
Solid State Theory Sheet 7

Prof. Dr. Hans Peter Büchler May 31st, 2017
Institute for Theoretical Physics III, University of Stuttgart SS 2017

Exercise 1: Quasi-particles at finite temperatures (Oral)
The distribution function of a Fermi liquid in the thermodynamic equilibrium is given by

np = 1
1 + e(ε̃p−µ)/T , (1)

with the quasi-particle energy ε̃p = εp +∑
p′ fp,p′δnp′ and δnp = np − n0

p (n0
p = θ(p− pF )).

Show that at low temperatures
∑
p′
fp,p′δnp′ ∝ T 2V g(µ) f

m∗v2
F

, (2)

with g(µ) = m∗pF/π
2 and f as an energy scale for fp,p′ . Argue that at low temperatures,

one can replace the quasi-particle energy ε̃p by the non-interacting quasi-particle energy
εp in (1).

Exercise 2: Quasi-particle current (Written, 4 points)
The transport equation for the distribution function in the absence of external field or
collisions has the form

∂np
∂t

+∇rnp · ∇pε̃p −∇pnp · ∇r ε̃p = 0 . (3)

∇pε̃p is the velocity of the quasi-particle and −∇r ε̃p the force it feels.

a) Show by inserting np(r, t) = n0
p + δnp(r, t) and expanding to first order in δnp that

this leads to a transport equation for the quasi-particles:

∂δnp
∂t

+∇rδnp · vp −∇pn
0
p ·
∑
p′
fp,p′∇rδnp′ = 0 . (4)

b) Interpret (4) as a continuity equation for the current and density of the quasi-particles
and derive the quasi-particle current

J =
∑
p

δnpjp (5)

with the current for a single quasi-particle with momentum p

jp = vp −
∑
p′
fp,p′

∂n0
p

∂εp′
v′p . (6)
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The second term in (6) has the interpretation of a ’drag’ or ’backflow’ current which is
created by the quasi-particle dragging the medium due to the interactions. The origin of
this ’drag current’ can be seen from the derivation of the quasi-particle current using
Galilean invariance which in turn is only valid in translationally invariant systems. Upon
applying a Galilean transformation the quasi-particle’s momentum is changed by q
(p→ p + q) if q/m = v is the velocity in the moving inertial frame of reference. The
resulting change in the kinetic energy of the system is thus given in first order in q as

δE =
〈∑

i

q · pi
m

〉
= 〈q · Ĵ〉 = q · J , (7)

where we defined Ĵ = ∑
i pi/m as the total current operator. The total current then can

be calculated from J = ∇qE.
c) In the following, we apply this relation onto the state of an single excited quasi-

particle with momentum p (so J reduces to jp). Upon a Galilean transformation,
both the quasi-particle’s momentum as well as the occupation of the Fermi sea change.
Calculate the change in energy of the system and the resulting quasi-particle current
jp.

d) For a system which is invariant under any translation, the total momentum P of the
system is a good quantum number. The total current is then given by J = P /m. For
a state containing only a single excited quasi-particle of momentum p, the current is
thus given by jp = p/m. Using the quasi-particle current calculated in the previous
task, show that the effective mass is given by

m∗ = m
(

1 + F s
1

3

)
. (8)

The system is therefore stable for F s
1 > −3.

Exercise 3: Spin susceptibility (Oral)

a) Derive the paramagnetic spin susceptibility for a non-interacting electron gas at
T = 0, given by

χ0 = g0(µ)µ2
B = 3n

2ε0
F

µ2
B , (9)

with g0(µ) the density of states and ε0
F the Fermi energy of the non-interacting

system.
b) Show that within Fermi liquid theory the susceptibility at T = 0 is given by

χ = g(µ)
1 + F a

0
µ2
B = 1 + F s

1 /3
1 + F a

0
χ0 , (10)

where g(µ) is the density of states of the interacting system.
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