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Exercise 1: Zeeman and Paschen-Back effects (Oral).
In Exercises 1 and 2 of Assignment 3 we studied the fine structure of the Hydrogen atom
resulting from the spin-orbit coupling of the electron. Let us now consider the Hydrogen
atom in a uniform magnetic field in the z-direction, B = Bẑ. Taking into account the
spin magnetic-moment interaction, the Hamiltonian now reads

H = H0 +HLS +Hm.

where Hm = − eB
mec

(Lz + 2Sz). Using perturbation theory, find the energy correction in
first order for the 2p orbital in two cases:
a) Weak magnetic field (Zeeman effect). Consider here the perturbation to the fine

structure levels obtained in Exercise 2 Assignment 3, i.e. 2p1/2 and 2p3/2.
b) A strong magnetic field (Paschen-Back effect). In this case, the spin orbit coupling

HLS can be considered a small perturbation to H = H0 +Hm.

Exercise 2: Electrical dipole transitions in polar molecules (Oral).
Due to their asymmetric structure, heteronuclear molecules have an electric dipole
moment d along their symmetry axis. In this exercise, we are only concerned with
the rotational degree of freedom of such molecules, which is described by the angular
momentum J. The dynamics of such a “rigid rotor” is governed by Hrot = B · J2/~2

(why?). Thus, the states |J,M〉 are eigenstates of Hrot with energy BJ(J + 1) and
degeneracy 2J + 1. The rotational constant B/~ is typically of the order of the GHz.
Consequently, it is possible to drive microwave transitions between different |J,M〉 states.
In this exercise, we calculate the matrix elements of possible transitions. Electrical dipole
transitions are only allowed if the matrix element 〈J ′,M ′|d |J,M〉 is different from zero.

a) First we describe the dipole operator d in a spherical basis with components dq, where
q = 0,±1. The components are given by d0 = d cos(θ) and d± = ∓d e±iφ sin(θ)/

√
2.

They are proportional to spherical harmonics dq ∝ Y q
1 .

Apply the Wigner-Eckart Theorem for the dipole matrix elements in the spherical
representation 〈J ′,M ′| dq |J,M〉. What is the rank of the tensor dq? Which selection
rules for ∆J ≡ J ′ − J and ∆M ≡ M ′ − M can you derive directly from the
Clebsch-Gordan coefficients?

b) Use a parity argument to show why ∆J = 0 transitions are not allowed. To do this
use the above matrix elements and make use of the parity of the spherical harmonics
involved.
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c) We have now derived the selection rules ∆J = ±1 with ∆M = q = 0,±1. We would
like to simplify the dipole matrix elements. The Wigner-Eckart theorem allows us
to choose q as well as M and M ′ freely to determine 〈J ′||d||J〉. In order to do this,
solve the equation for this term and choose M = J and q = 1 to explicitely compute
〈J + 1||d||J〉. How can you use this result to determine the matrix elements for
∆J = −1? (Giving the idea is enough).
Hint: The appearing Clebsch-Gordan coefficient couples two “stretched states” (i.e.
those states with M = J) to a final state which is also stretched. Think about a
general property of such Clebsch-Gordan coefficient. The spherical harmonics for
these states are given by equation

Y J
J (θ, φ) = (−1)J

2JJ !

√
(2J + 1)!

4π sinJ(θ)eiJφ.

For odd n we have:∫ π

0
dθ sin(θ)n =

(n−1
2 )!(n+1

2 )!
(n+ 1)! 2n+1.

The final result for ∆J = +1 should be

〈J + 1,M + q| dq |J,M〉 = d

√
J + 1
2J + 3 〈J,M ; 1, q|J + 1,M + q〉

d) As a simple application we consider a polar molecule in the ground state |0, 0〉. First,
compute the dipole moment for the ground state 〈00|d |00〉. A dipole moment can
be induced by an external electric field E = Eez (static). To get an approximate
value for this dipole moment we treat the coupling of the dipole moment to the
electric field HE = −d ·E = −d0E as a perturbation (that is, dE/B � 1). Compute
the induced dipole moment (component in z-direction) 〈0̂0| d0 |0̂0〉 using the above
matrix elements, where |0̂0〉 stands for the ground state in first order perturbation
theory.
Hint: The only appearing Clebsch-Gordan coefficient is again trivial in this case.
What happens in general if one of the two angular momenta in the coupling is zero?

Exercise 3: Permutation operator (Written, 3 points).
We consider a system of two particles in one spacial dimension x ∈ R. Let H(1) and H(2)

be their respective Hilbert spaces. The operator which exchanges the two particles in
the product Hilbert space, H = H(1) ⊗H(2), can be formally defined by its action on the
product basis of two particle states |x1x2〉 = |x1〉(1) ⊗ |x2〉(2) by

P(12)|x1x2〉 := |x2x1〉 , ∀x1, x2 ∈ R

We call Pp the permutation operator corresponding to the permutation p. Here, we only
consider p = (12). Show that
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a) P−1
(12) = P †(12) = P(12);

b) The eigenvalues of P(12) can only be +1,−1;
c) The vectors

|xx〉S := |xx〉 ,

|x1x2〉S := 1√
2

(|x1x2〉+ |x2x1〉) , x1 < x2

|x1x2〉A := 1√
2

(|x1x2〉 − |x2x1〉) , x1 < x2

are eigenvectors of P(12).
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