Prof. Dr. Hans Peter Büchler Institut für Theoretische Physik III, Universität Stuttgart October 15th, 2015 WS 2015/16

You can find detailed information about the lecture and the exercises on the website http://www.itp3.uni-stuttgart.de/lehre/vorlesungen/QM2.html. Exercises are divided into two different groups. *Written* exercises have to be handed in and will be graded by the tutors. *Oral* exercises have to be prepared for the exercise session and will be presented by one of the students. In order to be admitted to the exam, we require (a) 80% of the written exercises to be solved or treated adequately, (b) 66% of the oral exercises to be prepared and (c) two exercises to be presented at the black board.

The first exercise sheet serves as a repetition for some important concepts from your first quantum mechanics lecture.

Exercise 1: Foundations of quantum mechanics (Oral)

This exercise is based on *Student understanding of quantum mechanics*, C. Singh, Am. J. Phys. **69**, 885 (2001); http://dx.doi.org/10.1119/1.1365404.

Try to take the following short test without using any reference material.

We refer to a generic observable Q and its corresponding quantum mechanical operator \hat{Q} . For all of the questions, the Hamiltonian and operators \hat{Q} do not depend upon time explicitly.

- a) The eigenvalue equation for an operator \hat{Q} is given by $\hat{Q} |\psi_i\rangle = \lambda_i |\psi_i\rangle$, where i = 1, ..., N. Write an expression for $\langle \phi | \hat{Q} | \phi \rangle$, where $|\phi\rangle$ is a general state, in terms of the projections $\langle \phi | \psi_i \rangle$.
- b) If you make measurements of a physical observable Q on a system in immediate succession, do you expect the outcome to be the same every time? Justify your answer.
- c) If you make measurements of a physical observable Q on an ensemble of identically prepared systems which are not in an eigenstate of \hat{Q} , do you expect the outcome to be the same every time? Justify your answer.
- d) A particle is in a one-dimensional harmonic oscillator potential. Under what conditions will the expectation value of an operator \hat{Q} depend on time if

i. the particle is initially in a momentum eigenstate?

ii. the particle is initially in an energy eigenstate?

Justify your answer in both cases.

e) Questions (i)-(ix) refer to the following system. An electron is in a uniform magnetic field B which is pointing in the z direction. The Hamiltonian for the spin-degree of freedom for this system is given by $\hat{H} = -\gamma B \hat{S}_z$, where γ is the gyromagnetic ratio and \hat{S}_z is the z component of the spin angular momentum operator. Notation:

 $\hat{S}_{z}\left|\uparrow\right\rangle=\hbar/2\left|\uparrow\right\rangle,\hat{S}_{z}\left|\downarrow\right\rangle=-\hbar/2\left|\downarrow\right\rangle.$

For reference, the unnormalized eigenstates of \hat{S}_x and \hat{S}_y are given by

$$\hat{S}_{x}(|\uparrow\rangle \pm |\downarrow\rangle) = \pm \hbar/2(|\uparrow\rangle \pm |\downarrow\rangle)$$

$$\hat{S}_{y}(|\uparrow\rangle \pm i |\downarrow\rangle) = \pm \hbar/2(|\uparrow\rangle \pm i |\downarrow\rangle)$$
(1)

- i. If you measure S_z in a state $|\chi\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}$, what are the possible results, and what are their respective probabilities?
- ii. If the result of the first measurement of S_z was $\hbar/2$, and you immediately measure S_z again, what are the possible results, and what are their respective probabilities?
- iii. If the result of the first measurement of S_z was $\hbar/2$, and you immediately measure S_x , what are the possible results, and what are their respective probabilities?
- iv. What is the expectation value $\langle \hat{S}_z \rangle$ in the state $|\chi\rangle = (|\uparrow\rangle + |\downarrow\rangle)/\sqrt{2}?$
- v. If the electron is initially in an eigenstate of \hat{S}_x , does the expectation value of \hat{S}_y depend on time? Justify your answer.
- vi. If the electron is initially in an eigenstate of \hat{S}_x , does the expectation value of \hat{S}_z depend on time? Justify your answer.
- vii. If the electron is initially in an eigenstate of \hat{S}_z , does the expectation value of \hat{S}_x depend on time? Justify your answer.
- viii. If the electron is initially in an eigenstate of \hat{S}_z , does the expectation value of \hat{S}_z depend on time? Justify your answer.
- ix. If the electron is initially in an eigenstate of \hat{S}_x , does the expectation value of \hat{S}_x depend on time? Justify your answer.

Exercise 2: Commutators (Written, 5p)

a) Show that the following identity holds for commutators of products:

$$[A, BC] = B[A, C] + [A, B]C$$
(2)

b) Let g(x) and f(p) be analytical functions of the position and momentum operators, respectively. Show that

$$[p, g(x)] = -i\hbar \frac{\mathrm{d}}{\mathrm{d}x} g(x)$$

$$[x, f(p)] = +i\hbar \frac{\mathrm{d}}{\mathrm{d}p} f(p)$$
(3)

c) Calculate the following commutators for canonical position and momentum operators x and p:

$$\begin{bmatrix} x, p^2 \end{bmatrix}, \begin{bmatrix} x^2, p^2 \end{bmatrix}, \begin{bmatrix} xp, p^2 \end{bmatrix}$$
 (4)

- d) Using just the canonical commutation relations of x and p, calculate $[L_{\alpha}, L_{\beta}]$, where $L_{\alpha} = \epsilon_{\alpha i j} x_i p_j$ is the α -component of the angular momentum operator.
- e) Now calculate $[L_{\alpha}, \mathbf{L}^2]$ and $[L_{\alpha}, p^2]$.

Exercise 3: Creation and annihilation operators (Oral)

The Hamiltonian of a one-dimensional harmonic oscillator is given by

$$H = \frac{p^2}{2m} + \frac{m}{2}\omega^2 x^2.$$
 (5)

a) As usual, we introduce creation and annihilation operators a^{\dagger} and a via

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{i}{m\omega} p \right), \quad a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{i}{m\omega} p \right). \tag{6}$$

Calculate the commutation relations for these operators.

- b) Express the Hamiltonian in terms of the number operator $n = a^{\dagger}a$.
- c) Let $|n\rangle$ be the eigenvector of $a^{\dagger}a$ with eigenvalue n. How can $|n\rangle$ be expressed in terms of the creation operator a^{\dagger} and the ground state $|0\rangle$ (no calculation needed)?
- d) What is the ground state wavefunction $\psi_0(x) = \langle x|0\rangle$? Use the coordinate representation of the creation operator to calculate the excited state $\psi_1(x) = \langle x|1\rangle$.
- e) Show that the creation operator a^{\dagger} has no (right-)eigenvector. Does the same argument hold for the annihilation operator a?