
Chapter 7

Magnetic properties

Before we start to discuss the specific magnetic properties of solids, let us recall
concepts that are normally taught in mechanics and in the elementary course in
quantum mechanics.

We consider the simple case of a charged particle in a stationary magnetic field.
Then, the Hamilton function in classical mechanics is given by

H =
1

2m

(

p −
e

c
A

)2

, (7.1)

such that the equations of motion lead to the Lorentz force. As always, the passage
to quantum mechanics is made by replacing the functions p(t) and q(t) by operators.
Let us assume further, that the magnetic field is homogeneous, such that the vector
potential can be chosen as follows

Ai (x) = −
1

2
εijk xj Bk , (7.2)

where εijk is the Levi-Civita symbol in three dimensions, and a summation over
repeated indices is understood. Using this vector potential, we look now at the
different contributions to the Hamiltonian above, where we have to recall that p

and x are quantum mechanical operators.

1

2m

[

p̂ −
e

c
A (x̂)

]2

=
1

2m

[

p̂2 −
e

c
p̂ · A (x̂) −

e

c
A (x̂) · p̂ +

e2

c2
A2

]

, (7.3)

where we obtain in a natural way an expansion in powers of the magnetic field, since
A ∼ B. For the different orders we have:

i) Free part.

p̂2

2m
+ V (x) −→ H0 , (7.4)

where we generalized the Hamiltonian with some external potential V (x).
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ii) Linear coupling.

p · A = −
1

2
p · (x × B) = −

1

2
B · (p × x) =

1

2
L · B , (7.5)

where L is the angular momentum. By performing the same calculation for
the other linear contribution, one finally obtains

e

2mc
(p · A + A · p) =

µB

h̄
L · B , (7.6)

where

µB ≡ eh̄/2mc (7.7)

is the Bohr magneton. The linear coupling to the magnetic field gives rise then
to a paramagnetic term in the Hamiltonian

H1 = −
µB

h̄
L · B . (7.8)

This shows that a magnetic moment

M =
µB

h̄
L (7.9)

is associated to the angular momentum (orbital motion) of a charged particle.
The coupling is here paramagnetic, since the magnetic moment will tend to be
aligned in the direction of the magnetic field. Furthermore, we can see from
the equation above that µB is a magnetic moment, since [L] = [h̄], where the
symbol [ ] means here units.

iii) Quadratic coupling

e2

8mc2
(x × B)2 =

e2

8mc2

[

x2B2 − (x · B)2
]

=
e2B2

8mc2

[

x2 −
(x · B)2

B2

]

, (7.10)

where the term in square brackets gives the components of x in the direction
perpendicular to the magnetic field:

x2
⊥ = x2 −

(x · B)2

B2 . (7.11)

The quadratic term corresponds to a diamagnetic term in the Hamiltonian

H2 =
e2x2

⊥B

8mc2
· B , (7.12)

where a magnetic moment

M = −
e2x2

⊥

8mc2
B , (7.13)

couples to the magnetic field, i.e. the diamagnetic part describes the coupling
of an induced magnetic moment that opposes the applied magnetic field.
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After having discussed the coupling of the charge of the electron to a magnetic
field, we should consider the coupling of a magnetic field to its spin. It is described
by the Zeeman coupling

HS = −MS · B , (7.14)

where the magnetic moment associated to the spin

MS = gS
µB

h̄
S

where

gS = 2
[

1 +
α

2π
+ O

(

α2
)

]

, (7.15)

is the gyromagnetic factor, that can be calculated in the frame of quantum electro-

dynamics, with the hyperfine structure constant

α =
e

h̄c
≃

1

137
. (7.16)

Since α ≪ 1, we can consider gS = 2.
Once we discussed all the couplings of a magnetic field to the electron, we can

go over to the situation in solids.

7.1 Pauli paramagnetism

Let us first consider the effect of a magnetic field in a metall. For this purpose,
we simplify metals to a Fermi gas, a simplification that is meaningful in the case
of Fermi liquids, as we discussed in Sec. 4.4.3. Furthermore, we assume the mag-
netic field weak enough, so that only effects linear in B are important. Then, the
contributions arising from the quadratic term in A can be neglected. With respect
to the contribution from H1, we notice that < L >= 0 in the ground-state of the
Fermi-gas, such that, we neglect it in the limit of a weak magnetic field. Then, in
the limit of a weak magnetic field, the Zeeman coupling to the spins dominates. On
the basis of the arguments above, the Hamiltonian is

H =
∑

i

(

p2
i

2m
−

gSµB

h̄
Si · B

)

. (7.17)

In order to proceed further, we go over to second quantization. As seen in Sec. 4.2,
for a one-particle operator, we have to consider the eigenstates of the operator, in this
case the spin-operator. Let us choose the spin-quantization axis in the z-direction,
with the eigenstates of Sz

Sz |↑> =
h̄

2
|↑> ,

Sz |↓> = −
h̄

2
|↓> . (7.18)



180 A. Muramatsu - Solid State Theory

The spin-operators can be easily represented in this two dimensional space using the
Pauli matrices,

S =
h̄

2
σ , (7.19)

with

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

. (7.20)

Then,

∑

i,j

f †
i < i | S | j > fj =⇒

h̄

2

∑

α,β

f †
α σαβ fβ , (7.21)

with α, β =↑, ↓. Choosing a coordinate system such that B ‖ ẑ, we can finally write
the Hamiltonian in second quantization

H =
∑

k

(

ǫk↑
f †

k↑
fk↑

+ ǫk↓
f †

k↓
fk↓

)

, (7.22)

where with gS = 2,

ǫk,σ
=

h̄2k2

2m
∓ µBB . (7.23)

The effect of the magnetic field is to shift the eigenvalues of the original system by
±µBB. Taking into account the chemical potential, we see that the magnetic field
leads to a spin-dependent chemical potential

µ −→ µ ± µBB . (7.24)

Once we obtained the Hamiltonian in a diagonal form, it is in principle possible
to calculate any desired observable. We consider therefore the magnetization, that
is given by the expectation values of the magnetic moments

M =
1

V
<
∑

i

Mz
i >=

1

V

gSµB

h̄
<
∑

i

Sz
i >

=
1

V

gSµB

2
<
∑

k

(

f †

k↑
fk↑

− f †

k↓
fk↓

)

>= µB
N↑ − N↓

V
, (7.25)

where N↑,↓ give the number of electrons for each spin projection. Since we are
dealing with non-interacting electrons, we know already from (4.249) in Sec. 4.3.3
how the number of electrons depends on the chemical potential. Taking into account
the fact that depending on the spin projection a different chemical potential has to
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be used, as already discussed above, and the fact that the degeneracy factor g = 1,
when looking at each spin-projection, we have

N↑,↓

V
=

1

6π2

(

2m

h̄2

)

3

2

(µ ± µBB)
3

2



1 +
π2

8

(

kBT

µ ± µBB

)2

+ · · ·



 , (7.26)

where we just replaced in (4.249) µ −→ µ± µBB depending on the spin-projection.
We restrict ourselves as already stated in the beginning of this section, to the limit
of weak magnetic fields µBB ≪ EF , such that we need only to expand (7.26) up
to first order in B. Furthermore, as already discussed in Sec. 4.3.3, it is a good
approximation to replace µ by EF for most relevant temperatures in condensed
matter physics, since the corrections are of the order of O (kBT/EF )2. Finally, let
us recall the form of the density of states (4.225), such that

M = N(EF ) µBB



1 −
π2

12

(

kBT

EF

)2


 , (7.27)

leading again to a correction in temperature of the same order as the one we already
discarded, so that we should discard it also. The corresponding spin susceptibility,
called in this case Pauli susceptibility, is obtained as

χ =
∂M

∂B
= N(EF ) µB , (7.28)

where we again discarded terms of O (kBT/EF )2. Then, the characteristics of the
paramagnetic response of metals is that they are temperature independent and is a
direct measure of the density of states at the Fermi energy.

7.2 Ferromagnetism in the Heisenberg model

In this section we examine the opposite case to the one in the previous section,
namely the case when electrons are fairly localized, such that the contributions
from the kinetic part are not important in determining the magnetic state of the
system.

7.2.1 The Heisenberg model

We start with a general form for the Hamiltonian, as given in (4.193),

H =
∑

i,j

σ

f †
i,σ < i | T | j > fj,σ

+
1

2

∑

i,j,k,ℓ

σ,σ′

f †
i,σf

†
j,σ′ < i, j | V | k, ℓ > fℓ,σ′fk,σ , (7.29)
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where V corresponds to the Coulomb interaction and the states | i, σ > are Wannier
states in a solid, where i denotes the site (or cell) where the Wannier orbital is
centered on, and σ the spin state. Notice that the spin indices were chosen as in
(4.289), but in principle the indices corresponding to Wannier orbitals may have up
to four different values. In fact, the matrix element is explicitly given by

< i, j | V | k, ℓ >

=
∫

d3x d3x′ ϕ∗
σ (x − Ri) ϕ∗

σ′ (x′ − Rj) ϕσ′ (x′ − Rℓ) ϕσ (x − Rk)

| x − x′ |
.(7.30)

Wannier orbitals give a convenient basis for the case of rather localized electronic
states. Here we consider for simplicity only the case of a single band.

In the following we restrict ourselves to matrix elements of the interaction that
take into account only one- and two-center integrals. For the one-center integrals
we have i = j = k = ℓ,

1

2

∑

i
σ,σ′

f †
i,σf

†
i,σ′ < i, i | V | i, i > fi,σ′fi,σ = U

∑

i

n̂i,↑n̂i,↓ , (7.31)

where we defined

n̂i,σ = f †
i,σfi,σ . (7.32)

Here, due to Pauli’s exclusion principle σ′ = −σ, and since the matrix element
of the Coulomb interaction does not depend on spin, we can extract it defining
U ≡< i, i | V | i, i >. This term is the famous Hubbard interaction, a radical
idealization of Coulomb interaction, that takes into account the effects of local elec-
tronic correlation. By retaining only this term and the first term in (7.29), with
−t ≡< i | T | j >, one obtains the Hubbard model, that is widely used for the
description of magnetic systems, mostly antiferromagnetic ones, and more recently
it became one of the most discussed models in connection with high temperature
superconductivity. In the case of very localized electrons such that we can assume
that the number of electrons per site does not fluctuate (t/U → 0), magnetism
would arise with one electron per site if we have only one band. In this case, the
term obtained above cancels.

For the two center integrals we had three possibilities that we consider in the
following.

i) < i, j | V | j, i >, i 6= j.
In this case, we have in general an exchange of spin between different sites:

1

2

∑

i6=j

σ,σ′

f †
i,σf

†
j,σ′ < i, j | V | j, i > fi,σ′fj,σ

= −
1

2

∑

i6=j

σ,σ′

Jij f †
i,σ fi,σ′ f

†
j,σ′ fj,σ . (7.33)
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Such an interaction term can be easily understood after seeing that the fol-
lowing relationship for Pauli matrices holds

σαβ · σγδ = 2δαδδβγ − δαβδγδ . (7.34)

Then, we can write

1

2

∑

α,β

f †
i,α fi,β f †

j,β fj,α =
1

4

(

∑

α,β,γ,δ

f †
i,ασαβfi,β · f †

j,γσγδfj,δ

+
∑

α,β

f †
i,α fi,α f †

j,β fj,β

)

= Ŝi · Ŝj +
1

4
n̂in̂j , (7.35)

where we defined the spin operator in second quantization

Ŝi ≡
1

2

∑

α,β

f †
i,ασαβfi,β , (7.36)

and

n̂i ≡
∑

σ

n̂i,σ . (7.37)

Then, we have for (7.33),

(7.33) = −
∑

i6=j

Jij

(

Ŝi · Ŝj +
1

4
n̂in̂j

)

, (7.38)

where the exchange couplings Jij are given by

Jij = < i, j | V | j, i > , (7.39)

whose explicit form can be obtained by replacing the corresponding indices in
(7.30). In the case that the electrons are very localized like in an insulator,
and having only one electron per site, the second term in (7.38) gives only a
constant shift of energy, and can be discarded.

ii) < i, j | V | i, j >, i 6= j.
In this case, we have

1

2

∑

i6=j

σ,σ′

f †
i,σf

†
j,σ′ < i, j | V | i, j > fj,σ′fi,σ =

1

2

∑

i6=j

Vij n̂i n̂j . (7.40)

This corresponds to density-density interactions, and again, in the cases where
charge fluctuations are suppressed, this term leads only to an overall shift of
the energy.
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iii) < i, i | V | j, j >, i 6= j.

1

2

∑

i6=j

σ,σ′

f †
i,σf

†
i,σ′ < i, i | V | j, j > fj,σ′fj,σ =

1

2

∑

i6=j
σ

t̃ijf
†
i,σf

†
i,−σ fj,−σfj,σ . (7.41)

Such a term describes pair-hopping processes of local singlet pairs. It certainly
gives no contribution to magnetism and since the Coulomb repulsion is largest
on-site (given by the coupling U introduced above), such processes may be
important in highly excited states but not at the energy scales related to
magnetism. It can be therefore, discarded in general.

From the discussion above, we see that in the cases where a local magnetic moment is
present, the magnetic interaction arises from the Coulomb interaction and neglecting
charge fluctuations, one obtains

HH = −
∑

i6=j

Jij Ŝi · Ŝj − gSµBB ·
∑

i

Ŝi , (7.42)

the Heisenberg model, where we added the coupling to an external magnetic field.

7.2.2 Mean-field theory for the ferromagnetic Heisenberg

model

In the same way as we proceeded in the case of the BCS Hamiltonian, we can reduce
the interacting system to an effectively free theory by discarding fluctuations around
a mean-field, that in this case is of magnetic nature. We introduce the identity

Ŝi = < Ŝi > +
(

Ŝi− < Ŝi >
)

, (7.43)

into the Hamiltonian (7.42), and neglect terms quadratic in the fluctuations around
the mean-field. Then, we obtain

HH → −2
∑

i6=j

JijŜi· < Ŝj > −gSµBB
∑

i

Ŝz
i , (7.44)

where we used the fact that Jij = Jji. In this way, the problem with interacting
spins is reduced to a system of independent spins under the action of an effective
magnetic field, i.e.

HH → −
∑

i

b̃i · Ŝi , (7.45)

where

b̃i = gSµBB + 2
∑

j(6=i)

Jij < Ŝj > . (7.46)
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Since the spins are independent, the problem is reduced to a one-spin problem, that
given the magnetic field, is easily solved. Taking the spin quantization axis in the
direction of the magnetic field, we have

Hi = −bSz
i . (7.47)

Setting h̄ = 1, the eigenvalues are E
(1,2)
i = ±b/2. We can then obtain the expectation

value < Sz > given a temperature T as

< Sz > =

1
2
eβb/2 +

(

−1
2

)

e−βb/2

eβb/2 + e−βb/2
=

1

2
tanh

(

βb

2

)

, (7.48)

where β = 1/kBT .
Let us now assume that the external magnetic field is in the direction of the

spontaneous magnetization, that we choose to be in the z-direction. Furthermore,
since a ferromagnetic state forms, we set a homogeneous field for the magnetization,
i.e. < Sz >= σ, such that inserting (7.46) into (7.48), we have

σ =
1

2
tanh

[

β

2
(gSµBB + 2J0 σ)

]

, (7.49)

where we defined

J0 ≡
∑

j(6=i)

Jij . (7.50)

Equation (7.49) shows the selfconsistent nature of the problem.

 

Figure 7.1: Graphical solution of the mean-field equation for the magnetization σ.

βJ0 > 21
2

βJ0 < 2

σ

−1
2

The mean-field approximation leads to a free problem, where the effective mag-
netic field at a given site consists of the external one and the one due to all the other
spins on that site.
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We consider first the case without external magnetic field. The solution of the
eq. (7.49) can be found graphically as shown in Fig. 7.1 by looking at the intersection
of the identity with the line corresponding to the right hand side of eq. (7.49), where
we set B = 0. The critical temperature is given by the temperature at which the
slope of the r.h.s. of (7.49) is unity, i.e.

1 =
βcJ0

2
. (7.51)

For βJ0 < 2, i.e. T > Tc = J0/2kB, the only possible solution is σ = 0, whereas for
T < Tc a finite value for σ is also a solution. The critical temperature Tc is called
the Curie temperature.

Magnetization

In order to calculate the magnetization close to Tc, we can expand the r.h.s. of (7.49)
since σ is vanishing small. Then, we have

σ ≃
βJ0σ

2
−

1

6
(βJ0σ)3 , (7.52)

that leads to

σ2 ≃
3

4

Tc − T

Tc

(

T

Tc

)2

=
3

4

Tc − T

Tc
+ O

(

(Tc − T )2

T 2
c

)

, (7.53)

such that in lowest order,

σ ≃

√

3

4

Tc − T

Tc
, (T < Tc) , (7.54)

The magnetization shows critical behavior

σ ∼ (Tc − T )β , (7.55)

with a critical exponent β = 1
2
. This is a result found in mean-field theory, with

the same critical exponent for the order parameter as in the Ginzburg-Landau the-
ory for superconductivity. The actual value found in computer simulations and in
renormalization group theory for three dimensions is β ≃ 0.33.

Magnetic susceptibility

We consider now a weak external magnetic field at temperatures higher but close to
Tc. By expanding the r.h.s. of (7.49) to lowest order we have,

σ ≃
β

4
(gSµBB + 2J0 σ) , (7.56)
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leading to

σ =
gSµBB

4kB

1

T − Tc

, (7.57)

the Curie-Weiss law. The magnetic susceptibility is obtained as the derivative of
the magnetization with respect to the field, leading to

χ =
gSµB

4kB

1

T − Tc
. (7.58)

The divergence of the susceptibility is another sign of criticality, that is summarized
by the relation

χ ∼ (T − Tc)
−γ , (7.59)

with the critical exponent γ = 1 in mean field, the correct value being γ = 1.38. It
is seen again, that although the mean-field theory captures qualitatively the critical
behavior, it is not a method for a quantitative description of it.

7.2.3 Spin-waves in a ferromagnet

After having discussed the behavior of the system close to the phase transition,
we focus now on the excitations of the system at temperatures T ≪ Tc, where an
ordered ferromagnetic state is present. Before we start with the treatment of the
excitations in such a state, we recall some features of the S − 1

2
spin algebra. In

order to simplify notation, we set as in the previous section, h̄ = 1.
As we already discussed in Sec. 7.1, the spin-operators are connected to the Pauli

matrices through (7.19), and the Pauli matrices are given by (7.20). Then, it is easy
to verify that the spin operators fulfill the following algebra

[

Sa, Sb
]

= iεabcSc . (7.60)

As seen in quantum mechanics, we can define raising and lowering operators

S+ = Sx + iSy ,

S− = Sx − iSy , (7.61)

that obey the following commutation relations
[

Sz, S+
]

= S+ ,
[

Sz, S−
]

= −S− ,
[

S+, S−
]

= 2Sz . (7.62)

Then, we can express the spin coupling in the Heisenberg Hamiltonian as follows

Si · Sj = Sx
i Sx

j + Sy
i Sy

j + Sz
i S

z
j

=
1

2

(

S+
i S−

j + S−
i S+

j

)

+ Sz
i S

z
j . (7.63)
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Then, it is easy to see that the ground-state is the ferromagnetic one with maximal
polarization | 0 >=|↑↑↑ · · · >, since

Sz
i S

z
j |↑↑>=

1

4
|↑↑> , (7.64)

whereas

(

S+
i S−

j + S−
i S+

j

)

|↑↑>= 0 . (7.65)

Next we can look for an excited state, that for a periodic solid can be constructed
by a coherent superposition of downturned spins:

| k > =
∑

j

exp (ik · Rj) S−
j | 0 >

= S− (k) | 0 > . (7.66)

It will be useful to consider the commutator of HH with S− (k),

[

HH , S− (k)
]

= −
∑

ℓ

exp (ik · Rℓ)
∑

i6=j

Jij

×
[

1

2

(

S+
i S−

j + S−
i S+

j

)

+ Sz
i S

z
j , S

−
ℓ

]

. (7.67)

Using the commutation relations (7.62), we have

[

S+
i S−

j , S−
ℓ

]

=
[

S+
i , S−

ℓ

]

S−
j = 2δiℓS

z
i S

−
j ,

[

S−
i S+

j , S−
ℓ

]

= S−
i

[

S+
j , S−

ℓ

]

= 2δjℓS
−
i Sz

j ,
[

Sz
i Sz

j , S
−
ℓ

]

=
[

Sz
i , S

−
ℓ

]

Sz
j + Sz

i

[

Sz
j , S

−
ℓ

]

= −
(

δiℓS
−
i Sz

j + δjℓS
z
i S

−
j

)

. (7.68)

Introducing these relations into (7.67), we have

(7.67) = 2
∑

ℓ

exp (ik · Rℓ)
∑

i(6=ℓ)

Jiℓ

(

Sz
i S

−
ℓ − S−

i Sz
ℓ

)

. (7.69)

This means that

HH S− (k) | 0 > = S− (k) HH | 0 >

+2
∑

ℓ

exp (ik · Rℓ)
∑

i(6=ℓ)

Jiℓ

(

S−
ℓ Sz

i − S−
i Sz

ℓ

)

| 0 > .(7.70)

Here we have on the one hand

(

S−
ℓ Sz

i − S−
i Sz

ℓ

)

| 0 > =
1

2

(

S−
ℓ − S−

i

)

| 0 > . (7.71)
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Then, one of the summations gives

∑

ℓ

exp (ik · Rℓ)
∑

i(6=ℓ)

Jiℓ S−
ℓ = J0 S− (k) , (7.72)

where we used the definition (7.50). For the other summation we can introduce the
Fourier transform of Jiℓ, since it should be a periodic function.

Jiℓ =
1

N

∑

k1

exp [ik1 · (Ri − Rℓ)] J (k1) , (7.73)

such that

∑

ℓ

exp (ik · Rℓ)
∑

i(6=ℓ)

Jiℓ S−
i =

1

N

∑

k1

∑

i

exp (ik1 · Ri)S−
i J (k1)

×
∑

ℓ

exp [i (k − k1) · Rℓ]

= J (k) S− (k) . (7.74)

Going back to (7.70), we have

HH S− (k) | 0 > = S− (k) E0 | 0 >

+J0 S− (k) | 0 > −J (k) S− (k) | 0 >

= [E0 + J0 − J (k)] S− (k) | 0 > . (7.75)

This means that S− (k) | 0 > is an eigenstate with an excitation energy ωk =
J0 − J (k). Since Jij = Jji,

J (k) = 2
∑

m>0

cos (k · Rm) J (Rm) , (7.76)

such that

ωk = 2
∑

m>0

[1 − cos (k · Rm)] J (Rm)
k→0
−→∼ k2 . (7.77)

The elementary excitations of a magnetic system are called magnons. In the case
of an antiferromagnet, where J < 0, (in this case we have to restrict the range of
the interaction to nearest neighbors, in order to have a well defined scheme for the
ordered state; for longer range interactions, competing contributions would appear
leading to frustration), we do not posses an explicit eigenstate for the ground-state.
The so-called Néel state is a classical approximation and, hence the excitations above
it are approximate spin-waves.


