Prof. Dr. Hans Peter Büchler

Institut für Theoretische Physik III, Universität Stuttgart

29. November 2016 WS 2016/17

Exercise 1: Creation and annihilation operators (Written, 3 points)

Given the 2-dimensional harmonic oscillator Hamiltonian:

$$H = \hbar\omega_{+}(a_{+}^{\dagger}a_{+} + \frac{1}{2}) + \hbar\omega_{-}(a_{-}^{\dagger}a_{-} + \frac{1}{2});$$
(1)

where the creation and annihilation operators a_{\pm}^{\dagger} , a_{\pm} satisfy the following commutation rules:

$$[a_{\pm}, a_{\pm}^{\dagger}] = 1; \qquad [a_{\pm}, a_{\pm}] = [a_{\pm}^{\dagger}, a_{\pm}^{\dagger}] = 0;$$
 (2)

$$\left[a_{\pm}, a_{\mp}^{\dagger}\right] = \left[a_{\pm}, a_{\mp}\right] = \left[a_{\pm}^{\dagger}, a_{\mp}^{\dagger}\right] = 0; \tag{3}$$

- a) Show that the Hamiltonian of the system is diagonal with respect to the eigenstates of the number operators $N_+ = a^{\dagger}_+ a_+$ and $N_- = a^{\dagger}_- a_-$ and find the respective eigenenergies. Does the measurement of the observable $N = \langle N_+ + N_- \rangle$ specify the state of the system?
- b) Define the groundstate of the system $|0, 0\rangle$ through $a_{\pm} |0, 0\rangle = 0$, correctly normalized $\langle 0, 0|0, 0\rangle = 1$. The Hilbert space can be constructed by the application of creation operators on $|0, 0\rangle$. Show that the commutation relations

$$[N_{+}, a_{+}] = -a_{+} \qquad \left[N_{+}, a_{+}^{\dagger}\right] = a_{+}^{\dagger} \tag{4}$$

hold (same for N_{-}). Find the normalized eigenvectors $|n_{+}, n_{-}\rangle$ of both number operators with eigenvalues n_{+} and n_{-} .

c) Verify the following relations:

$$a_{+}^{\dagger} | n_{+}, n_{-} \rangle = \sqrt{n_{+} + 1} | n_{+} + 1, n_{-} \rangle \tag{5}$$

$$a_{+} |n_{+}, n_{-}\rangle = \sqrt{n_{+}} |n_{+} - 1, n_{-}\rangle$$
(6)

Exercise 2: Coherent states (Oral)

For every $\alpha \in \mathbb{C}$, we define the coherent state

$$|\psi_{\alpha}\rangle = e^{-|\alpha|^2/2} \sum_{n\geq 0} \frac{\alpha^n}{\sqrt{n!}} |n\rangle \tag{7}$$

being $|n\rangle$ an eigenstate of the 1-dimensional harmonic oscillator Hamiltonian.

a) Show that

$$|\psi_{\alpha}\rangle = e^{\alpha a^{\dagger} - \alpha^* a} \left|0\right\rangle \tag{8}$$

where a^{\dagger} and a are creation and annihilation operators, respectively. (Tip: $e^{-\alpha a} |0\rangle = |0\rangle$)

b) Calculate $\langle x \rangle_{\alpha} = \langle \psi_{\alpha} | x | \psi_{\alpha} \rangle, \langle p \rangle_{\alpha}, \Delta x_{\alpha}, \Delta p_{\alpha} \text{ and show that, for all } \alpha \in \mathbb{C},$

$$\Delta x_{\alpha} \Delta p_{\alpha} = \frac{\hbar}{2} \tag{9}$$

is valid, *i.e.*, coherent states minimize the position and momentum uncertanty relation. (Tip: $a |\psi_{\alpha}\rangle = \alpha |\psi_{\alpha}\rangle$)

c) Show that coherent states are not orthogonal and the relation

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle = e^{-\frac{1}{2}(|\alpha|^2 + |\beta|^2 - 2\alpha^*\beta)} \tag{10}$$

is valid.

d) Derive the time evolution of coherent state $|\psi_{\alpha}(t)\rangle$ and of the expectation values $\langle x \rangle_t$ and $\langle p \rangle_t$ under the Hamiltonian $H = \hbar \omega \left(a^{\dagger} a + \frac{1}{2} \right)$.

Exercise 3: Wave packet at a potential barrier (Oral)

Consider the following 1-dimensional potential

$$V(x) = \begin{cases} 0 & x < 0\\ V_0 & 0 \le x \le a\\ 0 & x > a \end{cases}$$
(11)

with $V_0 > 0$, and the solution of stationary Schrödinger equation

$$\psi_k(x) = \begin{cases} e^{ikx} + r(k)e^{-ikx} & x < 0\\ B(k)e^{-\bar{k}x} + B'(k)e^{\bar{k}x} & 0 \le x \le a\\ t(k)e^{ikx} & x > a \end{cases}$$
(12)

with $k = \sqrt{2mE}/\hbar$, $\bar{k}^2 = 2mV_0 - k^2$.

Suppose that at time t_0 one has a wave packet $\psi(x, t_0)$ centered at -L and far from the barrier $L \gg a$ with $\sigma \ll L$

$$\psi(x,t_0) = \frac{1}{(2\pi\sigma)^{\frac{1}{4}}} e^{ik_0 x} e^{-\frac{(x+L)^2}{4\sigma}}$$
(13)

with $k_0 < \bar{k}$.

- a) Decompose the wave packet $\psi(x, t_0)$ into eigenstates of the Hamiltonian.
- b) Suppose that the coefficients t(k), r(k), B(k), B'(k) are k-independent. Calculate the time evolution of the wave packet $\psi(x, t)$ and show that, after reaching the barrier, it splits into two wave packets: reflected and transmitted.
- c) In the approximations of the previous subtask, calculate the time evolution of the center positions of the incident $\langle x \rangle_i$, transmitted $\langle x \rangle_t$ and reflected $\langle x \rangle_r$ wave packets.
- d)* Use the computer to solve numerically the time evolution of the wave packet in the general case with t(k), r(k), B(k), B'(k) explicitly k-dependent.