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Introduction

Figure : Density distribution of Sodium
atoms with Tc = 2 µK. From: Nobel
lecture of Wolfgang Ketterle (2001)

1995 Rb Na Li
1998 H
2001 K
2002 Cs
2004 Cr
2011 Dy

Figure : Time line and periodic table of BEC.
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Harmonic potential

Isotropic harmonic potential

Vho(r) =
1

2
mω2

hor
2

Oscillator length

aho =

√
~

mωho
≈ 5µm

Figure : Potential and ground state of a
harmonic oscillator.
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Ideal bose gas

Hamiltonian

H =
∑
i

Hi =
∑
i

[
− ~2

2m
∇2
i + Vho(ri)

]
Single-particle energy and ground state (nx = ny = nz = 0)

E = ~ωho

(
nx + ny + nz +

3

2

)

Φ(r) =
(mωho

π ~

)3/4
exp

[
−m

2~
ωho r

2
]

=

(
1√
π aho

)3/2

exp

[
− r2

2a2ho

]
N-particle wave function and density distribution

Ψ(r1, . . . , rN ) =
∏
i

Φ(ri) n(r) = N |Φ(r)|2

Blackboard: Density of states
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Density of states

For E � ~ωho: Neglect zero-point energy, treat ni as continous and
introduce coordinate system εi = ~ωhoni, i = x, y, z.

E ≈ ~ωho (nx + ny + nz) = εx + εy + εz

Number of states up to energy E

G(E) =
1

(~ωho)3

∫ E

0

dεx

∫ E−εx

0

dεy

∫ E−εx−εy

0

dεz 1
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Critical temperature Tc

Bose distribution and density of states

f(E, T ) =
1

e(E−µ)/kT − 1
g(E) =

1

2(~ωho)3
E2

Particle number in excited states, zero-point energy neglected

Nex =

∫ ∞
0

dE g(E)f(E, T )

All particles in excited states at Tc

N = Nex(T = Tc, µ = 0) =

∫ ∞
0

dE
g(E)

eE/kTc − 1

=
1

2

(
kTc
~ωho

)3 ∫ ∞
0

dz
z2

ez − 1
=

1

2

(
kTc
~ωho

)3

Γ(3)ζ(3)

= ζ(3)

(
kTc
~ωho

)3
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Critical temperature Tc

In a harmonic potential ... compared to a box

kTc ≈ 0.94 ~ωhoN
1/3 kTc ≈ 3.31

~2n2/3

m

Typical values: ωho = 2π · 100 Hz and N = 105

Tc ≈ 500 nK Tc ≈ 50µK

Condensate fraction

N0

N
= 1−

(
T

Tc

)3
N0

N
= 1−

(
T

Tc

)3/2

Figure : Condensate fraction of a harmonic (red) and a box potential (green).
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Density distribution

Figure : Noninteracting bosons in a spherical trap at temperature T = 0.9 Tc, Length z in units
of aho. From: Dalfovo et. al. (1999)
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Density distribution

Figure : Density distribution of Sodium atoms with Tc = 2 µK. From: Nobel lecture of Wolfgang
Ketterle (2001)
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Typical setup

Figure : Setup of a BEC experiment. From: Nobel lecture of Wolfgang Ketterle (2001)
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Typical setup

Oven 600 K 800 m/s

Zeeman slower 1 K 30 m/s

Magneto-optical trap 100 µK 109 atoms

Evaporative cooling
in a magnetic trap < TC 105 atoms
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Dipole force

Stark effect

VS = −1

2
α′(ω)

〈
E2
〉
t

Dipole force

Fdip = −∇VS(r)

=
1

2
α′(ω)∇

〈
E2
〉
t

Figure : Atoms in an optical lattice potential.
From: Wikipedia - Optisches Gitter

Figure : Laser beam profile and potential of an
atom in this beam. From: Diploma thesis at PI5

Figure : Real (red) and imaginary part (green) of
the polarizability over frequency.
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Scattering force

Photon momentum

p = ~q

Scattering force

Fs(ω − ω0) = ṗ = ~q Γg(ω − ω0)

Absorption rate

Γg(ω − ω0) = −1

2
α′′(ω − ω0)

〈
E2
〉
t

Recoil limit

kTr =
~2q2

2m
⇒ Tr ≈ 1µK

Figure : Absorption of a photon followed by
spontaneous emission in a random direction.

Figure : Real (red) and imaginary part (green) of
the polarizability over frequency.
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Zeeman slower

Doppler effect

ω = ω0 − kv

Magnetic field cancels decreasing
Doppler shift

~ω = ~ω0 − VD + Vz

= ~ω0 − ~kv + gmµBB

Constant deceleration of atoms on
resonance

−v̇ = a =
Fs
m
≈ 105

m

s2

v20−v2 = 2az ⇒ v(z) = v0

√
1− 2a

v20
z

Figure : An atom moving towards a laser beam

Figure : Zeeman slower. From: Foot - Atomic
Physics
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Doppler cooling

Doppler effect

ω = ω0 − kv

⇒ Use red-detuned lasers (ω < ω0)

Force of two counter-propagating
laser beams

F = Fs(ω − ω0 + kv)

−Fs(ω − ω0 − kv)

≈ −βv

Atoms are cooled, but not trapped.

⇒ MOT: Add a spacial dependence

Figure : Moving atom in two counter-
propagating laser beams.

Figure : Force over the velocity of an atom.
From: Foot - Atomic Physics
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Magneto-optical trap

Magnetic quadrupole field: Linear
Zeeman shift at origin

VZ = gmµBB ∝ r

Counter-propagating laser beams:
Red-detuned, σ− and σ+ polarized

Figure : Trapped lithium atoms. From:
Quantum optics group at ETH Zürich

Figure : Setup of a MOT. From: Foot - Atomic
Physics



Introduction Ideal bose gas Experimental techniques Weakly interacting bose gas Conclusion

Magneto-optical trap

Figure : Schematic of a 1D MOT with a J = 0↔ J = 1 transition. From: Foot -
Atomic Physics

Transitions
σ−: ∆m = −1
σ+: ∆m = +1
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Magnetic trap

Harmonic trap

B =
B′′

2
r2 +B0

Zeeman effect

VZ(r) = gmµBB

Trapping force

F(r) = −∇VZ ∝ −gm r

Low-field seekers (gm > 0) are
trapped, high-field seekers (gm < 0)
are repelled.

Figure : Currents in an Ioffe-Pritchard trap
inducing a harmonic magnetic field. From:
Pethick, Smith - BEC in dilute gases

Figure : Magnetic trap potential with a low-field
seeking state (red) and a high-field seeking state
(green).
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Evaporative cooling

Figure : Atoms in a harmonic potential. From: Pethick, Smith - BEC in dilute gases

Figure : (a) Maxwell-Boltzmann energy distribution at T = T0, (b) Cut-off of “hot” atoms with
E > Ec, (c) New equilibrium temperature T1 < T0. From: Diploma thesis at PI5.
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Thomas-Fermi approximation

Gross-Pitaevskii equation[
− ~2

2m
∆ + Vho(r) + g|Ψ|2

]
Ψ = µΨ

Coupling constant g = 4π~2

m a > 0 for repulsive interactions.

Thomas-Fermi approximation

For Na
aho
� 1 kinetic energy is small and can be neglected:[

Vho(r) + g|Ψ|2
]

Ψ = µΨ

Blackboard:
Density distribution, chemical potential and cloud radius.
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Thomas-Fermi approximation
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Thomas-Fermi approximation

Density distribution for r ≤ rTF

n(r) =
µ

g

(
1− r2

r2TF

)
Chemical potential

µ =
1

2
~ωho

(
15

Na

aho

)2/5

Spatial extent of cloud

rTF = aho

(
15

Na

aho

)1/5

> aho

Figure : Density distribution in a harmonic trap.
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Thomas-Fermi approximation

Figure : Density distribution of sodium atoms. From: Dalfovo et al. (1999)
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Healing length

Kinetic energy = interaction energy

~2k2

2m
=

~2

2mξ2
= g n(r)

⇒ ξ2 =
~2

2mgn
=

1

8πan

Solving the GPE for a box potential

Ψ(r) = Ψ0 tanh

(
r√
2ξ

)
Length scale on which perturbations
in the density distribution are
“healed”.

Figure : Density distribution in a box potential
within Thomas-Fermi approximation (red) and
solution of the GPE (green)

Figure : Vortices in a BEC. From: Australian
Centre for Quantum-Atom Optics
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Conclusion

Ideal bose gas

Critical temperature
Condensate fraction

Experimental techniques

Laser cooling
Evaporative cooling

Weakly interacting bose gas

Parabola shaped density distribution
Spatial extent of the cloud
Healing length
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Thank you for your attention.
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