Motivation	Optical lattices	Bose Hubbard model	Phase transition - Experiments	Summary

Bose Hubbard model

Andreas Gauß

University of Stuttgart Germany

Hauptseminar, 2013

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments	Summary
A 11				

Outline

Optical lattices

- Laser traps
- O Standing light waves
- operiodic potentials

Bose hubbard model

- Simple model to describe particles in periodic potentials
- SF MI phase transition
- SF MI phase transition
- Summary

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary

Outline

Optical lattices

- Laser traps
- O Standing light waves
- operiodic potentials

Bose hubbard model

- Simple model to describe particles in periodic potentials
- SF MI phase transition
- SF MI phase transition

Summary

From http://plentifulmarketing.com .

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Outline				

Optical lattices

- Laser traps
- O Standing light waves
- operiodic potentials

Bose hubbard model

- Simple model to describe particles in periodic potentials
- SF MI phase transition
- SF MI phase transition
- Summary

From: NATURE | Vol 467 | 2 September 2010 .

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summ
Motivat	ion			

IVIOTIVATION Why are we interessted in the Bose Hubbard model?

- High temperature superconductor
- Bi₂Sr₂Ca₂Cu₃O₁₀(BSCCO) (110 K)
- Principle not yet undertsood

From http://en.wikipedia.org . Adapted from http://www.profitpath.com .

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Simplify				

Break the problem down to make it simpler

 Rebuild the solid state using optical lattices

•
$$d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \,\mathrm{m}$$

• $d_{lat} \approx 10^{-10} \,\mathrm{m} \begin{pmatrix} \circ \\ A \end{pmatrix}$

- Investigate superconductivity
- Explain the superfluid -Mott-Insulator transition

From NATURE Vol 453 5 June 2008 .

Motivation	Optical lattices	Bose Hubbard model	Phase transition - Experiments 000	Summary
Outline				

2 Bose Hubbard model

Operation - Experiments

 Motivation
 Optical lattices •00000
 Bose Hubbard model
 Phase transition - Experiments
 Summary

Particle confinement

Is a set of the se

- Ostanding light wave
- $d = \frac{\lambda_{Laser}}{2}$
- O 2D, 1D and 0D confinement
- (a) $d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \, \mathrm{m}$

• $d_{lat} \approx 10^{-10} \,\mathrm{m} \left(\stackrel{\circ}{A} \right)$

From NATURE Vol 453 5 June 2008 .

Motivation	Optical lattices ●00000	Bose Hubbard model	Phase transition - Experiments 000	Summary
5 1	C			

Particle confinement

- Focused laser beam →potential well
- Standing light wave
- $\bullet \ d = \frac{\lambda_{Laser}}{2}$
- O 2D, 1D and 0D confinement
- (a) $d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \,\mathrm{m}$
- $d_{lat} \approx 10^{-10} \, \mathrm{m} \, \left(\overset{\circ}{A} \right)$

Adapted from arXiv:physics/9902072v1 .

IVIOTIVATIC	h n

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

Particle confinement

- I Focused laser beam →potential well
- Ostanding light wave
- $\bullet \ d = \frac{\lambda_{Laser}}{2}$
- 2D, 1D and 0D confinement
- $d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \, \mathrm{m}$
- $d_{lat} \approx 10^{-10} \,\mathrm{m} \left(\stackrel{\circ}{A} \right)$

From NATURE Vol 453 5 June 2008 .

5 4					
N/I	ot	IV/	at	С	n

Optical lattices •00000 Bose Hubbard model

Phase transition - Experiments 000 Summary

Particle confinement

- Is Focused laser beam →potential well
- Ostanding light wave
- $\bullet \ d = \frac{\lambda_{Laser}}{2}$
- 2D, 1D and 0D confinement
- $d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \,\mathrm{m}$
- $d_{lat} \approx 10^{-10} \,\mathrm{m} \left(\stackrel{\circ}{A} \right)$

From NATURE Vol 453 5 June 2008 .

Mo	tivation	Optical lattices ●00000	Bose Hubba 000000000	rd model 00000	Phase transit 000	ion – Experiments	Summary
P	article c	onfinement					
				a		11	
•	Focused	laser heam →r	otential		,		
	well		Jocentiar				
2	Standing	light wave		1		// //	
3	$d = \frac{\lambda_{Lase}}{2}$	<u>r</u>				1	Y
4	2D. 1D a	and 0D confine	ment	b 1			

 $\begin{array}{l} \bullet \quad d_{lat} \approx \frac{\lambda_{Laser}}{2} \approx 10^{-6} \, \mathrm{m} \\ \bullet \quad d_{lat} \approx 10^{-10} \, \mathrm{m} \, \begin{pmatrix} \circ \\ A \end{pmatrix} \end{array}$

From Nature Physics 1, 23 - 30 (2005) .

Motivation	Optical lattices 0●0000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Light fo	rces			

- Use the principle of the AC Stark shift
- Electric dipole moment is induced in the atom
- Energy shift ΔE

$$\Delta E = U_{dip} = -\frac{1}{2} \langle \boldsymbol{\rho} \boldsymbol{E} \rangle = -\frac{1}{2} \Re(\alpha(\omega)) \left\langle E^{2}(t) \right\rangle$$
$$I = 2\varepsilon_{0} c \cdot \left| \tilde{E} \right|^{2}$$
$$U_{dip} = -\frac{1}{2\varepsilon_{0} c} \Re(\alpha(\omega)) \cdot I$$

Dynamic polarization

$$\omega = \omega_0 + \Delta$$

Potential $U_{dip}\left(\mathbf{r}\right) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I\left(\mathbf{r}\right)$

Black Board Calculation |

Motivation	Optical lattices 000●00	Bose Hubbard model	Phase transition - Experiments 000	Summary
Light fo	rces			

$$U_{dip} = -\frac{3\pi c^2}{2\omega_0^3} \left(\frac{\Gamma}{\omega_0 - \omega} + \underbrace{\frac{\Gamma}{\omega_0 + \omega}}_{\text{neglect}} \right) I(x)$$

Rotating-wave approximation:

- Resonances at $\pm \omega_0$
- Tune laser near $\omega_0 o \Delta \equiv \omega \omega_0 o |\Delta| \ll \omega_0$
- $\Delta \ll \omega + \omega_0$

Proof.

$$U_{dip} = \frac{3\pi c^2}{2\omega_0^3} \cdot \frac{\Gamma}{\Delta} \cdot I(x) \propto \frac{\Gamma}{\Delta} \cdot I(x)$$

Motivation	Optical lattices 0000€0	Bose Hubbard model	Phase transition - Experiments 000	Summary
Detuning				

$$U_{dip} = \frac{3\pi c^2}{2\omega_0^3} \cdot \frac{\Gamma}{\Delta} \cdot I(x) \propto \frac{\Gamma}{\Delta} \cdot I(x)$$
$$\Gamma_{sc} = \frac{3\pi c^2}{2\hbar\omega_0^3} \cdot \left(\frac{\Gamma}{\Delta}\right)^2 \cdot I(x) \propto \left(\frac{\Gamma}{\Delta}\right)^2 \cdot I(x)$$

• Below atomic resonance ("red" shifted) ($\omega < \omega_0$)

•
$$\Delta < 0
ightarrow U_{dip} < 0$$

• attractive potential

Experimental issues

- Potential $\propto \frac{l}{\Delta}$
- Scattering rate $\propto \frac{1}{\Delta^2}$

From NATURE Vol 453 5 June 2008

Fact

Use for optical traps (at a certain potential depth)

- large detunings
- high intensities

Summary

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
<u> </u>				

Outline

2 Bose Hubbard model

3 Phase transition - Experiments

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

Fermi Hubbard model (FHM)

- Proposed 1963 by John Hubbard
- Describe e⁻ in transition metals
- Investigate magnetic properties

From: theor jinr ru

Optical lattices

Phase transition - Experiments

Summary

Bose Hubbard model (BHM)

- Cooper pairs (CP) -Josephson tunneling
- He atoms moving on substrates
- Ultracold atoms in optical lattices
- SF-MI phase transition
- CP/e⁻ transition is neglected

From: theor jinr ru .

Optical lattices

Phase transition - Experiments

Summary

SF and MI Introduction

Atoms freely move around in an optical lattice.

(b) Mott-insulator state

Atoms localize at lattice sites because of inter-atomic interactions.

Adapted from: www.ntt-review.jp

• U=0: Superfluid phase

$$|\Psi_{\textit{SF}}\rangle_{(\textit{U}=0)} = \frac{1}{\sqrt{N!}} \left(\frac{1}{\sqrt{N_L}} \sum_{i=1}^{N_L} \hat{b}_i^\dagger\right)^N |0\rangle$$

- phase coherence
- J=0: Mott insulating phase

$$|\Psi_{MI}\rangle_{(J=0)} \propto \prod_{i=1}^{N_L} \left(\hat{b}_i^{\dagger}\right)^n |0\rangle$$

- no phase coherence
- perfect correlation in *n*

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
-				

Further plan What we want to do within this part.

Motivation Optical lattices Bose Hubbard model Phase transition - Experiments Summary 000000 000000000 <

Bose Hubbard Hamiltonian

According to a tight binding model the Hamiltonian is

$$H_{B} = -J \sum_{\langle ij \rangle} \left(\hat{b}_{i}^{\dagger} \hat{b}_{j} + \hat{b}_{j}^{\dagger} \hat{b}_{i} \right) - \mu \sum_{i} \hat{n}_{bi} + \frac{U}{2} \sum_{i} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right)$$
$$\left[\hat{b}_{i}, \hat{b}_{j}^{\dagger} \right] = \delta_{ij}$$

- J: Allows hopping of bosons / Josephson tunneling
- µ: Chemical potential ≡ number of bosons
- U > 0: Repulsive interaction

From D. Jaksch, P. Zoller / Annals of Physics 315 (2005) 52–79 .

Motivation	Optical lattices 000000	Bose Hubbard model ○○○○○●○○○○○○○	Phase transition - Experiments 000	Summary
Mean-fi	eld theory			

Now: Have a look on a single lattice site !

Model the properties of H_B by the best possible sum of single-site hamiltonians:

$$H_{MF} = \sum_{i} \left(-\mu \hat{n}_{bi} + \frac{U}{2} \hat{n}_{bi} (\hat{n}_{bi} - 1) - \Psi_B^* \hat{b}_i - \Psi_B \hat{b}_i^\dagger \right)$$

- Ψ_B : variational parameter (complex)
- μ: Chemical potential
- U > 0: Repulsive interaction

Black Board Calculation II

Motivation	Optical lattices 000000	Bose Hubbard model ○○○○○○●○○○○○	Phase transition - Experiments 000	Summary
Phase +	ransition			

$$H_{B} = -J \sum_{\langle ij \rangle} \left(\hat{b}_{i}^{\dagger} \hat{b}_{j} + \hat{b}_{j}^{\dagger} \hat{b}_{i} \right) - \mu \sum_{i} \hat{n}_{bi} + \frac{U}{2} \sum_{i} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right)$$

Set $J = 0 \rightarrow$ single-site Hamiltonian becomes

$$\begin{aligned} H_{B,i} &= -\mu \,\hat{n}_{bi} + \frac{U}{2} \,\hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right) = \frac{U}{2} \left[\hat{n}_{bi} \left(\hat{n}_{bi} - 1 - 2\frac{\mu}{U} \right) \right] \\ E_0 &= \langle n | H_{B,i} | n \rangle = \frac{U}{2} \left[n \left(n - 1 - 2\frac{\mu}{U} \right) \right] \\ n &= \text{integer} \left(\frac{\mu}{U} + \frac{1}{2} \right) \end{aligned}$$

Motivation	Optical lattices 000000	Bose Hubbard model ○○○○○○○●○○○○○	Phase transition - Experiments 000	Summary
DI .				

Motivation	Optical lattices 000000	Bose Hubbard model ○○○○○○○○○●○○○○	Phase transition - Experiments 000	Summary
DI.				

Phase transition

Corollary

Mott insulating phase is incompressible !

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
DI .				

Phase transition

Expand E_0 in powers of Ψ_B

$$E_{0} = E_{00} + q |\Psi_{B}|^{1} + r |\Psi_{B}|^{2} + s |\Psi_{B}|^{3} + \mathscr{O}\left(|\Psi_{B}|^{4}\right)$$

Landau: Symmetry of phase transition (second order) leads to

$$E_0 = E_{00} + r \left| \Psi_B \right|^2 + \mathscr{O}\left(\left| \Psi_B \right|^4 \right)$$

Use pertubation theory till second order and identify r

$$r=ZJ\cdot\left(1-ZJx_{0}\right)$$

$$x_{0}(\mu/\nu) = \frac{n(\mu/\nu) + 1}{Un(\mu/\nu) - \mu} + \frac{n(\mu/\nu)}{\mu - u(n(\mu/\nu) - 1)}$$
$$= -\frac{\mu + U}{(Un - \mu)(U(n - 1) - \mu)}$$

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

Phase transition

$$H_{MF.i} = -\mu \hat{n} + \frac{U}{2} \hat{n} (\hat{n} - 1) - ZJ \left(\Psi_B^* \hat{b} + \Psi_B \hat{b}^{\dagger} - \Psi_B^2 \right)$$
$$\hat{V} = -JZ \Psi_B \left(\hat{b} + \hat{b}^{\dagger} \right)$$

$$E_n^{(1)} = \left\langle n | \hat{V} | n \right\rangle$$

= $-JZ\Psi_B \left\langle n | \hat{b} | n \right\rangle - JZ\Psi_B \left\langle n | \hat{b}^{\dagger} | n \right\rangle$
= $-JZ\Psi_B \sqrt{n} \left\langle n | n-1 \right\rangle - JZ\Psi_B \sqrt{n+1} \left\langle n | n+1 \right\rangle$
= 0

$$\Psi_{n}^{(1)} = -JZ\Psi_{B}\sum_{m \neq n} |m\rangle \cdot \frac{\left\langle m|\hat{V}|m\right\rangle}{E_{n} - E_{m}}$$
$$= -JZ\Psi_{B}\left(\frac{\sqrt{n}}{E_{n} - E_{n-1}}|n-1\rangle + \frac{\sqrt{n+1}}{E_{n} - E_{n+1}}|n+1\rangle\right)$$

Motivation	Optical lattices 000000	Bose Hubbard model ○○○○○○○○○○○○●○	Phase transition - Experiments 000	Summary
Phase t	ransition			

$$E_n^{(2)} = \left\langle n | \hat{V} | \Psi_n^{(1)} \right\rangle$$

= $J^2 Z^2 \Psi_B^2 \left(\frac{n}{E_n - E_{n-1}} + \frac{n+1}{E_n - E_{n+1}} \right)$
 $E_n^{(0)} = J Z \Psi_B^2 + \frac{U}{2} n (n-1) - \mu n$
 $E_n - E_{n-1} = U (n-1) - \mu$
 $E_n - E_{n+1} = \mu - Un$
 $E_n^{(2)} = -\frac{U + \mu}{(\mu - Un)(U(n-1) - \mu)} J^2 Z^2 \Psi_B^2$
 $E_0 = \frac{U}{2} n (n-1) - \mu n + \left(J Z - \frac{U + \mu}{(\mu - Un)(U(n-1) - \mu)} J^2 Z^2 \right) \Psi_B^2$

IVIOTIVATIC	h n

Optical lattices

Bose Hubbard model ○○○○○○○○○○ Phase transition - Experiments

Summary

Phase transition

$$r = ZJ \cdot \underbrace{\left(1 - ZJx_0\right)}_{=0} = 0$$

Corollary
$$\frac{ZJ}{U} = \frac{\left(n - \frac{\mu}{U}\right)\left(1 - n + \frac{\mu}{U}\right)}{1 + \frac{\mu}{U}}$$

Critical point (n = 1):

$$\frac{ZJ}{U} \approx 0.172 \dots \leftrightarrow \frac{U}{JZ} \approx 5.8$$

5 4						
N/I	ot	11/	а	t	С	n

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

Phase transition

Atoms freely move around in an optical lattice.

(b) Mott-insulator state

Atoms localize at lattice sites because of inter-atomic interactions.

Adapted from: www.ntt-review.jp .

$$r = ZJ \cdot \underbrace{\left(1 - ZJx_0\right)}_{=0} = 0$$

Corollary
$$\frac{ZJ}{U} = \frac{\left(n - \frac{\mu}{U}\right)\left(1 - n + \frac{\mu}{U}\right)}{1 + \frac{\mu}{U}}$$

Critical point (n = 1):

$$\frac{ZJ}{U}\approx 0.172\cdots\leftrightarrow \frac{U}{JZ}\approx 5.8$$

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments	Summary
Outline				

Quantum Phase transition

- Expand 15 ms (ToF)
- 3 Take image
- Oherence/Decoherence
- $|\Psi(x)\rangle \propto \cos\left(\frac{\pi}{d_{lat}} \cdot x\right)$
- $\bigcirc |\Psi(k)\rangle \propto \delta\left(k \pm \frac{\pi}{d_{lat}}\right)$

From NATURE Vol 453 5 June 2008 .

 Motivation
 Optical lattices
 Bose Hubbard model
 Phase transition - Experiments
 Summary

 000000
 00000000000
 00

Quantum Phase transition

- Optical lattice with $d_{lat} = 426 \, \text{nm}$
- Expand 15 ms (ToF)
- Take image
- Oherence/Decoherence
- $\bigcirc |\Psi(k)\rangle \propto \delta\left(k \pm \frac{\pi}{d_{lat}}\right)$

From: NATURE | VOL 415 | 3 JANUARY 2002

Quantum Phase transition

- Optical lattice with $d_{lat} = 426 \, \text{nm}$
- Expand 15 ms (ToF)
- Take image
- Oherence/Decoherence
- **5** $|\Psi(x)\rangle \propto \cos\left(\frac{\pi}{d_{lat}} \cdot x\right)$
- $\mathbf{O} |\Psi(k)\rangle \propto \delta\left(k \pm \frac{\pi}{d_{lat}}\right)$

From NATURE Vol 453 5 June 2008 .

Summary

Motivation	Optical lattices	Bose Hubbard model	Phase transition - Experiments	Summary
			000	

Quantum Phase transition - Experiment |

From: NATURE | VOL 415 | 3 JANUARY 2002 .

Example

SF-MI transition (experiment): $U/J = 36|_{Z=6} \rightarrow U/JZ = 6$ SF-MI transition (theory): U/JZ = 5.8

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

From: NATURE | Vol 467 | 2 September 2010 .

- BEC in 2D optical lattice
- high-resolution fluorescence imaging
- very strong optical particle confinement
- only Mott insulating phases visible
- occupation mod2

From D. Jaksch, P. Zoller / Annals of Physics 315

- BEC in 2D optical lattice
- high-resolution fluorescence imaging
- very strong optical particle confinement
- only Mott insulating phases visible
- occupation mod2

From: Rev.Mod.Phys., Vol.80, No.3, July-Sept 2008 . (2005) 52-79 .

- BEC in 2D optical lattice
- high-resolution fluorescence imaging
- very strong optical particle confinement
- only Mott insulating phases visible
- occupation mod2

Motivation Optical lattices Bose Hubbard model Phase transition - Experiments Summary 000000 00000000000 00€

- BEC in 2D optical lattice
- high-resolution fluorescence imaging
- very strong optical particle confinement
- only Mott insulating phases visible
- occupation mod2

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

From: NATURE | Vol 467 | 2 September 2010 .

- BEC in 2D optical lattice
- high-resolution fluorescence imaging
- very strong optical particle confinement
- only Mott insulating phases visible
- occupation mod2

Optical lattices

Bose Hubbard model

Phase transition - Experiments

Summary

From: NATURE | Vol 467 | 2 September 2010 .

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Outline				

Optical lattices

2 Bose Hubbard model

Operation - Experiments

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Summary	/			

Summary What we have learned today

Optical lattice:

$$U_{dip}\left(\boldsymbol{r}\right) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I\left(\boldsymbol{r}\right)$$

2 Bose Hubbard Hamiltonian

$$H_{B} = -J \sum_{\langle ij \rangle} \left(\hat{b}_{i}^{\dagger} \hat{b}_{j} + \hat{b}_{j}^{\dagger} \hat{b}_{i} \right) - \mu \sum_{i} \hat{n}_{bi} + \frac{U}{2} \sum_{i} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right)$$

$$H_{MF} = \sum_{i} \left(-\mu \hat{n}_{bi} + \frac{U}{2} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right) - \Psi_B^* \hat{b}_i - \Psi_B \hat{b}_i^\dagger \right)$$

Operation of the second sec

$$\frac{ZJ}{U} = \frac{\left(n - \frac{\mu}{U}\right)\left(1 - n + \frac{\mu}{U}\right)}{1 + \frac{\mu}{U}}$$

Today experimentally proofen

From NATURE Vol 453 5 June 2008 .

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Summar What we have	y ve learned todav			

Optical lattice:

$$U_{dip}\left(\boldsymbol{r}\right) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I\left(\boldsymbol{r}\right)$$

Ø Bose Hubbard Hamiltonian

$$H_{B} = -J \sum_{\langle ij \rangle} \left(\hat{b}_{j}^{\dagger} \hat{b}_{j} + \hat{b}_{j}^{\dagger} \hat{b}_{i} \right) - \mu \sum_{i} \hat{n}_{bi} + \frac{U}{2} \sum_{i} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right)$$

$$H_{MF} = \sum_{i} \left(-\mu \hat{n}_{bi} + \frac{U}{2} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right) - \Psi_{B}^{*} \hat{b}_{i} - \Psi_{B} \hat{b}_{i}^{\dagger} \right)$$

Operation of the second sec

$$\frac{ZJ}{U} = \frac{\left(n - \frac{\mu}{U}\right)\left(1 - n + \frac{\mu}{U}\right)}{1 + \frac{\mu}{U}}$$

Today experimentally proofen

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Summary	y			

Optical lattice:

What we have learned today

$$U_{dip}\left(\mathbf{r}\right) = \frac{3\pi c^2}{2\omega_0^3} \frac{\Gamma}{\Delta} I\left(\mathbf{r}\right)$$

Ø Bose Hubbard Hamiltonian

$$H_{B} = -J \sum_{\langle ij \rangle} \left(\hat{b}_{i}^{\dagger} \hat{b}_{j} + \hat{b}_{j}^{\dagger} \hat{b}_{i} \right) - \mu \sum_{i} \hat{n}_{bi} + \frac{U}{2} \sum_{i} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right)$$

$$H_{MF} = \sum_{i} \left(-\mu \hat{n}_{bi} + \frac{U}{2} \hat{n}_{bi} \left(\hat{n}_{bi} - 1 \right) - \Psi_{B}^{*} \hat{b}_{i} - \Psi_{B} \hat{b}_{i}^{\dagger} \right)$$

Operation of the second sec

$$\frac{ZJ}{U} = \frac{\left(n - \frac{\mu}{U}\right)\left(1 - n + \frac{\mu}{U}\right)}{1 + \frac{\mu}{U}}$$

Today experimentally proofen

From: NATURE | VOL 415 | 3 JANUARY 2002

Motivation	Optical lattices 000000	Bose Hubbard model	Phase transition - Experiments 000	Summary
Thank y	ou!			

Thank you for your attention!

Appendix •

For Further Reading I