Exercise 1 - Fermi-Dirac Distribution

Consider the Fermi-Dirac distribution function

\[n_F(\epsilon) = \frac{1}{e^{\beta(\epsilon - \mu)} + 1} \]

where \(\beta = 1/k_B T \) and \(\mu \) is the chemical potential. Let \(\epsilon(\vec{k}) = \hbar^2 \vec{k}^2 / 2m \) and \(\epsilon_F \) is the energy of the highest occupied state at \(T = 0 \).

- Plot the distribution as a function of energy for different temperatures: \(T = 0, k_B T < \epsilon_F \), and \(k_B T > \epsilon_F \);
- Sketch the evolution of \(\frac{\mu}{k_B T} \) with temperature.
- Plot the derivative (with respect to the energy) of the Fermi-Dirac distribution, again as a function of energy, for different temperatures: \(T = 0 \) and \(T \neq 0 \);
- Discuss the symmetry properties of \(\frac{\partial n_F}{\partial \epsilon} \), with respect to the Fermi energy \(\epsilon_F \);
- Show that for \(k_B T > \epsilon_F \), and for energies above the chemical potential, the Fermi-Dirac distribution reduces to the classical, Boltzmann distribution

\[n_F(\epsilon) \propto e^{-\epsilon/k_B T} \]

- If the above statement is made true for all energies, where is the chemical potential located in this case?

Exercise 2 - 4-site tight-binding chain

Consider a 1-dimensional tight-binding model with 4 sites and periodic boundary conditions. The eigenstates are approximated by a linear combination of atomic orbitals (LCAO)

\[\psi_{nk}(r) = \sum_{R_i} c_{k}(R_i) \varphi_n(r - R_i) \]

where \(\varphi_n(r - R_i) \) is the \(n \)-th atomic orbital localized around \(R_i \) and their overlap is assumed to be small.

(a) Determine the coefficients \(c_{k}(R_i) \), using the lattice periodicity and the normalization condition.

(b) We assume the orbitals to be s-orbitals (\(n = 1 \)). Let the matrix elements of \(H \) with respect to \(|i\rangle \), an s-orbital at site \(R_i \), be \(\langle i|H|j\rangle = E_0 \delta_{i,j} - t \delta_{i,j+1} \). Write down and discuss the four lowest energy one-particle Eigenstates of the system.

(c) Consider two spinless fermions occupying the system. Derive their groundstate wavefunction.

Solutions due on the 3rd of June 2013