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Motivation
Why are we interested in dipolar gases?

1995: Bose-Einstein condensation in diluted gases → nobel
prize 2001 (Cornell, Wieman, Ketterle)

2005: Cr-BEC

better understanding of static and dynamical properties of
weakly interacting Bose gases

strongly correlated systems reached with ultra-cold atoms
and/or molecules

contact-interaction: short-range and isotropic vs. dipole-dipole
interaction: long-range and anisotropic

supersolids
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scattering properties

Normally the interaction potential between two atoms with
distance r is the Van-der-Waals potential (∝ 1

r6
)

For vanishing collision energy only the s-wave scattering plays
an important role

Ultra-cold regime: characterization of the potential by a
pseudopotential with scattering length a and g as the contact
interaction strength

Ucontact(r) =
4π h̄2a

m
δ (r)≡ gδ (r) (1)
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Two-body dipole-dipole interaction

picture from: The physics of dipolar
bosonic quantum gases Rep. Prog.
Phys. 72, 126401 (2009)

Dipole-dipole interaction can be written as:

Udd(r) =
Cdd

4π

(e1 · e2) r2−3(e1r)(e2r)

r5
(2)

Udd(r, r′) =
Cdd

4π

1−3cos2 θ

r3
(3)

Cdd = µ0µ
2

(permanent magnetic dipole moment)

Cdd =
d2

ε0

(permanent electric dipole moment)
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anisotropy

picture from: The physics of dipolar
bosonic quantum gases Rep. Prog.
Phys. 72, 126401 (2009)

Dipole-dipole interaction can be written as:

Udd(r, r′) =
Cdd

4π

1−3cos2 θ

r3
(4)

1−3cos2 θ =−2 (attractive)

1−3cos2 θ = 1 (repulsive)

'magic angle' → dipole-dipole
interaction vanishes

arccos

(
1√
3

)
' 54.7°
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long-range character

Dipole-dipole interaction has two important properties →
anisotropy and long-range character

De�nition

Long-range character: the integral
∫

∞

r0
U(r)dDr diverges at large

distances

long-range character: not only the density but also the total
number of particles have a crucial in�uence on the energy per
particle

U(r) ∝
1

rn

One needs to have D≥ n for considering long-range character,
in case of the dipole-dipole interaction we consider
n, D = 3→ 3≥ 3
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quantum gas with dipole-dipole interaction

Realization of quantum gases with dipole-dipole interactions
by using particles with electric (much higher coupling!) or
magnetic dipole moment
Typical order of magnitude d for an atomic or molecular
system: d ∝ e ·a0, µ ∝ µB

Ratio of magnetic to electric dipolar coupling:

µ0µ2

d2/ε0
∼ α

2 ∼ 1

1372
∼ 10−4 (5)

In order to de�ne the strength of the dipole-dipole interaction,
one use the length:

add ≡
Cddm

12π h̄2
(6)

Ratio of the dipolar length to the s-wave scattering length:

εdd ≡
add
a

=
Cdd

3g
(7)
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Feshbach resonances

essential tool to control the interaction between atoms in
ultra-cold quantum gases
two atoms colliding at energy E resonantly couple to a
molecular bound state with EC

Tuning of the scattering length a

pictures from: Feshbach resonances in ultracold gases, Rev. Mod. Phys. 82, 1225-1286 (2010) and The

physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)
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gases used for studying dipole-dipole interaction

the most famous example: 52Cr

In the last few years, new systems with dipolar interaction
were achieved, e.g.168Er, 164Dy and quantum degenerate
dipolar Fermi gases

add ≡
Cddm

12π h̄2

εdd ≡
add
a

=
Cdd

3g

Species Dipole moment

52Cr 6µB

7Li 1 µB

87Rb 1 µB

164Dy 10 µB

168Er 7 µB
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Gross-Pitaevskii equation

i h̄
∂ψ

∂ t
=− h̄2

2m
∆ψ +

(
Vtr +

g

2
|ψ|2

)
ψ (8)

extension of the Schrödinger equation by the interaction term

1 kinetic energy

2 external potential

3 interaction term between particles
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time-dependent Gross-Pitaevskii equation

second quantized Hamiltonian in dipole Bose gas:

Ĥ =
∫
drψ̂†(r)

[
− h̄2

2m
∇
2−µ

]
ψ̂(r) (9)

+
1

2

∫
drdr′ψ̂†(r)ψ̂

†(r′)U(r− r′)ψ̂(r′)ψ̂(r) (10)

replacement of the short-range interaction by the pseudopotential:

Ĥ = drψ̂†(r)

[
− h̄2

2m
∇
2−µ +

1

2
g |ψ̂(r)|2

]
ψ̂(r) (11)

+
1

2

∫
drdr′ψ̂†(r)ψ̂

†(r′)Ud (r− r′)ψ̂(r′)ψ̂(r) (12)
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time-dependent Gross-Pitaevskii equation

trapped dipolar Bose gas by the Hamiltonian:

Ĥ = drψ̂†(r)

[
− h̄2

2m
∇
2−µ +Vtr(r) +

1

2
g |ψ̂(r)|2

]
ψ̂(r) (13)

+
1

2

∫
drdr′ψ̂†(r)ψ̂

†(r′)Ud (r− r′)ψ̂(r′)ψ̂(r) (14)

with the trapping potential Vtr(r) = m

2

[
ω2

ρ

(
x2 + y2

)
+ ω2

z z
2
]

mean-�eld approximation

Gross-Pitaevskii equation (GPE)

i h̄
∂

∂ t
ψ(r, t) =

[
− h̄2

2m
∇
2−µ +Vtr(r) +

g

2
|ψ(r, t)|2 (15)

+
Cdd

8π

∫
dr′

1−3cos2 θ

|r− r′|3
∣∣ψ(r′, t)

∣∣2]ψ(r)(16)
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time-dependent Gross-Pitaevskii equation

trapped dipolar Bose gas by the Hamiltonian:
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2m
∇
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2
g |ψ̂(r)|2

]
ψ̂(r) (13)

+
1

2

∫
drdr′ψ̂†(r)ψ̂

†(r′)Ud (r− r′)ψ̂(r′)ψ̂(r) (14)

with the trapping potential Vtr(r) = m

2

[
ω2

ρ

(
x2 + y2

)
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z z
2
]

mean-�eld approximation

Gross-Pitaevskii equation (GPE)

i h̄
∂

∂ t
ψ(r, t) =

[
− h̄2

2m
∇
2−µ +Vtr(r) +

g
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|ψ(r, t)|2 (15)
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Cdd
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1−3cos2 θ
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∣∣ψ(r′, t)
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stationary non-local Gross-Pitaevskii equation

µψ0(r) =

[
− h̄2

2m
∇
2 +

m

2

(
ω

2
ρ ρ

2 + ω
2
z z

2
)

(17)

+
g

2
|ψ0(r, t)|+ Cdd

8π

∫
dr′

1−3cos2 θ

|r− r′|3
∣∣ψ0(r′)

∣∣2]ψ(r) (18)

with ρ2 = x2 + y2

Several numerical and approximate methods for the solution of
the stationary GPE.

1 Gaussian ansatz
2 Thomas-Fermi approximation (neglection of the kinetic energy)
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Gaussian ansatz

Gaussian variational ansatz

ψ0(r) =

√
N

π3/2σ2
ρ σza

3
ho

exp

(
− 1

2a2
ho

(
r2

σ2
ρ

+
z2

σ2
z

))
(19)

with the harmonic oscillator length aho =
√

h̄

mω

picture from: www.hanebeck.at
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Gaussian ansatz

Together with the Hamiltonian of the trapped dipolar Bose gas, we
obtain for the energy:

E (σρ , σz) = Ekin +Etrap +Eint

Ekin =
Nh̄ω̄

4

(
2

σ2
ρ

+
1

σ2
z

)

Etrap =
Nh̄ω̄

4λ 2/3

(
2σ

2
ρ + λ

2
σ
2
z

)
Eint =

N2h̄ω̄add√
2πaho

1

σ2
ρ σz

(
a

add
− f (κ)

)
with the harmonic oscillator length aho =

√
h̄

mω̄
corresponding to

the trap frequency ω̄ =
(

ω2
ρ ωz

)1/3
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Gaussian ansatz

f (κ) =
1+2κ2

1−κ2
−
3κ2artanh

(√
1−κ2

)
(1−κ2)3/2

with κ =
σρ

σz

picture from: The physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)
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Thomas-Fermi approximation

In this case we neglect the kinetic energy and the GPE reads:

µψ0(r) =
[m
2

(
ω

2
ρ ρ

2 + ω
2
z z

2
)

+
g

2
|ψ(r, t)|2

+
Cdd

8π

∫
dr′

1−3cos2 θ

|r− r′|3
∣∣ψ0(r′)

∣∣2]ψ0(r)

ansatz for the density pro�le:

ψ
2
0 (r) = n(r) = n0

(
1− ρ2

R2
x

− z2

R2
z

)
and the chemical potential:

µ = gn0 [1−3εddf (κ)]
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Thomas-Fermi approximation

case 1: Rz > Rx (prolate) in spheroidal coordinates

φ(ξ ,η ,ϕ) =
R2
z −R2

x

2

[∫
ξ

1
dξ
′
∫ 1

−1
dη
′ (

ξ
′2−η

′2)n(ξ ′,η ′)
×

∞

∑
l=0

(2l +1)Pl (η)Pl (η
′)Ql (ξ )Pl (ξ

′)

+
∫ 1/
√

1−R2
x
/R2

z

ξ

dξ
′
∫ 1

−1
dη
′ (

ξ
′2−η

′2)n(ξ
′,η ′)

×
∞

∑
l=0

(2l +1)Pl (η)Pl (η
′)Pl (ξ )Ql (ξ

′)

]
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Thomas-Fermi approximation

case 1: Rz > Rx (prolate) in cartesian coordinates

φ(r) =
n0R

2
x

192(1−κ2)2
{
24Ξ(1−κ

2)2 +48(1−κ
2)(2−Ξ)

×
(

z

Rz

)2

−24(1−κ
2)(2−κ

2Ξ)

(
ρ

Rx

)2

+8(2κ
2−8+3Ξ)

(
z

Rz

)4

+3[2(2−5κ
2) +3κ

4Ξ]

×
(

ρ

Rx

)4

+24(2+4κ
2−3κ

2Ξ)

(
ρ

Rx

)2(
z

Rz

)2
}
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Thomas-Fermi approximation

case 2: Rx > Rz (oblate) in spheroidal coordinates

φ(ξ ,η ,ϕ) =
R2
x −R2

z

2

[∫
ξ

0
dξ
′
∫ 1

−1
dη
′ (

ξ
′2 + η

′2)n(ξ ′,η ′)
× i

∞

∑
l=0

(2l +1)Pl (η)Pl (η
′)Ql (iξ )Pl (iξ

′)

+
∫ 1/
√

R2
x
/R2

z
−1

ξ

dξ
′
∫ 1

−1
dη
′ (

ξ
′2 + η

′2)n(ξ
′,η ′)

×i
∞

∑
l=0

(2l +1)Pl (η)Pl (η
′)Pl (iξ )Ql (iξ

′)

]
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instabilities

picture from: The physics of dipolar
bosonic quantum gases Rep. Prog.
Phys. 72, 126401 (2009)

elongation of the condensate along the
polarization axis

energetically favorable for the cloud to
become elongated along the
polarization axis

(a) without dipole-dipole interaction
(b) saddle-like mean-�eld dipolar potential
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scattering properties

Determination of inelastic scattering properties

Elementary excitations in dipolar condensates can be described
in a better way by using the Fourier transform of the
dipole-dipole interaction:

Ũdd(k) = Cdd

(
cos2α− 1

3

)
(20)

by using the following Fourier transform

Ũdd(k) =
∫
Udd(r)e−ikrd3r
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instabilities

Partially attractive character of the dipole-dipole interaction
leads to a stability problem of the dipolar BEC excitation

spectrum of a homogeneous dipolar condensate:

ω = k

√
n0

m

[
g +

Cdd

3
(3cos2α−1)

]
+
h̄2k2

4m2

together with the de�nition

εdd ≡
add
a

=
Cdd

3g

metastable for εdd > 1

most unstable situation for α = π/2
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instabilities

picture from: The physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)

ω = k

√
n0

m

[
g +

Cdd

3
(3cos2α−1)

]
+
h̄2k2

4m2
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Thomas-Fermi regime

Another approach with respect to dipolar gases: Thomas-Fermi
approximation (neglection of quantum pressure e�ects)

picture from: The physics of dipolar
bosonic quantum gases Rep. Prog.
Phys. 72, 126401 (2009)

0< κ < 1 condensate is prolate

κ > 1 condensate is oblate

trap aspect ratio:

λ =
ωz

ωx

0< λ < 1 trap is prolate

λ > 1 trap is oblate

κ(εdd = 0) = λ
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instabilities, Gaussian ansatz

stabilization by trapping a BEC for small atom numbers

N |a|
aho
≤ 0.58

aho =
√
h̄/mω

For BEC with dipolar interactions, one can con�ne the atoms
more strongly in the direction of the dipoles alignment.

(a) prolate (cigar-shaped) trap, unstable condensate
(b) oblate (pancake-shaped) trap, stable condensate

picture from: The physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)
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instabilities

variational method to get an idea of the value of acrit(λ ) by using a
Gaussian ansatz � so one can get an expression for the energy:

E (σρ , σz) = Ekin +Etrap +Eint (21)

Ekin =
Nh̄ω̄

4

(
2

σ2
ρ

+
1

σ2
z

)

Etrap =
Nh̄ω̄

4λ 2/3

(
2σ

2
ρ + λ

2
σ
2
z

)
Eint =

N2h̄ω̄add√
2πaho

1

σ2
ρ σz

(
a

add
− f (κ)

)
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instabilities

minimization of the energy equation with respect to σρ and σz

leads then to the critical value acrit(λ ) (stability threshold)

For N = 20000, λ = 10 and di�erent values for a, we get a
contour plot of E as a function of σρ and σz from the Gaussian
ansatz. In this case, the critical value reads acrit(10) =−8.5a0

picture from: The physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)
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instabilities

Stability diagram of a dipolar condensate in the plane (dots and
errorbars are experimental results):

picture from: The physics of dipolar bosonic quantum gases Rep. Prog. Phys. 72, 126401 (2009)
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excitations of the system

Instabilities in dipolar gases due to excitations in the system
(even in the pancake traps)

gas feels the 3D nature of the dipolar interactions (e.g. their
partially attracticve character)

+++

'roton-maxon' instability

in�nite pancake trap with dipoles along z perpendicular to the
trap plane

roton-maxon e�ects occurs in the Thomas-Fermi limit in the
z-direction

momentum dependence of the dipole-dipole interactions
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excitations of the system

picture from: The physics of dipolar
bosonic quantum gases Rep. Prog.
Phys. 72, 126401 (2009)

with increasing g the 'roton gap' decreases
and vanishes for a critical particle density

Roton instability in the Thomas-Fermi regime due to
experiences of the system with the 3D partially attractive
nature of dipolar forces

Attractive contact interactions leads to roton instability
already in the quasi-2D regime
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summary and outlook

New e�ects by studying the dipole-dipole interaction due to
anisotropy and long-range character

Gross-Pitaevskii equation for calculations, Gaussian ansatz and
Thomas-Fermi approximation

Instabilities, form of the condensate, minimization of the
energy to get acrit(λ ), roton-maxon instability

Beside BEC, atomic degenerate Fermi gases (Fermi
super�uidity in the weak interaction limit by BCS theory)

BEC-BCS crossover in the limit of strong correlations
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