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Exercise 1: The Casimir effect (Written, volunteer, 14 points)

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force
between two parallel metallic plates separated by a distance d, even if the two plates are
located in a vacuum and are electrically neutral. This is known as the Casimir effect.
As we will see in this exercise, for two plates of area A separated by a distance d, the
energy shift due to vacuum fluctuations is

U(d, A) = − π2

720

~A

d3
. (1)

Due to this energy shift, the force between the two plates is non zero and attractive

F = −∂U(d, A)

∂d
= − π2

240

~A

d4
. (2)

This has been confirmed experimentally in 1958 by Sparnay (It was realized using 1cm2

Chrome-Steal plates; at d = 0.5µ the attraction was 0.2dyn/cm2).

a) Let us consider an electromagnetic field confined in a rectangular cavity (of dimen-
sions L1 × L2 × L3) with conducting walls. We must have E perpendicular and B

tangential (the transverse component of the electric field vanishes at the surface of
a perfect conductor). Show that these boundary conditions are satisfied by plane
waves (∼ e−iωt) if the components of the electric field have the following form

E1 = E0
1 cos (k1x1) sin (k2x2) sin (k3x3) e−iωt (3)

E2 = E0
2 sin (k1x1) cos (k2x2) sin (k3x3) e−iωt (4)

E3 = E0
3 sin (k1x1) sin (k2x2) cos (k3x3) e−iωt , (5)

where ki = niπ/Li and ni ∈ Z and that the possible frequencies ω are restricted by
the dispersion relation of light

1

c2
ω2(n1, n2, n3) = k

2 = π2
∑

i

(n2
i /L2

i ). (6)

b) Show that the corresponding boundary conditions for the magnetic field B are ful-
filled automatically. Recall that the magnetic field B is related to the electric field
by the induction law ∇ × E = i (ω/c) B.

c) The amplitudes E0
i are fixed by the condition ∇ · E = 0, i.e. and thus satisfy

∑

i

E0
i ki = 0. (7)
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Figure 1: Setup of the two plates used to measure the Casimir effect.

Show that in general equation (7) has two linearly independent solutions, corre-
sponding to the two polarizations of the electromagnetic field, except when one of
the ni vanish, that there is just one solution. If more than one vanish then there is
no solution.

d) Consider now two conducting and non-charged plates of dimensions L × L placed
in a parallelogram with conducting walls as shown in the Figure 1. One conducting
plate is fixed at the beginning of the box, while the second plate is chosen to be at
a distance d from the former. This second plate will be moved to a distance R/η
(with arbitrary η > 0) in a forthcoming step. We can define

U(d, L, R) := EI(d) + EII(R − d) − [EIII(R/η) + EIV (R − R/η)] , (8)

as the energy difference between the zero point energies of the initial and final con-
figurations, where EI , EII , EIII , EIV refer to the zero-point energy of each subspace,
respectively. Show that each of them is divergent.

Defining these subspaces are indeed a tool to avoid divergences, as we are actually
interested in taking the limit

U(d, L) = lim
R→∞

U(d, L, R) . (9)

Thus, we need first to regularize the sums of the zero-point energy prior to calculation
of Eq. (9). After the computation of Eq. (9), we will undo the regularization.

e) A convenient regularization method is the following

EI,II → Ereg
I,II =

∑

ω

1

2
~ω exp[−αω/πc] . (10)

Taking into account the dispersion relation (6) we have

Ereg
I = ~c

∑

l,m,n

kl,m,n(d, L, L) exp[− (α/π) kl,m,n(d, L, L))] , (11)

where

kl,m,n(d, L, L) =

√

√

√

√

(

lπ

d

)2

+
(

mπ

L

)2

+
(

nπ

L

)2

. (12)
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We can define the regularized energy difference Eq. (8) as

U reg (d, L, R, α) = Ereg
I (d) + Ereg

II (R − d) − {Ereg
III (R/η) + Ereg

IV (R − R/η)} . (13)

f) Let us consider the sum in equation (11). Consider very large L and replace the sums
over m and n by integrals (a more precise way would be to study U reg(d, R, L2, α)/L2

when L goes to infinity) obtaining

Ereg
I (d, L, α) = ~c

∞
∑

l=0

∫ ∞

0

dm
∫ ∞

0

dn

√

√

√

√

(

lπ

d

)2

+
(

mπ

L

)2

+
(

nπ

L

)2

×

exp






−α

π

√

√

√

√

(

lπ

d

)2

+
(

mπ

L

)2

+
(

nπ

L

)2






. (14)

In equation (13) the term with l = 0 does not contribute to the sum. Therefore we
can neglect it. Transform equation (14) into

Ereg
I = −π2

4
~c L2 d3

dα3

∞
∑

l=1

∫ ∞

0

dz

1 + z
exp

[

− l

d
α

√
1 + z

]

. (15)

Perform the sum over l and then take the derivative with respect to α, arriving to

Ereg
I =

π2
~cL2

2d

d2

dα2

d/α

exp[α/d] − 1
. (16)

Hint:
y

ey−1
=
∑∞

n=0
Bn

n!
yn where the Bn are the Bernoulli numbers.

g) Calculate U reg and obtain Eq. (1) by taking the limits

lim
R→∞

lim
α→0

U reg(d, L, R, α) (17)

Exercise 2: Quantum collapses and revivals (Oral)

In this exercise, we will study the effect of a coherent single-mode electromagnetic field
interacting with a two-level atom in a cavity. We will see that the revival of the atomic
population inversion after its collapse is a direct consequence of the quantum nature of
the electromagnetic field.

a) Show that the Hamiltonian operator for a single mode electromagnetic field inter-
acting resonantly with a two-level atom can be written as

H = H0 + H1, H0 = ~ω(b†b + σz), H1 = ~g(bσ+ + b†σ−) (18)

where the operators b, b† correspond to the single mode of the electromagnetic field
of the cavity, and σz, σ+, σ− to the spin operator of the atom. This is known as the
the Jaynes-Cummings model.
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b) Show that [H0, H1] = 0 meaning that the Hamiltonian (18) is exactly solvable.

c) The eigenstates of H0 can be labeled by the number of photons and the level of the
atom, i.e., |n, s〉, where n = 0, 1, 2 . . . and s = 0, 1. Show that the eigenstates of the
complete Hamiltonian (18) are

|φ+
n 〉 =

1√
2

(|n, 1〉 + |n + 1, 0〉), (19)

|φ−
n 〉 =

1√
2

(|n, 1〉 − |n + 1, 0〉) (20)

with eigenvalues ±Ω~, where Ω = g
√

n + 1.

d) Given that the atom is initially in the excited state and the field has exactly n
photons show that the probability for finding the atom in the excited state and the
field with n photons at a time t is

P2(t) = | 〈n, 1| e−iH1t/~ |n, 1〉 |2 = cos2 Ωt. (21)

This is the Rabi nutation of the atom with Ω being the Rabi frequency which was
already found in the semi-classical theory of electromagnetism.

e) Consider now a light field in a coherent state (Glauber state) coupled to the atom in
the excited state, show that the probability of finding the atom in the excited state
after a time t is

P2(t) =
1

2

[

1 +
∑ e−n̄n̄n

n!
cos 2g

√
n + 1t

]

(22)

Due to the Poisson distribution of the photon number there is a spread in the
Rabi frequencies ∆n ∼ n̄. As a result, the Rabi nutation will collapse after some
oscillations due to the destructive interference between the various cosine functions.
Show that an approximate evaluation of the sum valid for times t < n̄1/2/g yields

P2(t) =
1

2

[

1 + cos 2g(n̄ + 1)1/2t exp

(

− g2t2n̄

2(n̄ + 1)

)]

(23)
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