Rotational Properties of Bose - Einstein Condensates

Stefan Baumgärtner

April 30, 2013
Outline

Motivation

Classical gases

Rotation of BEC

Vortex lattice
one of the hallmarks of superfluids is their response to rotation
special properties are consequence of their constrained motions
circulation around a closed contour is quantized
Classical gases

circulation along a closed line

\[\Gamma = \oint vdl \]

rewriting with Stokes theorem

\[\oint vdl = \int (\nabla \times v)dA \]
velocity of a circulation

\[\nabla \times \mathbf{v} = \nabla \times (\boldsymbol{\Omega} \times \mathbf{r}) \neq 0 \]

circulation in a classical gas can take arbitrary values
\[\rightarrow \text{ difference to BEC} \]
Circulation in BEC

velocity:

\[\mathbf{v} = \frac{\hbar}{m} \nabla \phi \]

\[\nabla \times \mathbf{v} = 0 \]

field of velocity is irrotational unless there is a singularity in the phase of the wave function

→ possible motions are restricted
change of the wave function:

\[\Delta \phi = \oint \nabla \phi \, dl = 2\pi l \]

\[\Gamma = \oint v \, dl = \frac{2\pi \hbar}{m} \cdot l \]

circulation is quantized
assume a trap invariant about rotation around z axis with distance \(\rho \) from the axis

\[v_\phi = l \frac{\hbar}{m\rho} \]

- countour encloses the axis the circulation has to be \(\frac{2\pi l \hbar}{m} \), otherwise zero
- if \(l \neq 0 \) the wave function has to vanish on the axis of the trap
external potential with axial symmetry, state has a singularity on the axis

each particle carries momentum $l\hbar$

total angular momentum is $Nl\hbar$ with the particle number N if the singularity lies off the axis the angular momentum generally differs from this value
generalization of $\nabla \times \mathbf{v} = 0$:

$$\nabla \times \mathbf{v} = \frac{2\pi l \hbar}{m} \delta^2(\rho) \mathbf{e}_z$$

case of many vortices

$$\nabla \times \mathbf{v} = \sum \frac{2\pi l \hbar}{m} \delta^2(\rho) \mathbf{e}_z$$
Single vortex

Time independent Gross-Pitaevskii equation

\[-\frac{\hbar^2}{2m} \nabla^2 \psi(r) + V(r)\psi(r) + U_0 |\psi(r)|^2 \psi(r) = \mu \psi(r)\]

with the energy \(E\) of the system

\[E(\psi) = \int dr \left[\frac{\hbar^2}{2m} |\nabla \psi(r)|^2 + V(r)|\psi(r)|^2 + \frac{1}{2} U_0 |\psi(r)|^4 \right]\]
consider a trap with an axial symmetry, then the condensate wave function can be written in cylindrical coordinates

$$\psi(r) = f(\rho, z)e^{i\phi}$$

for the energy you get

$$E = \int dr \left[\frac{\hbar^2}{2m} \left(\left(\frac{\partial f}{\partial \rho} \right)^2 + \left(\frac{\partial f}{\partial z} \right)^2 \right) \right] + \frac{\hbar^2}{2m} l^2 \frac{f^2}{\rho^2} + V(\rho, z)f^2 + \frac{U_0}{2} f^4$$

if you insert the wave function in the GP-equation you get a equation for the amplitude of the wave function

$$-\frac{\hbar^2}{2m} \left[\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial f}{\partial \rho} \right) + \frac{\partial^2 f}{\partial z^2} \right] + \frac{\hbar^2}{2m\rho^2} l^2 f + V(\rho, z)f + U_0 f^3 = \mu f$$
single vortex in a uniform medium

- consider an infinite medium with a uniform potential which can be taken to be zero: \(V(\rho, z) = 0 \)
- wave function does not depend on \(z \) in the ground state, hence terms with a derivative with respect to \(z \) vanish
- only consider the case for \(l=1 \) because of the physical importance of single quantized vortices
large distances from the axis the radial term and the barrier term \((\propto \frac{1}{\rho^2}) \) become unimportant

\[f(\rho \to \infty) = f_0 = \left(\frac{\mu}{U_0} \right)^{\frac{1}{2}} \]

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axis the derivative and the centrifugal term dominate

close to the axi...
introduce the new variable

\[x = \frac{\rho}{\xi} \]

scale the amplitude of the wave function to its value far from the axis

\[\kappa = \frac{f}{f_0} \]

then you can rewrite the energy

\[E = n^2 U_0 \left[\left(\frac{d\kappa}{dx} \right)^2 + \frac{\kappa^2}{x^2} + \frac{1}{2} \kappa^4 \right] \]
the Gross-Pitaevskii equation becomes:

\[-\frac{1}{x} \frac{d}{dx} \left(x \frac{d\kappa}{dx} \right) + \frac{\kappa}{x^2} + \kappa^3 - \kappa = 0\]

this equation can be solved numerically

Bose-Einstein Condensation (Pethick, Smith)
Energy ϵ per unit length along the axis of the vortex

$$\epsilon = \int_0^{\rho_0} 2\pi \rho d\rho \left[\frac{\hbar^2}{2m} \left(\frac{df}{d\rho} \right)^2 + \frac{\hbar^2}{2m} \frac{f^2}{\rho^2} + \frac{U_0}{2} f^4 \right]$$

to get well defined results only consider the energy of atoms in a finite distance ρ_0 of the vortex with $\rho_0 >> \xi$

energy of a vortex:

$$\epsilon_v = \epsilon - \epsilon_0$$
energy of a uniform gas per unit volume is given by $\bar{n}^2 U_0/2$
with the average density $\bar{n} = \nu/\pi D^2$
the density far from the axis in the vortex state is not equal to
the average density of the uniform system, because the vortex
state has a hole in the density distribution
both states have the same number of particles so the density
of the vortex state far from the axis is larger than the density
in the uniform state
Number of particles per unit length

\[\nu = \int_0^D d\rho \ 2\pi \rho f^2 = \pi D^2 f_0^2 - \int_0^D 2\pi \rho d\rho (f_0^2 - f^2) \]

Energy per unit length of the uniform system

\[\epsilon_0 = \frac{1}{2} \pi D^2 f_0^4 U_0 - f_0^2 U_0 \int_0^D 2\pi \rho d\rho (f_0^2 - f^2) \]
the energy ϵ_v per unit length associated with a vortex:

$$\epsilon_v = \epsilon - \epsilon_0$$

$$\epsilon_v = \int_0^D 2\pi \rho d\rho \left[\frac{\hbar^2}{2m} \left(\frac{df}{d\rho} \right)^2 + \frac{\hbar^2}{2m} \frac{f^2}{\rho^2} + \frac{U_0}{2} \left(f_0^2 - f^2 \right)^2 \right]$$

$$= \frac{\pi \hbar^2}{m} n \int_0^{D/\xi} xd\kappa \left[\left(\frac{d\kappa}{dx} \right) + \frac{\kappa^2}{x^2} + \frac{1}{2} (1 - \kappa^2)^2 \right]$$
Evaluating the result for the numerical solution of the Gross-Pitaevskii equation gives you

\[\epsilon_v = \pi n \frac{\hbar^2}{m} \ln \left(\frac{1.464 D}{\xi} \right) \]
Vortex lattice

if the rotation rate is increased the nature of the equilibrium state is changed

▶ two vortices are rotating around each other
▶ three vortices are ordered in a triangle
▶ more vortices are ordered in a regular array

http://encyclopedia2.thefreedictionary.com/Quantized+vortices
Vortex lattice

- the group of Ketterle described in their paper (Science, (2001)) the observation of vortex lattices in rotating Bose-Einstein Condensates
- they used a laser to rotate the condensate
- they varied:
 - stirring time
 - time to equilibrate
after producing the condensate they switched off the trap after a variable stirring time and did absorption pictures

they observed highly ordered vortex lattices with up to 130 vortices

Observation of Vortex Lattices in Bose-Einstein Condensates, Ketterle
the vortices have a lifetime of several seconds up to 40 s

![Image of vortex lattices](image)

Observation of Vortex Lattices in Bose-Einstein Condensates, Ketterle

the vortices formed a regular lattice after 500 ms
Summary

- velocity in a BEC:
 \[\mathbf{v} = \frac{\hbar}{m} \nabla \phi \]

- energy of a vortex in uniform medium
 \[\epsilon_v = \int_0^D 2\pi \rho d\rho \left[\frac{\hbar^2}{2m} \left(\frac{df}{d\rho} \right)^2 + \frac{\hbar^2}{2m \rho^2} f^2 + \frac{U_0}{2} (f_0^2 - f^2)^2 \right] \]

- at higher rotation rate the number of vortices is increased
Thank you for your attention