Prof. Dr. Hans Peter Büchler Institut für Theoretische Physik III, Universität Stuttgart October 22th, 2015 WS 2015/16

The second exercise sheet will consider a repetition of time-independent perturbation theory, as well as the time-dependent case.

Exercise 1: Stark effect for a harmonic oscillator (Oral)

The Hamiltonian of a one-dimensional harmonic oscillator within a homogeneous electric field ${\cal E}$ is given by

$$\mathbf{H} = \frac{1}{2} \left(P^2 + Q^2 \right) + eEQ \,, \tag{1}$$

where the Hamiltonian is dimensionless. Consider the second term of the Hamiltonian as a perturbation to the free oscillator scenario, such that $H_1 = Q$, with $\lambda = eE$.

- a) Calculate the perturbed eigenfunctions and energy eigenvalues up to third order in λ .
- b) Compare the result of perturbation theory with the exact solution for the energy of the problem.

Exercise 2: Fermi's Golden Rule (Written, 4 pts)

Derive Fermi's Golden Rule for the periodic perturbation

$$\mathbf{H}_{1} = V \cos\left(\omega t\right) \exp\left(\eta t\right) \,, \tag{2}$$

where $\eta > 0$.

Exercise 3: Time-dependent perturbation theory (Oral)

We investigate a one-dimensional harmonic oscillator with mass m and frequency ω within a time-dependent electric field. The Hamiltonian is of the form

$$H = H_0 + H'(t) ,$$

where $H_0 = \frac{p^2}{2m} + \frac{m}{2}\omega^2 x^2$ (harmonic oscillator)
and $H'(t) = exE(t)$ (perturbation). (3)

The time dependency of the external electric field is given as

$$E(t) = \frac{A}{\tau \sqrt{\pi}} e^{-(t/\tau)^2},$$
(4)

where A is a constant and $\tau > 0$ is the decay rate.

- a) Calculate the transition probability from the ground state to an excited state $P_{0\to n}(\infty)$ in first order of perturbation theory. What happens for $\tau \to 0$?
- b) The transition probability can also be calculated exactly. Prove that the exact expression for the transition probability is

$$P_{0\to n}(\infty) = \frac{K^{2n}}{n!} \exp\left(-K^2\right) \quad \text{with} \quad K = \frac{eA \exp\left(-\omega^2 \tau^2/4\right)}{\sqrt{2m\omega\hbar}}, \tag{5}$$

and compare the result with task a).

Hint: Use the Dirac picture, as introduced in the lecture, and derive the equation of motion

$$i\hbar\partial_t |\psi_D(t)\rangle = \mathcal{H}_D |\psi_D(t)\rangle \quad \text{with} \quad \mathcal{H}_D = \sqrt{\frac{\hbar}{2m\omega}} D(t) \left[e^{-i\omega t} a + e^{i\omega t} a^{\dagger} \right].$$
 (6)

Use the ansatz $|\psi_D(t)\rangle = \exp\left(-iK(t) a^{\dagger}\right) |\bar{\psi}(t)\rangle$ and choose K(t) as

$$K(t,t_i) = \frac{e}{\sqrt{2m\hbar\omega}} \int_{t_i}^t e^{i\omega t'} E(t') \,\mathrm{d}t', \qquad (7)$$

such that a^{\dagger} can be eliminated from the Schrödinger equation. The relation $e^{iKa^{\dagger}}ae^{-iKa^{\dagger}} = a - iK$ then helps solving the remaining equation and hence gives the exact solution $|\psi(t)\rangle$ of the wave function within the Schrödinger picture. The transition probability then is $P_{0\to n}(\infty) = |\langle n|\psi(\infty)\rangle|^2$.