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Introduction

The Bose Hubbard model is a simple theoret-
ical model to describe the physics of interacting
bosons, confined on a (mostly optical) lattice.
It was introduced in 1963 by John Hubbard.
It can be used in solid state physics to un-
derstand the phenomena of superconductivity
qualitatively.
Within this seminar talk we first describe

the optical lattices which are essential for
the further understanding and experimental
realization. Then the Bose Hubbard model
will be introduced and the phase transition
from a superfluid phase into a Mott insulating
phase is derived. Some experimental results are
summarized within the last section.

Motivation

For a given problem, the first aim of the-
oretical physicists is to simplify a complex
system into one, describable very easily, but
representing the physics in a correct manner.
Therefore, bosons inside the solid state (e.g.
cooper pairs) will be represented by particles
inside an optical lattice. The big advantage
of this system rebuilding is the larger scale
of the new system. It is at least three orders
of magnitude bigger, because the new lattice
constant is given by the laser wavelength λ:
1) optical: dlat ≈ λLaser

2 ≈ 10−6 m
2) solid state: dlat ≈ 10−10 m

(
Å
)

Now have a look on figure 1. The confinement
potential of the original solid state is repre-
sented by the laser potential, created by a
standing wave with the depth V0. Thus, a three
dimensional lattice can be described by

V (x, y, z) =
∑
i

V0 sin2 (ki) .

Figure 1. The solid state of matter is rebuilt using an
optical lattice. The dimensions are at least three orders
of magnitude larger.

The behavior of the particles, confined inside
the optical lattice is described by the Boson
Hubbard model.

Optical lattice

First we have a look on the confinement
potential of an optical lattice. This can be
calculated by

∆E = Udip = −
1
2
〈pE〉 = −

1
2
< (α (ω))

〈
E2 (t)

〉
where p denotes the electric dipole moment
and E the electric field. The pre-factor 1/2 is
used, because the dipole moment is an induced
one. This can be rewritten as

Udip = −
1

2ε0c
< (α (ω)) · I ,

and connected to the laser parameters with

Udip = 3πc2

2ω3
0
· Γ

∆ · I (x) ∝ Γ
∆ · I (x) ,

where Γ denotes the resonance damping (spon-
taneously photon decay rate of excited state),
∆ ≡ ω−ω0 the laser detuning, ω0 the 2-niveau
resonance and I the laser intensity. Figure 2 is
an graphical illustration of these parameters.

Figure 2. 2-niveau system with a ground state |g〉 and
an excited state |e〉. Resonant frequency (red), laser
frequency (green) and resonance damping (blue) are
shown.

The scattering rate (spontaneous reemission)
can be calculated to

Γsc = 3πc2

2~ω3
0
·
(

Γ
∆

)2
· I (x) ∝

(
Γ
∆

)2
· I (x) .

A comparison of the dependencies in Γ and ∆
we can summarize:
• Below atomic resonance (“red” shifted)

(ω < ω0) we get
◦ ∆ < 0→ Udip < 0
◦ attractive potential

For experiments it is important to know:
Use for optical traps (at a certain potential
depth)
• large detunings
• high intensities



Bose Hubbard Model

Bose Hubbard model
Once the particles are trapped, they can be

described by the Hubbard Hamiltonian

HB = −J
∑
〈ij〉

(
b̂†i b̂j + b̂†j b̂i

)
−µ
∑
i

n̂bi+
U

2

∑
i

n̂bi (n̂bi − 1)

[
b̂i, b̂
†
j

]
= δij

• J : Allows hopping of bosons / Josephson
tunneling

• µ: Chemical potential
• U > 0: Repulsive interaction

Figure 3 represents these parameters graphi-
cally. We have to keep in mind, if the laser
induced confinement potential is deepened J
will decrease.

Figure 3. Explanation of the parameters in the
Hubbard Hamiltonian.

Using the mean field approximation we can
rewrite this Hamiltonian to

HMF =
∑
i

(
−µn̂bi +

U

2
n̂bi (n̂bi − 1)−Ψ∗B b̂i −ΨB b̂†i

)
• ΨB : variational parameter (complex)
• µ: Chemical potential
• U > 0: Repulsive interaction

Now we use the Landau symmetry of a phase
transition second order, which leads to the
ground state energy E0

E0 = E00 + r |ΨB |2 +O
(
|ΨB |4

)
.

Use perturbation theory till second order we
can identify r to be

r = x0 · (1− ZJx0) ,

where x0 is given by

x0 (µ/U) =
n (µ/U) + 1
Un (µ/U)− µ

+
n (µ/U)

µ− u (n (µ/U)− 1)

= −
µ+ U

(Un− µ) (U (n− 1)− µ)
.

For a phase transition r must equal zero, which
can be achieved when the term inside the
bracket vanishes. This leads to

ZJ

U
=
(
n− µ

U

) (
1− n+ µ

U

)
1 + µ

U

.

Figure 4 is a plot of the function above. At
this point we have to point out that there is
the critical point (with n = 1)

(ZU/J)c ≈ 0.172⇔ (J/U)c ≈ 5.8 · Z . (1)

Here n denotes the filled energy level of the
system.
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Figure 4. Phase diagram which represents the super-
fluid - Mott insulating transition. The critical level at
n = 1 is derived to be (J/U)c ≈ 5.8 · Z.

The wave-functions in both cases can be de-
scribed as:

1) U=0: Superfluid phase

|ΨSF 〉(U=0) =
1
√
N !

(
1
√
NL

NL∑
i=1

b̂
†
i

)N

|0〉

2) J=0: Mott insulating phase

|ΨMI〉(J=0) ∝
NL∏
i=1

(
b̂†i

)n
|0〉

Experimental evidence
In an experiment using an optical lattice

(d = 426 nm) the SF-MI phase transition was
observed with the time of flight method, using
an expansion time of 15 ms. Figure 5 shows
the resulting data. It can be understood as the
Fourier transformation of a periodical potential,
which results in δ-peaks at certain values, if
the matter waves can interfer - the system is
in the superfluid phase (b-e). After the phase
transition the wave functions are decoherent
and no interference pattern is visible (g-h).
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Figure 5. Interference experiment which demonstrates
the SF-MI phase transition at a certain potential depth
(e).

We can summarize that the experimental
results are in good agreement with the former
derived theory:
• SF-MI transition (experiment): U/J =

36|Z=6 → U/J = 6
• SF-MI transition (theory): U/J = 5.8
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