Prof. Dr. Hans Peter Büchler Institut für Theoretische Physik III, Universität Stuttgart 6. Dezember 2016 WS 2016/17

Exercise 1: Linear algebra basics (Written, 6 points)

Let \mathcal{H} be a finite-dimensional Hilbert space whose elements are denoted by $|\psi\rangle$, $|\phi\rangle$, Further, we consider linear operators A, B on that Hilbert space.

a) The Hermitian conjugate (or adjoint) of A (also denoted A^{\dagger}) is defined as

$$\langle \psi | A^{\dagger} \phi \rangle = \langle A \psi | \phi \rangle = \langle \phi | A \psi \rangle^* \,. \tag{1}$$

Show that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$.

- b) An operator satisfying $A = A^{\dagger}$ is called *Hermitian* or *self-adjoint*. Show that the eigenvalues of Hermitian operators are real and the corresponding eigenvectors of two different eigenvalues are orthogonal. (*Remark*: You can assume that there are no degenerate eigenvalues.)
- c) A (linear) operator that satisfies $UU^{\dagger} = U^{\dagger}U = I$ with I the identity, or equivalently $U^{-1} = U^{\dagger}$, is called a *unitary* operator. Show that unitary operators leave the norm of a vector unchanged. Show that the eigenvalues λ_n of a unitary operator have modulus unity, i.e. $\lambda_n = e^{i\phi_n}$ with $\phi_n \in \mathbb{R}$, and that eigenvectors corresponding to different eigenvalues are orthogonal.
- d) Let A be a Hermitian operator. Show that the operator $U = e^{i\alpha A}$, $\alpha \in \mathbb{R}$, is unitary.
- e) Consider an orthonormal basis set $\{|n\rangle\}$ and another basis set $\{|n'\rangle\}$ with $|n'\rangle = U |n\rangle$. Show that $\{|n'\rangle\}$ is also orthonormal. If we denote the matrix elements of an operator A by $A_{mn} = \langle m|A|n\rangle$, how do the matrix elements A_{mn} relate to the matrix elements in the basis $\{|n'\rangle\}$?
- f) Let A and B be Hermitian operators with [A, B] = 0. Show that A and B can be diagonalized simultaneously. (*Remark:* Neglect the case of degenerate eigenvalues.)

Exercise 2: Position space and momentum space representation (Oral)

Consider the position space basis $\{|x\rangle\}$ which is an eigenbasis of the position operator \hat{x} with eigenvalues x and the momentum space basis $\{|p\rangle\}$ which is an eigenbasis of the momentum operator \hat{p} with eigenvalues p. The spectra of both operators are continuous such that the normalization condition and the completeness relation read

$$\langle \lambda' | \lambda \rangle = \delta(\lambda' - \lambda), \qquad I = \int d\lambda |\lambda\rangle \langle \lambda | \qquad \lambda = x, p.$$
 (2)

a) Using the canonical commutation relation, show that $e^{\frac{i}{\hbar}\hat{p}\hat{a}}\hat{x}e^{-\frac{i}{\hbar}\hat{p}\hat{a}} = \hat{x} + aI$. Show that $e^{-\frac{i}{\hbar}\hat{p}\hat{a}} |x\rangle$ is an eigenstate of \hat{x} with eigenvalue x + a, i.e. $e^{-\frac{i}{\hbar}\hat{p}\hat{a}} |x\rangle = |x + a\rangle$.

- b) Let $\langle x | \phi \rangle = \phi(x)$ be the component of a physical state vector $|\phi\rangle$ in the basis $|x\rangle$. Calculate the matrix elements of the operators \hat{x} and $e^{-\frac{i}{\hbar}\hat{p}a}$ in the position space basis and deduce the representation of the momentum operator in position space.
- c) Determine the wave functions $\psi_p(x)$ of the eigenvectors $|p\rangle$ in the position space representation. (*Hint:* Choose the normalization factor such that (2) is fulfilled.)
- d) Let $\langle p|\phi\rangle = \tilde{\phi}(p)$ be the component of a physical state vector $|\phi\rangle$ in the basis $|p\rangle$. Find the action of the operators \hat{x} and \hat{p} in the momentum space representation.
- e) Show that $e^{\frac{i}{\hbar}\hat{p}a}f(\hat{x})e^{-\frac{i}{\hbar}\hat{p}a} = f(\hat{x}+aI)$ and $e^{-a\partial_x}f(x) = f(x-a)$.

Exercise 3: Schrödinger equation in position and momentum space (Written, 3 points)

- a) Show that the time evolution of a state $|\psi\rangle$ satisfying the Schrödinger equation with a time-independent Hamiltonian \hat{H} is given by the time evolution operator $\hat{U}(t) = e^{-\frac{i}{\hbar}\hat{H}t}$.
- b) Consider a Hamiltonian of the form $\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$. Write down the Schrödinger equation in position and momentum space.
- c) Consider a potential of the form $V(x) = g\delta(x)$ (g < 0) in position space. Calculate the eigenvalue and the wave function of the bound state by solving the time-independent Schrödinger equation in momentum representation. (*Hint:* You may assume that the wave function decays fast enough in momentum space as well).

Exercise 4: Angular momentum (Oral)

Consider the angular momentum operator $\mathbf{L} = \mathbf{r} \wedge \mathbf{p}$. In the lecture it was shown that \mathbf{L} is the infinitesimal generator of rotations such that rotations around some axis \mathbf{n} with $\mathbf{n}^2 = 1$ about some angle ω can be written as $U_{\omega} = \exp(-i\omega \mathbf{L} \cdot \mathbf{n}/\hbar)$.

If U_{ω} is the operator performing a rotation around some axis $\boldsymbol{\omega} = \omega \mathbf{n}$ in the Hilbert space, i.e. $|\phi_{\omega}\rangle = U_{\omega} |\phi\rangle$; a scalar operator S transforms like

$$U^{\dagger}_{\omega} S U_{\omega} = S \,, \tag{3}$$

and a vector operator ${\bf X}$ transforms like

$$U_{\omega}^{\dagger} \mathbf{X} U_{\omega} = R_{\omega} \mathbf{X} \,, \tag{4}$$

where R_{ω} is the usual rotation matrix in three dimensions around some axis ω .

- a) Show that for a scalar operator S, $[\mathbf{L}, S] = 0$.
- b) Using that **r** and **p** are vector operators, show that **L** is also a vector operator. (*Hint:* Consider the components of $U_{\omega}^{\dagger} \mathbf{r} \wedge \mathbf{p} U_{\omega}$ and show that $U_{\omega}^{\dagger} \mathbf{r} \wedge \mathbf{p} U_{\omega} = U_{\omega}^{\dagger} \mathbf{r} U_{\omega} \wedge U_{\omega}^{\dagger} \mathbf{p} U_{\omega}$.)
- c) Show that $[\mathbf{L}, \mathbf{p} \cdot \mathbf{r}] = 0$ on the one hand by explicitly calculating the commutator and on the other hand by showing that $\mathbf{p} \cdot \mathbf{r}$ is a scalar operator.