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Figure : Time line and periodic table of BEC.
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Harmonic potential
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Figure : Potential and ground state of a
harmonic oscillator.
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ldeal bose gas

Hamiltonian
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N-particle wave function and density distribution
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Blackboard: Density of states
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Critical temperature T,

Bose distribution and density of states
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Critical temperature T,

In a harmonic potential ... compared to a box
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Figure : Condensate fraction of a harmonic (red) and a box potential (green).
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Density distribution
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Figure : Noninteracting bosons in a spherical trap at temperature 7" = 0.9 T, Length z in units
of ayn,. From: Dalfovo et. al. (1999)
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Density distribution

Figure : Density distribution of Sodium atoms with T. = 2 uK. From: Nobel lecture of Wolfgang
Ketterle (2001)
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Typical setup

Figure : Setup of a BEC experiment. From: Nobel lecture of Wolfgang Ketterle (2001)



Experimental techniques
(] J

Typical setup
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Dipole force

Stark effect \/

Dipole force
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dip 1 S( ) Figure : Laser beam profile and potential of an
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Figure : Atoms in an optical lattice potential.
From: Wikipedia - Optisches Gitter Figure : Real (red) and imaginary part (green) of

the polarizability over frequency.
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Scattering force

Photon momentum
p = hq
Scattering force
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Absorption rate
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Figure : Absorption of a photon followed by
spontaneous emission in a random direction.

Polarizability «
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Figure : Real (red) and imaginary part (green) of
the polarizability over frequency.
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Zeeman slower

Doppler effect
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Magnetic field cancels decreasing
Doppler shift
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Figure : An atom moving towards a laser beam

Constant deceleration of atoms on
resonance I —.: PP,
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Figure : Zeeman slower. From: Foot - Atomic
Physics
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Doppler cooling

Doppler effect v
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Figure : Moving atom in two counter-
= Use red-detuned lasers (w < OJO) propagating laser beams.

Force of two counter-propagating P
laser beams
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Atoms are cooled, but not trapped.

Figure : Force over the velocity of an atom.
From: Foot - Atomic Physics

= MOT: Add a spacial dependence
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Magneto-optical trap

Magnetic quadrupole field: Linear
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Figure : Setup of a MOT. From: Foot - Atomic
Physics

Figure : Trapped lithium atoms. From:
Quantum optics group at ETH Ziirich
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Magneto-optical trap
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Figure : Schematic of a 1D MOT with a J = 0 <» J = 1 transition. From: Foot -
Atomic Physics
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Magnetic trap

Harmonic trap

B= %ﬁrz + By
Zeeman effect
Vz(r) = gmupB
Trapping force
F(r)=-VVz x —gmr

Low-field seekers (gm > 0) are
trapped, high-field seekers (gm < 0)

are repelled.

Figure : Currents in an loffe-Pritchard trap
inducing a harmonic magnetic field. From:
Pethick, Smith - BEC in dilute gases
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Figure : Magpnetic trap potential with a low-field
seeking state (red) and a high-field seeking state

(green).
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Evaporative cooling

Figure : Atoms in a harmonic potential. From: Pethick, Smith - BEC in dilute gases
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Figure : (a) Maxwell-Boltzmann energy distribution at T' = Ty, (b) Cut-off of “hot” atoms with
E > E., (c) New equilibrium temperature Ty < T;. From: Diploma thesis at PI5.
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Thomas-Fermi approximation

Gross-Pitaevskii equation
h? 9
—— A4 Vio(r) + g|T|*| ¥ = pT
2m

. 2 . . .
Coupling constant g = %a > 0 for repulsive interactions.

Thomas-Fermi approximation

For &2 > 1 kinetic energy is small and can be neglected:

Gho

[Vio(r) + gl¥P] ¥ = u

Blackboard:
Density distribution, chemical potential and cloud radius.
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Weakly interacting bose gas
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Density distribution for r < rrp
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Density distribution in a harmonic trap.
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Thomas-Fermi approximation
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Figure : Density distribution of sodium atoms. From: Dalfovo et al. (1999)
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Healing length
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Figure : Density distribution in a box potential
within Thomas-Fermi approximation (red) and
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Solving the GPE for a box potential
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Length scale on which perturbations

in the density distribution are
Figure : Vortices in a BEC. From: Australian
Centre for Quantum-Atom Optics

“healed” .
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@ ldeal bose gas

o Critical temperature
o Condensate fraction

@ Experimental techniques

o Laser cooling
o Evaporative cooling

@ Weakly interacting bose gas

o Parabola shaped density distribution
o Spatial extent of the cloud
o Healing length
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