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Exercise 1: Fourier transform (Written, 6 points)
Given a complex-valued function f : R→ C, the one-dimensional Fourier transformation
is defined as

F [f(x)] =
∫ ∞
−∞

dx e−ikxf(x) ≡ f̂(k) . (1)

a) Show that

F [1] = 2πδ(k) and F [δ(x)] = 1 , (2)

where δ(q) is the Dirac delta function. Use
∫∞
−∞ dq h(q)δ(q) = h(0).

b) Show that the inverse Fourier transformation is

F−1[f̂(k)] =
∫ ∞
−∞

dk
2π eikxf̂(k) = f(x) . (3)

c) Show that

F [f(x+ a)] = eika F [f(x)] . (4)

d) Show that

F [∂xf(x)] = ik F [f(x)] . (5)

e) The convolution of two functions f : R→ C and g : R→ C is defined as

(f ∗ g)(x) =
∫ ∞
−∞

dξ f(ξ)g(x− ξ) =
∫ ∞
−∞

dξ f(x− ξ)g(ξ) . (6)

Show that

F [(f ∗ g)(x)] = F [f(x)] · F [g(x)] . (7)

f) Calculate the Fourier transformation of the Gaussian function

f(x) = e−ax2 with a 6= 0 , Re(a) ≥ 0 , a ∈ C . (8)

Pay particular attention to the calculation for a purely imaginary a.
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Exercise 2: Wave packet (Written, 6 points)
We consider a free particle of mass m. Its dispersion relation is ω(k) = ~

2m
k2. As shown

in the lecture, the functions ψk(x) = ei(kx−ω(k)t) form a basis for the solution space of the
Schrödinger equation for the free particle.
One solution of the Schrödinger equation for the free particle is the Gaussian wave packet.
At time t = 0, the wave packet is of the form

ψ(x, 0) = A eik0xe−
(x−x0)2

4σ . (9)

a) Calculate the normalization constant A.
b) Show that the wave packet becomes

ψ(x, t) =
(

σ

2πσ2
t

) 1
4

eik0xe−i ~
2mk2

0te
− (x−(x0+~k0t/m))2

4σt , σt = σ + i
~

2mt (10)

for arbitrary time t.
c) Determine the velocity of the particle which is described by the wave packet. Use

the equations

〈v〉 = ∂t〈x〉 , 〈x〉 =
∞∫
−∞

dx ψ∗(x, t)xψ(x, t) . (11)

d) The uncertainty ∆x is defined by (∆x)2 = 〈x2〉 − 〈x〉2. It is a measure of the width
of a probability distribution. At t = 0, the uncertainty of the particle’s position is
given by (∆x)2|t=0 = σ. Show that

(∆x)2 = σ(a0 + a1t
2) (12)

for arbitrary time t.
e) A temperature profile T (x, t) is described by the heat equation

∂tT (x, t)−D∂2
xT (x, t) = 0 , (13)

where D is a real constant. We consider a Gaussian temperature profile with
(∆x)2|t=0 = σ at t = 0. Show that

(∆x)2 = σ(b0 + b1t) (14)

for arbitrary time t. Take into account that 〈x〉 is defined by

〈x〉 =
∞∫
−∞

dx T (x, t)x . (15)

in the context of the heat equation.

Page 2 of 3



Theoretische Physik II: Quantentheorie Übungsblatt 2

The solution of the heat equation can be obtained from the solution of the Schrödinger
equation through Wick rotation t→ −it. In addition, we must set k0 = 0 inside the
solution of the Schrödinger equation since temperature distributions solely undergo
diffusion.
Remark: Note the difference between equation 14 and 12, showing that the i inside
the Schrödinger equation causes the quadratic broadening.

f) A linear dispersion relation ω(k) = c0 + c1k would have changed the results for the
free particle. Show that the wave packet would not have broadened in time.

Exercise 3: Double-slit experiment and uncertainty principle (Oral)
Electrons of momentum p0 move perpendicularly towards an aperture with two slits of
distance a. After passing the aperture, the electrons yield an interference pattern on
a screen mounted parallel to the aperture. The distance between the screen and the
aperture is d. The angles θ1, θ2 are enclosed by the normal of the screen and the electrons’
path drawn from slit 1, 2 to the impact point on the screen.
a) Calculate the positions of the interference maxima on the screen. The probability to

find electrons on the screen is
P ∝ |φ1 + φ2|2 , (16)

where φi is the collected phase which can be calculated via

φi = e
i
~S[xi(t)] with S[xi(t)] =

∫
dt L[xi(t)] =

∫
dt m2 (∂txi(t))2 . (17)

Here, xi(t) denotes the electrons’ path that passes slit i. The angles θ1 and θ2 can
be assumed to be small and treated as equal.

b) In this subtask, we consider a measurement device attached to the slits. The
measurement device reveals the slit an electron passes before it hits the screen by the
following principle: We treat the scattering of the electrons at the double-slit in a
classical picture. The momentum δp transferred on the electron depends on the slit
the electron went through. In case of elastic scattering, the momentum transfer is

δpi = −p0 sin θi (18)
for slit i (here, we must not treat θ1 and θ2 as equal). If we try to measure δp, we
have to take into account that the measurement device itself obeys the uncertainty
principle

∆p∆x ≥ h. (19)
The uncertainty ∆p of the momentum of the measurement device must fulfill the
condition ∆p < |δp2 − δp1| in order to be able to discriminate between the two slits.
Estimate the uncertainty ∆x of the position of the measurement device.

c) Compare the uncertainty of the position of the measurement device with the distance
of the interference maxima.
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