Prof. Dr. Hans Peter Büchler Institut für Theoretische Physik III, Universität Stuttgart 10 January 2017 WS 2016/17

Exercise 1: Hydrogen atom – lowest states (Oral, 3 Pts.)

Consider the wave functions of the Hydrogen atom as derived in the Lecture, $\psi_{n,\ell,m}$.

- a) Write explicitly the 1s, 2s, and 2p wave functions, which correspond to the set of quantum numbers $\{n, \ell, m\} = \{1, 0, 0\}, \{2, 0, 0\}$, and $\{2, 1, 0\}$, respectively.
- b) Using the previously derived expressions, show explicitly that they are orthonormal.
- c) Determine the expectation value of the radial components r, r^2, p and p^2 in the ground state (i.e. the 1s state). Determine the velocity and show that it scales as the fine structure constant, α .

Exercise 2: Hydrogen atom – coherent states (Written, 4 Pts.)

Let us consider states of the Hydrogen atom with quantum numbers $\ell = n - 1$, and $m = \pm \ell$. In the limit $n \to \infty$ they correspond to circular orbitals.

- a) Write explicitly the wave function $\psi_{n,\ell,m}(r,\theta,\varphi)$ for $\ell = m = n 1$.
- b) How does $\langle r \rangle$ scale with the principal quantum number *n* for the wave function $\psi_{n,n-1,n-1}(r,\theta,\varphi)$?
- c) Calculate the relative variance $\Delta r / \langle r \rangle$ as a function of the principal quantum number n with $\psi_{n,n-1,n-1}(r,\theta,\varphi)$.
- d) Plot the probability density $|\psi_{n,n-1,n-1}|^2$ in the plane of motion (plane of the trajectory) and its orthogonal direction when the principal quantum number takes the values n = 5, 20, 50, and 100.