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Exercise 1: Specific Heat of Phonons (Oral)
In classical physics, the specific heat cv of a harmonic crystal is given by the Dulong-Petit
law

c0
v = 3nkB , (1)

where n is the density of the ions. In the classical theory, the specific heat is independent
of temperature while below room temperature, the specific heat of all solids starts to
decline below the classical value and features a peculiar temperature dependence where
the specific heat vanishes for example as T 3 for low temperatures in insulators. This
temperature dependence can be explained by a quantum theory of the harmonic crystal.

a) Argue that the thermal energy density of a harmonic crystal in a quantum theory is

u = ueq + 1
2V

∑
kλ

~ωkλ + 1
V

∑
kλ

~ωkλ

eβ~ωkλ − 1 , (2)

where ueq is the equilibrium thermal density of the crystal.
b) Show that the leading order correction to the Dulong-Petit law for high temperatures

~ω/kBT � 1 is given by

∆cv
c0
v

= − ~2

12(kBT )2
1

3N
∑
kλ

ω2
kλ . (3)

c) Show that in the limit of low temperatures, the specific heat is given by

cv = 2π2

5 kB

(
kBT

~c

)3

. (4)

Hints: In the low-T regime, you may use the following simplifications:
• Only sum over the acoustic phonon branches (why?).
• Replace the dispersion relation for the acoustic branches by its long wavelength

limit ωkλ = ck̂λk.
• Replace the summation (integration) over the first Brillouin zone by an integral
over all k-space since the integrand only gives non-negligible contributions in
the vicinity of k = 0.
• Define the average of the inverse third power of the long-wavelength phase
velocities as

1
c3 = 1

3
∑
λ

∫ dΩ
4π

1
c3

k̂λ

. (5)
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Exercise 2: Linear Chain with m-th nearest neighbour interactions (Written, 4
points)
Consider a set of N ions of mass M distributed along a line at points separated by a
distance a, so that the one-dimensional Bravais lattice vectors are just Rn = na for
integral n. Let sna be the displacement along the line from its equilibrium position of
the ion that oscillates about Rn. Usually, one makes the assumption that only nearest
neighbors interact in order to get the dispersion for a linear chain with a single atom
in its basis. In this exercise, we relax this assumption and allow ions at all distances to
interact with each other. The interaction potential (in leading order in the displacement
s) is then given by

V = 1
2
∑
n

∑
m>0

Km

(
sna − s(n+m)a

)2
(6)

where Km denotes the ’spring constant’ between ions at lattice sites n and n+m.

a) Write down the equations of motion. Impose periodic boundary conditions in order
to show that the dispersion relation is now given by

ω = 2

√√√√∑
m>0

Km

sin2 1
2mka

M
. (7)

b) Show that the long-wavelength limit of the dispersion relation is given by

ω = a

(∑
m>0

m2Km/M

)1/2

|k| , (8)

provided the sum ∑
m>0 m

2Km converges.
c) Show that if Km = 1/mp (1 < p < 3), so that the sum does not converge, then in

the long-wavelength limit

ω ∝ k(p−1)/2 . (9)

Hint: It is no longer permissible to use the small-k expansion of the sine in (7) but
one can replace the sum by an integral in the limit of small k.

d) Show that in the special case of p = 3,

ω ∼ |k|
√
| ln k| . (10)
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