Bose-Einstein Condensation

Lukas Sebeke

University of Stuttgart

04/16/2013, Hauptseminarvortrag

What is Bose-Einstein Condensation?

Setups for BEC-Preparation

Most common way to prepare a BEC: Magneto-optical traps & evaporative cooling

Figure: from "Laserkühlen und Fangen von neutralen Atomen in einer magneto-optischen Falle", FP Physik Versuchsanleitung

Figure: Optical trap modelling a 2Dbox potential; *Meyrath et al.Physical Review A 71, 041604sRd s2005d*

Why study BEC?

Figure: Interference of two initially separated condensates.;*Ketterle et al. Science* 276, 637 (1997)

Bose-Einstein-condensates can be used to deliver direct evidence of the wave-nature of matter and allow high-precision measurements

Outline

- 1 The Discovery of Bose-Einstein condensation
- Mathematical description of Bose-Einstein Condensates
 Short repetition: The grand-canonical ensemble
 - The ideal Bose-Gas
 - The weakly interacting Bose-Gas: Bogoliubov Theory

Outline

1 The Discovery of Bose-Einstein condensation

2 Mathematical description of Bose-Einstein Condensates

3 Experimental Results

The discovery of BEC

Satyendranath Bose (1894-1974)

1921, Time to solve the ultraviolett catastrophe. Photons are indistinguishable, so we need new statistics.

The discovery of BEC

Satyendranath Bose (1894-1974)

1921, Time to solve the ultraviolett catastrophe. Photons are indistinguishable, so we need new statistics. What do you think, Einstein?

The discovery of BEC

Satyendranath Bose (1894-1974)

1921, Time to solve the ultraviolett catastrophe. Photons are indistinguishable, so we need new statistics. What do you think, Einstein?

Interesting! Let's apply that to atoms and see what happens.

The discovery of BEC

1921, Time to solve the ultraviolett catastrophe. Photons are indistinguishable, so we need new statistics. What do you think, Einstein?

Satyendranath Bose (1894-1974)

Interesting! Let's apply that to atoms and see what happens.

1924: Indstinguishable atoms will condense at low T!

Remarkable developments

- 1995: First pure BECs are created at JILA (Colorado) and MIT; observation of interference effects (⁸⁷Rb and ²³Na, nK range)
- 1999: BEC preparation with magnons in an antiferromagnet at 14K
- 2006: Magnon-BEC in ferromagnets at room temperature

The Discovery of Bose-Einstein condensation Mathematical description of Bose-Einstein Condensates Experimental Results The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Outline

The Discovery of Bose-Einstein condensation

2 Mathematical description of Bose-Einstein Condensates

3 Experimental Results

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The grand-canonical ensemble: T, μ, V

- Setups for preparation of BECs allow the exchange of particles and energy
- The partition function $(\beta = 1/(k_{\rm B}T))$:

$$Z(T,\mu,V) = \sum_{i=0}^{\infty} \exp(-\beta(E_i - \mu N_i))$$
(1)

Bose-Einstein distribution:

$$\bar{n_k} = \frac{1}{\exp[\beta(\varepsilon_k - \mu)] - 1}$$
(2)

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Cold Gases in the Box

Hamiltonian of a (cold) gas:

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_i^2}{2m} + V(x_i) + \frac{1}{2} \sum_{i \neq j} U(x_i - x_j)$$
(3)

In the Box (periodic boundary conditions):

$$V(x_i) = \begin{cases} 0, & |x_i| \le L \\ \infty & |x_i| > L \end{cases}$$
(4)

$$\hat{p}_i = \frac{2\pi}{L}n\tag{5}$$

First Step:

Neglect interaction; the ideal Bose-gas

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Bose-Einstein Condensation of the ideal gas

Our Goals:

- Derive a critical Temperature
- Find a simple expression for the condensate fraction, N_0/N
- Draw a phase diagram of the ideal Bose-gas

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Bose-Einstein Condensation of the ideal gas

Our Goals:

- Derive a critical Temperature
- Find a simple expression for the condensate fraction, N_0/N
- Draw a phase diagram of the ideal Bose-gas

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Bose-Einstein Condensation of the ideal gas

Our Goals:

- Derive a critical Temperature
- Find a simple expression for the condensate fraction, N_0/N
- Draw a phase diagram of the ideal Bose-gas

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The isolation of the condensed component

Total Number of Particles:

Λ

$$N = \sum_{j} n_{j} = \bar{n}_{0} + \sum_{j \neq 0} n_{j}$$

$$= \underbrace{N_{0}}_{\text{condensed component}} + \underbrace{N_{T}}_{\text{thermal component}}$$

$$N_{0} = \frac{1}{\exp[\beta(\varepsilon_{0} - \mu)] - 1}$$

$$\stackrel{\varepsilon_{0} = 0}{=} \frac{z}{1 - z} / z = e^{\beta \mu}$$

$$\Rightarrow \mu < \varepsilon_{0}$$

$$N_{T} = \sum_{i \neq 0} \frac{1}{\exp[\beta(\varepsilon_{i} - \mu)] - 1} \approx \int_{0}^{\infty} \frac{dk}{(2\pi)^{3}} \frac{1}{\exp[\beta(\varepsilon_{k} - \mu)] - 1}$$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The critical temperature

 $N_T(\mu)$

Figure:

$$N_{T} \approx \frac{L^{3}}{\lambda^{3}} \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} d\varepsilon \frac{\sqrt{\varepsilon}}{z^{-1}e^{\varepsilon} - 1} = \frac{V}{\lambda^{3}} g_{\frac{3}{2}}(z) \qquad (6)$$
with $\lambda = \left(\frac{2\pi\hbar^{2}}{mk_{B}T}\right)^{\frac{1}{2}}$ [thermal wavelength]

$$\int_{N_{0}(\mu)} \int_{\mu} \int_{N_{0}} \int_{N_{0}$$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Macroscopic occupation of the ground state

Bose-Einstein Condensation

For $T < T_c$, the ground state is occupied macroscopically.

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The phase-diagram

Gas; $T_1 > T_2$, $v = n^{-1}$; from L.Pitaevskii, S.Stringari: Bose-Einstein Condensation

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Introduction of interactions

Introduction of interactions adds a new term to the Hamiltonian:

$$\hat{H} = \sum_{i=1}^{N} \frac{\hat{p}_i^2}{2m} + V(x_i) + \underbrace{\frac{1}{2} \sum_{i \neq j} U(x_i - x_j)}_{\text{interaction term}}$$
(8)

- The shape of the potential doesn't allow the application of perturbation theory
- Solving the problem with the real interaction potential is impossible

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The dilute gas

 \Rightarrow simplify!

Assumptions:

- The effective range r_0 of the interactions is much shorter than the average inter-particle distance d: $r_0 \ll d = n^{-1/3}$
- Gas is below the critical Temperature T_c

Consequences

- Only two-particle interactions have to be considered.
- The scattering amplitude $V(p) = \mathscr{F}(V(r))$ takes on a very simple form

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The scattering amplitude

The scattering amplitude is the Fourier-transformed potential:

$$V(p) = \int V(r) e^{-ip \cdot r/\hbar} dr$$
(9)

With $T \leq T_c$ and $r_0 \ll d$ we get:

$$\frac{\hbar}{r_0} \gg \frac{\hbar}{d} \cdot 6.63 = \sqrt{2mk_BT_c}$$

$$p \approx \sqrt{2mk_BT} \le \sqrt{2mk_BT_c} = \hbar/d \ll \hbar/r_0$$

$$\Rightarrow p \ll \hbar/r_0$$

The scattering amplitude becomes independent of p: $(V(r) \approx 0$ for $r > r_0)$

$$V(p) = \int V(r)e^{-ip \cdot r/\hbar} dr \approx \int V(r) dr$$
(10)

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The low-energy approximation

- The low energy approximation ("s-wave scattering") yields the s-wave scattering length *a*
- Interaction phenomena depend on a only in this regime
- This allows the use of a smooth effective potential V_{eff} which yields the same scattering length and -amplitude for small momenta $p \ll \hbar/r_0$
- Perturbation by the interaction potential must be small at all ranges to apply perturbation theory (Bogoliubov theory uses perturbation theory)
- A gas can be described as dilute if $|a| \ll n^{-1/3} = d$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Rewriting the Hamiltonian

Original Hamiltonian, expressed with field operators:

$$\hat{H} = \int \left(\frac{\hbar^2}{2m} \nabla \hat{\Psi}^{\dagger} \nabla \hat{\Psi}\right) d\mathbf{r} + \frac{1}{2} \int \hat{\Psi}^{\dagger} \hat{\Psi}^{\dagger \prime} V(\mathbf{r}' - \mathbf{r}) \hat{\Psi} \hat{\Psi}' d\mathbf{r}' d\mathbf{r} \quad (11)$$

Change of basis:
$$\left(\hat{\Psi}(\mathbf{r}) = \sum_{\mathbf{p}} \hat{a}_{\mathbf{p}} rac{1}{\sqrt{V}} e^{i\mathbf{p}\mathbf{r}/\hbar}
ight)$$

$$\hat{H} = \sum \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{1}{2V} \sum V_{\mathbf{q}} \hat{a}_{\mathbf{p}_1+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}_2-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}_1} \hat{a}_{\mathbf{p}_2}$$

with $V_{\mathbf{q}} \approx V_0 = \int V(\mathbf{r}) d\mathbf{r}$ we get:

Basic Hamiltonian for Bogoliubov-Theory

$$\hat{H} = \sum \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0}{2V} \sum \hat{a}_{\mathbf{p}_1+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}_2-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}_1} \hat{a}_{\mathbf{p}_2}$$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The lowest-order approximation

In the dilute gas, occupation numbers at T = 0 are all small except for N_0 :

$$\hat{H} = \sum \frac{p^2}{2m} \hat{a}^{\dagger}_{\mathbf{p}} \hat{a}_{\mathbf{p}} + \frac{V_0}{2V} \sum \hat{a}^{\dagger}_{\mathbf{p}_1 + \mathbf{q}} \hat{a}^{\dagger}_{\mathbf{p}_2 - \mathbf{q}} \hat{a}_{\mathbf{p}_1} \hat{a}_{\mathbf{p}_2}
\rightarrow \frac{V_0}{2V} \hat{a}^{\dagger}_0 \hat{a}^{\dagger}_0 \hat{a}_0 \hat{a}_0$$
(12)

Bogoliubov prescription:

$$\hat{a}_0 \equiv \sqrt{N_0} \tag{13}$$

Which translates to $\hat{a}_0 \equiv \sqrt{N}$ and thus:

Ground state energy in lowest order approximation:

$$E_0 = \frac{N^2 V_0}{2V}$$
(14)

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Lowest order approximation: Results

• Pressure remains finite, even for T = 0:

$$p \equiv -\frac{\partial E_0}{\partial V} = \frac{V_0}{2}n^2$$

• Thermodynamic stability requires $\frac{\partial n}{\partial p} = \frac{1}{V_0 n} > 0$ \Rightarrow BECs can only exist with repulsive V_0 (assuming no external potentials)

•
$$\mu = rac{\partial E_0}{\partial N} = V_0 n$$
 is always positive or zero

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

BECs in external potentials

- BEC is often achieved by using magnetic traps ⇒ external potential
- Gross-Pitaevskii-equation describes BECs in external potentials ("non-uniform Bose-Gases") in the lowest order approximation
- Assumes very low temperatures, so $N_0 \approx N$ and $V_{\mathbf{p}} \approx V_0$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Deriving the Gross-Pitaevskii-Equation

Starting Point:

$$i\hbar\partial_t \hat{\Psi}(\mathbf{r},t) = \begin{bmatrix} -\frac{\hbar^2 \nabla^2}{2m} + V_{ext}(\mathbf{r},t) \\ + \int \hat{\Psi}^{\dagger}(\mathbf{r}',t) V(\mathbf{r}'-\mathbf{r}) \hat{\Psi}(\mathbf{r}',t) d\mathbf{r}'] \hat{\Psi}(\mathbf{r},t)$$
(15)

Replacing $\hat{\Psi}$ and V(r):

$$i\hbar\partial_t \Psi_0(\mathbf{r},t) = \begin{bmatrix} -\frac{\hbar^2 \nabla^2}{2m} + V_{ext}(\mathbf{r},t) \\ + \int \Psi_0^*(\mathbf{r}',t) V_{eff}(\mathbf{r}'-\mathbf{r}) \Psi_0(\mathbf{r}',t) d\mathbf{r}' \end{bmatrix} \Psi_0(\mathbf{r},t)$$
(16)

With $\Psi_0(\mathbf{r}', t) \approx \Psi_0(\mathbf{r}, t)$ for $r' < r_0$:

$$i\hbar\partial_t \Psi_0(\mathbf{r},t) = \begin{bmatrix} -\frac{\hbar^2 \nabla^2}{2m} + V_{ext}(\mathbf{r},t) \\ + \int V_{eff}(\mathbf{r}'-\mathbf{r})d\mathbf{r}' |\Psi_0(\mathbf{r},t)|^2]\Psi_0(\mathbf{r},t) \end{bmatrix}$$
(17)

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The Gross-Pitaevskii-Equation

Gross-Pitaevskii-Equation

$$i\hbar\partial_t\Psi_0(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{ext}(\mathbf{r},t) + V_0|\Psi_0(\mathbf{r},t)|^2 d\mathbf{r}\right]\Psi_0(\mathbf{r},t)$$
(18)

- $n(\mathbf{r}) = |\Psi_0(\mathbf{r})|^2$
- Ψ_0 is classical limit of the de-Broglie wave
- GPE: Main tool for describing trapped gases theoretically
- Only valid for problems with many particles and length scales bigger than the scattering length *a*

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Taking in higher orders: Bogoliubov approximation

- Lowest-order approximation: Only terms with $\mathbf{p} = 0$, Bogoliubov approximation also takes terms with $\mathbf{p} \neq 0$
- Terms violating conservation of momentum can be disregarded right away (neglected quadratic p ≠ 0 terms):

$$\begin{split} \hat{\mathcal{H}} &= \sum \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0}{2V} \sum \hat{a}_{\mathbf{p}1+\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}2-\mathbf{q}}^{\dagger} \hat{a}_{\mathbf{p}1} \hat{a}_{\mathbf{p}2} \\ &= \sum_{\mathbf{p}} \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0}{2V} \hat{a}_0^{\dagger} \hat{a}_0^{\dagger} \hat{a}_0 \hat{a}_0 \\ &+ \frac{V_0}{2V} \sum_{\mathbf{p}\neq\mathbf{0}} (4 \hat{a}_0^{\dagger} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_0 \hat{a}_{\mathbf{p}} + \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger} \hat{a}_0 \hat{a}_0 + \hat{a}_0^{\dagger} \hat{a}_0^{\dagger} \hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}}) \end{split}$$

Interaction term consists of:

• "exchange" term
$$\hat{a}_0^{\dagger} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_0 \hat{a}_{\mathbf{p}} = N \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}$$

2 "excitation" terms
$$\hat{a}^{\dagger}_{\mathbf{p}}\hat{a}^{\dagger}_{-\mathbf{p}}\hat{a}_{0}\hat{a}_{0} + \hat{a}^{\dagger}_{0}\hat{a}^{\dagger}_{0}\hat{a}_{\mathbf{p}}\hat{a}_{-\mathbf{p}} = N(\hat{a}^{\dagger}_{\mathbf{p}}\hat{a}^{\dagger}_{-\mathbf{p}} + \hat{a}_{\mathbf{p}}\hat{a}_{-\mathbf{p}})$$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Quadratic term: higher accuracy

$$\hat{H} = \sum_{\mathbf{p}} \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0}{2V} \hat{a}_0^{\dagger} \hat{a}_0^{\dagger} \hat{a}_0 \hat{a}_0 + \frac{V_0 N}{2V} \sum_{\mathbf{p} \neq \mathbf{0}} (4 \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger} + \hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}})$$

Second term requires higher accuracy:

$$\hat{a}_0^{\dagger} \hat{a}_0^{\dagger} \hat{a}_0 \hat{a}_0 \approx N_0^2$$

$$= (N - N_T)^2$$

$$= (N - \sum_{\mathbf{p} \neq 0} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}})^2$$

$$\approx N^2 - 2N \sum_{\mathbf{p} \neq 0} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}}$$

New Hamiltonian:

$$\hat{H} = \sum_{\mathbf{p}} \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0 nN}{2} + \frac{V_0 n}{2} \sum_{\mathbf{p} \neq \mathbf{0}} (2\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger} + \hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}}) \quad (19)$$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

The Bogoliubov-Transformation

$$\hat{H} = \sum_{\mathbf{p}} \frac{p^2}{2m} \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \frac{V_0 nN}{2} + \frac{V_0 n}{2} \sum_{\mathbf{p} \neq \mathbf{0}} (2\hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{\mathbf{p}} + \hat{a}_{\mathbf{p}}^{\dagger} \hat{a}_{-\mathbf{p}}^{\dagger} + \hat{a}_{\mathbf{p}} \hat{a}_{-\mathbf{p}})$$

The new Hamiltonian can be diagonalized via the Bogoliubov-transformation:

$$\hat{a}_{\mathbf{p}} = u_{\mathbf{p}}\hat{b}_{\mathbf{p}} + v_{-\mathbf{p}}\hat{b}_{-\mathbf{p}}^{\dagger}$$

 $\hat{a}_{\mathbf{p}}^{\dagger} = u_{\mathbf{p}}\hat{b}_{\mathbf{p}}^{\dagger} + v_{-\mathbf{p}}\hat{b}_{-\mathbf{p}}$

with $[\hat{a}_p, \hat{a}_p^\dagger] = [\hat{b}_p, \hat{b}_p^\dagger] = \delta_{pp'}$

Short repetition: The grand-canonical ensemble The ideal Bose-Gas The weakly interacting Bose-Gas: Bogoliubov Theory

Blackboard calculation: Bogoliubov-Transformation

Outline

The Discovery of Bose-Einstein condensation

2 Mathematical description of Bose-Einstein Condensates

3 Experimental Results

Critical Temperature

Two-body interactions only contribute weakly to the condensation behaviour

Figure: Condensate fraction vs Temperature (harmonic potential); Graph from *L.Pitaevskii*, *S.Stringari: Bose-Einstein Condensation*; Data from *Ensher et al., Phys.Rev.Let.77,25 (1996)*

Particle distribution

Figure: Dashed line: ideal gas; solid line: GP-equation - Graph from *L.Pitaevskii*, *S.Stringari: Bose-Einstein Condensation;* Data from *Hau et al., Phys.Rev. A 58,1* (1998)

- Ideal Bose Gas' size depends only on the external potential
- real gases must expand with greater particle numbers

Summary: Mathematical results

Ideal Bose-Gas in the box:

- $T_c = \frac{\hbar^2 n^{(2/3)}}{2m} \cdot \frac{6.63}{k_B}$ • $N_0/N = 1 - \left(\frac{T}{T_c}\right)^{(3/2)}$
- Infinite compressibility

Weakly interacting Bose-Gas:

- Introduction of cold, dilute gases $(|a| \ll d)$
- Derived Gross-Pitaevskii-equation as main tool for investigating BEC
- Extended applicability with Bogoliubov-approximation

Summary: Mathematical results

Ideal Bose-Gas in the box:

- $T_c = \frac{\hbar^2 n^{(2/3)}}{2m} \cdot \frac{6.63}{k_B}$ • $N_0/N = 1 - \left(\frac{T}{T_c}\right)^{(3/2)}$
- Infinite compressibility

Weakly interacting Bose-Gas:

- Introduction of cold, dilute gases $(|a|\ll d)$
- Derived Gross-Pitaevskii-equation as main tool for investigating BEC
- Extended applicability with Bogoliubov-approximation

Thank you for your kind attention!

Questions?

Thank you for your kind attention!

Questions?