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This exercise sheet is concerned with relativistic electrons in a magnetic field. We are
going to solve the Dirac equation in the presence of a homogeneous magnetic field and
determine the eigenenergies, their degeneracy as well as the wave functions.

Remark: In the following, ker H refers to the kernel of the operator H, i.e. the subspace
of the Hilbert space which is mapped to 0. (ker H)* denotes its orthogonal supplement,
i.e. the subspace which is orthogonal to ker H.

Exercise 1: Relativistic electrons in a magnetic field, part | (Oral)

We start with the derivation of a necessary condition for the eigenvalues of Dirac operators
of the form

3
H:Zaiﬂi+mﬂ7 (1)
=1

where m; = p; — iAi is the canonical momentum of a particle with charge e in a magnetic
field with vector potential A. Calculate H? and derive an equation for the eigenvalues.
Which non-relativistic problem can be used to determine the eigenvalues?

Exercise 2: Foldy-Wouthuysen Transformation (Oral)

We have already encountered the Foldy-Wouthuysen transformation in the lecture for
the derivation of the non-relativistic limit. It is generally applicable for a problem of the
form H = () + mf, where () and (8 are given by

() (1)

Because ) and H are self-adjoint operators, they have a polar decomposition, for example
H = |H|sgn H = sgn H|H| with |H| = v H? and sgn H = |H|"'H on (ker H)* and
sgn H = 0 on ker H. Show that

1
Upw = a4 + B(sgnQ)a_, with ay = —=\/1 £ m|H|™! (3)
V2
is a unitary operator which diagonalizes H, i.e. show that

VDD +m? 0
Hpw = HUL . = B|H| = .
rw = UrwHUpLy, = B|H| < 0 —/DDT + m?2

Also, show that Hzy,, = H?.
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Exercise 3: Relativistic electrons in a magnetic field, part Il (Written, 4 points)

With the help of the Foldy-Wouthuysen transformation from exercise 2, we can then
determine the spectrum of the Dirac-Equation in a magnetic field in two dimensions. In
order to do that, we set m3 = 0 and constrain the wave functions to the xy plane.

a) Show that the Dirac-Equation separates into two (two-dimensional) spinor spaces
with a two-by-two Hamiltonian of the analogous form H = Q) + mp.

b) Determine the spectrum and the eigenfunction of the operators D'D and DD,
The ground state of N = DD satisfies the equation D1y = 0, which can be solved
with the ansatz ¢y = e %w where ¢ = eB/4 - (22 + z3).

c) Show that the ground state has a high degeneracy. Introduce an additional quantum
number for the z-component of the angular momentum J3 = —ix10s + ixe0; + 03/2
(the angular momentum operator has the same form after the F-W-transformation).

d) The operators D and DT satisfy [D, D] = 2eB. Consequently, they can be regarded
as ascending and descending operators. Use this to determine the spectrum of the
Dirac-equation.

Exercise 4: Relativistic electrons in a magnetic field, part 1l1l: Supersymmetry
(Written, Bonus, 4 points)

The Dirac-Equation is an example for a concept called supersymmetry. Note that [ is
an involution (a self-inverse mapping), i.e. 32 = 1. The Dirac operator H = Q + m/f3 is
given in terms of an odd operator () which anticommutes with § and an even part, mp.

The so-called supercharge @ = Q' is of the form (2). As the F-W transformation shows,
we can determine its properties from the supersymmetric Hamiltonian Q2. Use the polar
decomposition of @ to find an isometry between (kerD)* and (kerD')*, in order to show
the unitary equivalence of DD' and DTD. Use [D, D] = 2eB to derive the energy gaps
in the spectrum of DD' and DTD.
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