Introduction Idea	al bose gas E	Experimental techniques	Weakly interacting bose gas	Conclusion
00	00000	000000000	00000	

Bose-Einstein condensation of cold gases in traps

Matthias Wenzel

Hauptseminar: Physik der kalten Gase

30.04.2013

Introduction	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Introduction	on			

Figure : Density distribution of Sodium atoms with $T_c=2~\mu {\rm K}.$ From: Nobel lecture of Wolfgang Ketterle (2001)

					2 2 2	200 200 201)2)4 .1		Cs Cr D <u>y</u>	5								
Group — ↓ Period	• 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
6	55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra		104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
				_	_								_					
	La	nthan	ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
		Actin	ides	89 Ac	90 Th	91 Pa	92 U	93 No	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Ur

Rb Na Li

Н

Κ

1995 1998

2001

Figure : Time line and periodic table of BEC.

Introduction	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Outline				

Ideal bose gas

- Harmonic potential
- Critical temperature T_c
- Density distribution

2 Experimental techniques

- Typical setup
- Radiation forces on atoms
- Laser cooling
- Evaporative cooling

3 Weakly interacting bose gas

- Thomas-Fermi approximation
- Healing length

	ldeal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
Outline				

Ideal bose gas

- Harmonic potential
- Critical temperature T_c
- Density distribution

Experimental techniques

- Typical setup
- Radiation forces on atoms
- Laser cooling
- Evaporative cooling

3 Weakly interacting bose gas

- Thomas-Fermi approximation
- Healing length

	ldeal bose gas ●OOOOOO	Experimental techniques	Weakly interacting bose gas	Conclusion
Harmon	ic potential			

Isotropic harmonic potential

$$V_{\rm ho}(\mathbf{r}) = \frac{1}{2}m\omega_{\rm ho}^2\mathbf{r}^2$$

Oscillator length

$$a_{\rm ho} = \sqrt{\frac{\hbar}{m\omega_{\rm ho}}} \approx 5\,\mu{\rm m}$$

Figure : Potential and ground state of a harmonic oscillator.

	ldeal bose gas ⊙●○○○○○	Experimental techniques	Weakly interacting bose gas	Conclusion
Ideal bo	se gas			

Hamiltonian

$$H = \sum_{i} H_{i} = \sum_{i} \left[-\frac{\hbar^{2}}{2m} \nabla_{i}^{2} + V_{\rm ho}(\mathbf{r}_{i}) \right]$$

Single-particle energy and ground state ($n_x = n_y = n_z = 0$)

$$E = \hbar\omega_{\rm ho} \left(n_x + n_y + n_z + \frac{3}{2} \right)$$

$$\Phi(\mathbf{r}) = \left(\frac{m\,\omega_{\rm ho}}{\pi\,\hbar}\right)^{3/4} \exp\left[-\frac{m}{2\hbar}\omega_{\rm ho}\,r^2\right] = \left(\frac{1}{\sqrt{\pi}\,a_{\rm ho}}\right)^{3/2} \exp\left[-\frac{r^2}{2a_{\rm ho}^2}\right]$$

N-particle wave function and density distribution

$$\Psi(\mathbf{r}_1, \dots, \mathbf{r}_N) = \prod_i \Phi(\mathbf{r}_i) \qquad \qquad n(\mathbf{r}) = N \left| \Phi(\mathbf{r}) \right|^2$$

Blackboard: Density of states

	ldeal bose gas ○○●○○○○	Experimental techniques	Weakly interacting bose gas	Conclusion
Densitv	of states			

	Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
	000000	000000000	00000	
Critical	temperature	$e T_c$		

Bose distribution and density of states

$$f(E,T) = \frac{1}{e^{(E-\mu)/kT} - 1} \qquad \qquad g(E) = \frac{1}{2(\hbar\omega_{\rm ho})^3} E^2$$

Particle number in excited states, zero-point energy neglected

$$N_{\rm ex} = \int_0^\infty \mathrm{d}E \ g(E) f(E,T)$$

All particles in excited states at T_c

$$N = N_{\text{ex}}(T = T_c, \mu = 0) = \int_0^\infty dE \, \frac{g(E)}{e^{E/kT_c} - 1}$$
$$= \frac{1}{2} \left(\frac{kT_c}{\hbar\omega_{\text{ho}}}\right)^3 \int_0^\infty dz \, \frac{z^2}{e^z - 1} = \frac{1}{2} \left(\frac{kT_c}{\hbar\omega_{\text{ho}}}\right)^3 \Gamma(3)\zeta(3)$$
$$= \zeta(3) \left(\frac{kT_c}{\hbar\omega_{\text{ho}}}\right)^3$$

Figure : Noninteracting bosons in a spherical trap at temperature $T = 0.9 T_c$, Length z in units of $a_{\rm ho}$. From: Dalfovo et. al. (1999)

Incloauction

Ideal bose gas ○○○○○○● Experimental techniques

Weakly interacting bose ga

Conclusion

Density distribution

Figure : Density distribution of Sodium atoms with $T_c=2~\mu{\rm K}.$ From: Nobel lecture of Wolfgang Ketterle (2001)

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Outline				

🕕 Ideal bose gas

- Harmonic potential
- Critical temperature T_c
- Density distribution

2 Experimental techniques

- Typical setup
- Radiation forces on atoms
- Laser cooling
- Evaporative cooling

Weakly interacting bose gas

- Thomas-Fermi approximation
- Healing length

tr			÷.	

Ideal bose ga

Experimental techniques

Weakly interacting bose ga

Conclusion

Typical setup

Figure : Setup of a BEC experiment. From: Nobel lecture of Wolfgang Ketterle (2001)

	Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
	000000	00000000	00000	
Dinole	force			

Stark effect

$$V_S = -\frac{1}{2}\alpha'(\omega)\left\langle E^2\right\rangle_t$$

Dipole force

$$\begin{aligned} \mathbf{F}_{\text{dip}} &= -\nabla V_S(\mathbf{r}) \\ &= \frac{1}{2} \alpha'(\omega) \, \nabla \left\langle E^2 \right\rangle_t \end{aligned}$$

Figure : Atoms in an optical lattice potential. From: Wikipedia - Optisches Gitter

Figure : Laser beam profile and potential of an atom in this beam. From: Diploma thesis at PI5

Figure : Real (red) and imaginary part (green) of the polarizability over frequency.

	Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
	000000	00000000	00000	
Scatteri	ng force			

Photon momentum

ъ

$$\mathbf{p}=\hbar\mathbf{q}$$

Scattering force

$$\mathbf{F}_{s}(\omega-\omega_{0})=\mathbf{\dot{p}}=\hbar\mathbf{q}\,\Gamma_{g}(\omega-\omega_{0})$$

Absorption rate

$$\Gamma_{\rm g}(\omega-\omega_0) = -\frac{1}{2}\alpha''(\omega-\omega_0)\left\langle E^2\right\rangle_t$$

Recoil limit

$$kT_r = \frac{\hbar^2 q^2}{2m} \quad \Rightarrow \quad T_r \approx 1 \,\mu\mathrm{K}$$

Figure : Absorption of a photon followed by spontaneous emission in a random direction.

Figure : Real (red) and imaginary part (green) of the polarizability over frequency.

Introduction	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Zeeman	slower			

Doppler effect

$$\omega = \omega_0 - kv$$

Magnetic field cancels decreasing Doppler shift

$$\begin{split} \hbar \omega &= \hbar \omega_0 - V_D + V_z \\ &= \hbar \omega_0 - \hbar k v + g m \mu_B B \end{split}$$

Constant deceleration of atoms on resonance

$$-\dot{v} = a = \frac{F_s}{m} \approx 10^5 \frac{m}{s^2}$$

$$v_0^2 - v^2 = 2az \Rightarrow v(z) = v_0 \sqrt{1 - \frac{2a}{v_0^2} z}$$

Figure : An atom moving towards a laser beam

Figure : Zeeman slower. From: Foot - Atomic Physics

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Doppler	cooling			

Doppler effect

$$\omega = \omega_0 - kv$$

 \Rightarrow Use red-detuned lasers ($\omega < \omega_0$)

Force of two counter-propagating laser beams

$$F = F_{s}(\omega - \omega_{0} + kv) -F_{s}(\omega - \omega_{0} - kv) \approx -\beta v$$

Atoms are cooled, but not trapped.

 \Rightarrow MOT: Add a spacial dependence

Figure : Moving atom in two counterpropagating laser beams.

Figure : Force over the velocity of an atom. From: Foot - Atomic Physics

ldeal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
0000000	0000000000	00000	

Magneto-optical trap

Magnetic quadrupole field: Linear Zeeman shift at origin

 $V_Z = gm\mu_B B \propto r$

Counter-propagating laser beams: Red-detuned, σ_- and σ_+ polarized

Figure : Trapped lithium atoms. From: Quantum optics group at ETH Zürich

Figure : Setup of a MOT. From: Foot - Atomic Physics

Magneto-optical trap

Figure : Schematic of a 1D MOT with a $J=0 \leftrightarrow J=1$ transition. From: Foot - Atomic Physics

	Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
	0000000	0000000000	00000	
Magnet	ic tran			

Harmonic trap

S.

$$B = \frac{B''}{2}r^2 + B_0$$

Zeeman effect

$$V_Z(\mathbf{r}) = gm\mu_B B$$

Trapping force

$$\mathbf{F}(\mathbf{r}) = -\nabla V_Z \propto -gm \, \mathbf{r}$$

Low-field seekers (gm > 0) are trapped, high-field seekers (gm < 0) are repelled.

Figure : Currents in an loffe-Pritchard trap inducing a harmonic magnetic field. From: Pethick, Smith - BEC in dilute gases

Figure : Magnetic trap potential with a low-field seeking state (red) and a high-field seeking state (green).

Figure : Atoms in a harmonic potential. From: Pethick, Smith - BEC in dilute gases

Figure : (a) Maxwell-Boltzmann energy distribution at $T = T_0$, (b) Cut-off of "hot" atoms with $E > E_c$, (c) New equilibrium temperature $T_1 < T_0$. From: Diploma thesis at PI5.

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Outline				

🕕 Ideal bose gas

- Harmonic potential
- Critical temperature T_c
- Density distribution

2 Experimental techniques

- Typical setup
- Radiation forces on atoms
- Laser cooling
- Evaporative cooling

3 Weakly interacting bose gas

- Thomas-Fermi approximation
- Healing length

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas ●0000	Conclusion
Thomas	-Fermi appr	oximation		

Gross-Pitaevskii equation

$$\left[-\frac{\hbar^2}{2m}\Delta + V_{\rm ho}(\mathbf{r}) + g|\Psi|^2\right]\Psi = \mu\Psi$$

Coupling constant $g=\frac{4\pi\hbar^2}{m}a>0$ for repulsive interactions.

Thomas-Fermi approximation

For $\frac{Na}{a_{\text{bo}}} \gg 1$ kinetic energy is small and can be neglected:

$$\left[V_{\rm ho}(\mathbf{r}) + g|\Psi|^2\right]\Psi = \mu\Psi$$

Blackboard:

Density distribution, chemical potential and cloud radius.

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas ○●○○○	Conclusion
Thomas	-Fermi appr	oximation		

ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas ○○●○○	Conclusion

Thomas-Fermi approximation

Density distribution for $r \leq r_{\rm TF}$

$$n(\mathbf{r}) = \frac{\mu}{g} \left(1 - \frac{r^2}{r_{\rm TF}^2} \right)$$

Chemical potential

$$\mu = \frac{1}{2}\hbar\omega_{\rm ho} \left(15 \, \frac{Na}{a_{\rm ho}}\right)^{2/5}$$

Spatial extent of cloud

$$r_{\rm TF} = a_{\rm ho} \left(15 \, \frac{Na}{a_{\rm ho}}\right)^{1/5} > a_{\rm ho}$$

Figure : Density distribution in a harmonic trap.

Thomas-Fermi approximation

Figure : Density distribution of sodium atoms. From: Dalfovo et al. (1999)

	Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
	000000	000000000	00000	
Healing	length			

Kinetic energy = interaction energy

 \mathbf{o}

$$\frac{\hbar^2 k^2}{2m} = \frac{\hbar^2}{2m\xi^2} = g n(\mathbf{r})$$
$$\Rightarrow \quad \xi^2 = \frac{\hbar^2}{2mqn} = \frac{1}{8\pi an}$$

Solving the GPE for a box potential

$$\Psi(r)=\Psi_0 \tanh\left(\frac{r}{\sqrt{2}\xi}\right)$$

Length scale on which perturbations in the density distribution are "healed".

 $\label{eq:Figure:Density} \begin{array}{l} \mbox{Figure:Density distribution in a box potential} \\ \mbox{within Thomas-Fermi approximation (red) and} \\ \mbox{solution of the GPE (green)} \end{array}$

Figure : Vortices in a BEC. From: Australian Centre for Quantum-Atom Optics

	ldeal bose gas 0000000	Experimental techniques	Weakly interacting bose gas	Conclusion
Conclusion	า			

- Ideal bose gas
 - Critical temperature
 - Condensate fraction
- Experimental techniques
 - Laser cooling
 - Evaporative cooling
- Weakly interacting bose gas
 - Parabola shaped density distribution
 - Spatial extent of the cloud
 - Healing length

Ideal bose gas	Experimental techniques	Weakly interacting bose gas	Conclusion
0000000	000000000	00000	

Thank you for your attention.