\sigma} , \qquad (3)$$

where $c_{k,\sigma}^{\dagger}$ and $c_{k,\sigma}$ are the creation and annihilation operators, respectively. Calculate $G_{\sigma}(\boldsymbol{r}-\boldsymbol{r}')$ and sketch its graph as a function of $k_F|\boldsymbol{r}-\boldsymbol{r}'|$.

- b) Discuss its behaviour both for $k_F |\mathbf{r} \mathbf{r}'| \to \infty$ and $k_F |\mathbf{r} \mathbf{r}'| \to 0$.
- c) Likewise, one can define the pair correlation function $g_{\sigma\sigma'}(\boldsymbol{r}-\boldsymbol{r}')$ by

$$\left(\frac{n}{2}\right)^2 g_{\sigma\sigma'}(\boldsymbol{r}-\boldsymbol{r}') = \langle \mathrm{FS} | \Psi^{\dagger}_{\sigma}(\boldsymbol{r}) \Psi^{\dagger}_{\sigma'}(\boldsymbol{r}') \Psi_{\sigma'}(\boldsymbol{r}') \Psi_{\sigma}(\boldsymbol{r}) | \mathrm{FS} \rangle \,. \tag{4}$$

Assume first that $\sigma \neq \sigma'$. Calculate $g_{\sigma\sigma'}(\boldsymbol{r} - \boldsymbol{r}')$.

- d) Now consider the case where $\sigma = \sigma'$ and calculate $g_{\sigma\sigma}(\mathbf{r} \mathbf{r}')$. Plot $g_{\sigma\sigma}(\mathbf{r} \mathbf{r}')$ as a function of $k_F |\mathbf{r} \mathbf{r}'|$.
- e) Show that the size of the dip in the correlation function corresponds to the displacement of one electron.

Exercise 2: The Bogoliubov-Valatin transformation (Written)

The Hamiltonian (in the grand-canonical ensemble) for the free electron gas may be written in 2-component form as

$$K = \sum_{\boldsymbol{k}} \xi_{\boldsymbol{k}} : \left(c_{\boldsymbol{k},\uparrow}^{\dagger}, c_{-\boldsymbol{k},\downarrow} \right) \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \begin{pmatrix} c_{\boldsymbol{k},\uparrow}\\ c_{-\boldsymbol{k},\downarrow}^{\dagger} \end{pmatrix} :$$
(5)

May 17th, 2017 SS 2017 where $\xi_{\mathbf{k}} = \epsilon_{\mathbf{k}} - \mu$ with the chemical potential μ . The Bogoliubov-Valatin transformation

$$\begin{pmatrix} c_{\boldsymbol{k},\uparrow} \\ c^{\dagger}_{-\boldsymbol{k},\downarrow} \end{pmatrix} = U_{\boldsymbol{k}} \begin{pmatrix} \alpha_{\boldsymbol{k},\uparrow} \\ \alpha^{\dagger}_{-\boldsymbol{k},\downarrow} \end{pmatrix}$$
(6)

expresses spin-up excitations of a given momentum \mathbf{k} in electron-hole space through new quasiparticle operators α ($U_{\mathbf{k}}$ is a 2 × 2 matrix).

- a) Show that if and only if the transformation is unitary the (fermionic) commutation relations are preserved.
- b) Choosing U_k in SU(2) (so that det $U_k = 1$), we have

$$U_{\boldsymbol{k}} = \begin{pmatrix} u_{\boldsymbol{k}} & -v_{\boldsymbol{k}}^* \\ v_{\boldsymbol{k}} & u_{\boldsymbol{k}}^* \end{pmatrix} \,. \tag{7}$$

In order to describe states below the Fermi surface in the hole language and states above the Fermi surface in the electron language, we choose $u_k = 1$, $v_k = 0$ for $k > k_F$ and $u_k = 0$, $v_k = 1$ for $k < k_F$. Show that the Hamiltonian then takes the form

$$K = \sum_{\boldsymbol{k}} |\xi_{\boldsymbol{k}}| \left(\alpha_{\boldsymbol{k},\uparrow}^{\dagger} \alpha_{\boldsymbol{k},\uparrow} + \alpha_{\boldsymbol{k},\downarrow}^{\dagger} \alpha_{\boldsymbol{k},\downarrow} \right) + \sum_{\boldsymbol{k} < \boldsymbol{k}_{F}} \xi_{\boldsymbol{k}} \,. \tag{8}$$

Note: In the above exercise, the matrix elements u_k and v_k satisfied $u_k v_k = 0$. Later, in the BCS-theory of superconductivity, the product of these matrix elements will not vanish, that is $u_k v_k \neq 0$. This means that there is a pairing mechanism between electrons with opposite spin and opposite momenta.