Prof. Dr. Hans Peter Büchler	
Institut für Theoretische Physik III, Universität Stuttgart	

07. Februar 2017 WS 2016/17

Exercise 1: Spin-orbit coupling and Zeeman effect

We consider the Hamiltonian H_0 of a hydrogen atom which is perturbed by

$$H_{SO} = \frac{1}{2m_e^2 c^2 r} \partial_r V(r) \boldsymbol{L} \cdot \boldsymbol{S}$$
(1)

and

$$H_B = \frac{e}{2m} \boldsymbol{B} \cdot (\boldsymbol{L} + 2\boldsymbol{S}), \qquad (2)$$

where \boldsymbol{L} is the orbital angular momentum and \boldsymbol{S} is the spin of the electron. V(r) is the electric potential of the core. The first Hamiltonian, (1), describes the spin-orbit coupling while the second one, (2), describes the coupling to an external magnetic field \boldsymbol{B} which we assume to be constant and pointing along the z-axis.

- a) Show that both perturbations commute with L^2 and that H_{SO} does not commute with H_0 . Explain how first order perturbation theory is used.
- b) Discuss (calculate) the partial splitting of the 2p-level under the perturbation H_{SO} .
- c) Consider a weak magnetic field such that $\langle H_B \rangle \ll \langle H_{SO} \rangle$ and we can treat (2) as a perturbation to $H = H_0 + H_{SO}$. Calculate the splitting of the energy levels calculated in b).
- d) Consider now the case of a strong magnetic field with $\langle H_B \rangle \gg \langle H_{SO} \rangle$, that is, treat (1) as a perturbation to $H = H_0 + H_B$. In the limit of vanishing H_{SO} , this is called the Zeeman effect. Calculate the splitting of the 2*p*-level for this case and draw schematically the evolution of the energy levels when going from a weak to a strong magnetic field.
- e) Calculate exactly the evolution of the energy levels in the 2p subspace by using the dimensionless Hamiltonian

$$H_I(\lambda_B) = \frac{1}{\hbar^2} \boldsymbol{L} \cdot \boldsymbol{S} + \frac{\lambda_B}{\hbar} (\boldsymbol{L}_z + 2\boldsymbol{S}_z)$$
(3)

and plot the energy levels as a function of λ_B . Hint: You can also use Maple or Mathematica.

Exercise 2: Interacting spin -1/2

Consider a system composed of three spin-1/2 particles.

- a) What is the dimension of the Hilbert space? Define the total spin operator as $\mathbf{S} = \sum_{i=1}^{3} \mathbf{S}^{(i)}$ and its z projection as $S_z = \sum_{i=1}^{3} S_z^{(i)}$ and write down a complete basis of the Hilbert space.
- b) The Hamiltonian of the system is

$$H = J \sum_{i=1}^{3} \mathbf{S}^{(i)} \cdot \mathbf{S}^{(i+1)}, \quad J > 0.$$

Here we assume a periodic system (for i = 3 take i + 1 = 1). Calculate the eigenstates and eigenenergies of this Hamiltonian.

Hint:: Rewrite H as a function of S^2 and $S^{(i)2}$.