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This exercise sheet is concerned with relativistic electrons in a magnetic field. We are
going to solve the Dirac equation in the presence of a homogeneous magnetic field and
determine the eigenenergies, their degeneracy as well as the wave functions.
Remark: In the following, kerH refers to the kernel of the operator H, i.e. the subspace
of the Hilbert space which is mapped to 0. (kerH)⊥ denotes its orthogonal supplement,
i.e. the subspace which is orthogonal to kerH.

Exercise 1: Relativistic electrons in a magnetic field, part I (Oral)
We start with the derivation of a necessary condition for the eigenvalues of Dirac operators
of the form

H =
3∑
i=1

αiπi +mβ, (1)

where πi = pi− e
c
Ai is the canonical momentum of a particle with charge e in a magnetic

field with vector potential A. Calculate H2 and derive an equation for the eigenvalues.
Which non-relativistic problem can be used to determine the eigenvalues?

Exercise 2: Foldy-Wouthuysen Transformation (Oral)
We have already encountered the Foldy-Wouthuysen transformation in the lecture for
the derivation of the non-relativistic limit. It is generally applicable for a problem of the
form H = Q+mβ, where Q and β are given by

Q =
(

0 D†

D 0

)
, β =

(
1 0
0 −1

)
. (2)

Because Q and H are self-adjoint operators, they have a polar decomposition, for example
H = |H| sgnH = sgnH|H| with |H| =

√
H2 and sgnH ≡ |H|−1H on (kerH)⊥ and

sgnH = 0 on kerH. Show that

UFW = a+ + β(sgnQ)a−, with a± = 1√
2

√
1±m|H|−1 (3)

is a unitary operator which diagonalizes H, i.e. show that

HFW = UFWHU
†
FW = β|H| =

(√
D†D +m2 0

0 −
√
DD† +m2

)
. (4)

Also, show that H2
FW = H2.
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Exercise 3: Relativistic electrons in a magnetic field, part II (Written, 4 points)
With the help of the Foldy-Wouthuysen transformation from exercise 2, we can then
determine the spectrum of the Dirac-Equation in a magnetic field in two dimensions. In
order to do that, we set π3 = 0 and constrain the wave functions to the xy plane.

a) Show that the Dirac-Equation separates into two (two-dimensional) spinor spaces
with a two-by-two Hamiltonian of the analogous form H = Q+mβ.

b) Determine the spectrum and the eigenfunction of the operators D†D and DD†.
The ground state of N = D†D satisfies the equation Dψ0 = 0, which can be solved
with the ansatz ψ0 = e−φω where φ = eB/4 · (x2

1 + x2
2).

c) Show that the ground state has a high degeneracy. Introduce an additional quantum
number for the z-component of the angular momentum J3 = −ix1∂2 + ix2∂1 + σ3/2
(the angular momentum operator has the same form after the F-W-transformation).

d) The operators D and D† satisfy [D,D†] = 2eB. Consequently, they can be regarded
as ascending and descending operators. Use this to determine the spectrum of the
Dirac-equation.

Exercise 4: Relativistic electrons in a magnetic field, part III: Supersymmetry
(Written, Bonus, 4 points)

The Dirac-Equation is an example for a concept called supersymmetry. Note that β is
an involution (a self-inverse mapping), i.e. β2 = 1. The Dirac operator H = Q+mβ is
given in terms of an odd operator Q which anticommutes with β and an even part, mβ.
The so-called supercharge Q = Q† is of the form (2). As the F-W transformation shows,
we can determine its properties from the supersymmetric Hamiltonian Q2. Use the polar
decomposition of Q to find an isometry between (kerD)⊥ and (kerD†)⊥, in order to show
the unitary equivalence of DD† and D†D. Use [D,D†] = 2eB to derive the energy gaps
in the spectrum of DD† and D†D.
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