Tilted Bose Hubbard model Phase transition in 1D

Bruno Villa

Institut für theoretische Physik III

Supervisor: Alexander Krupp

27/05/2013

Physik Journal 12 (2013) Nr.1 p.27

Outline

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

E×perimental realization

Setup Results

Conclusions

1 Motivation

2 Fundamentals

■ The Tilted Bose Hubbard Model (BHM)

Ising model mapping

3 Experimental realization

Setup

Results

Motivation

Tilted BHM

Bruno Villa

Motivation

- Fundamentals Tilted BHM Ising model mapping
- Experimental realization
- Setup Results
- Conclusions

- Set of problems with no viable classical computing simulation
- Controllable environment for quantum simulations
 - Quantum magnetism
 - High temperature superconductivity
 - Quantum computing

Motivation Optical lattices

Tilted BHM

Bruno Villa

Motivation

- Fundamentals Tilted BHM Ising model mapping
- Experimental realization
- Setup Results
- Conclusions

- Spatially periodic structure of electric fields
- Usually generated by superposition of laser beams

Fundamentals

Tilted BHM

Bruno Villa

Motivation

Fundamentals

Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Fundamentals

Tilted BHM

Bruno Villa

Motivation

Fundamentals

Tilted BHM

lsing model mapping

Experimental realization

Setup Results

Conclusions

$$\mathcal{H} = -t\sum_{\langle i,j\rangle} (\hat{b}_i^{\dagger}\hat{b}_j + \hat{b}_j^{\dagger}\hat{b}_i) + \frac{U}{2}\sum_j \hat{b}_j^{\dagger}\hat{b}_j^{\dagger}\hat{b}_j\hat{b}_j$$

Bruno Villa

Motivation

Fundamentals

Tilted BHM

lsing model mapping

Experimental realization

Setup Results

Conclusions

$$\begin{aligned} \mathcal{H} &= -t \sum_{\langle i,j \rangle} (\hat{b}_i^{\dagger} \hat{b}_j + \hat{b}_j^{\dagger} \hat{b}_i) + \frac{U}{2} \sum_j \hat{b}_j^{\dagger} \hat{b}_j^{\dagger} \hat{b}_j \hat{b}_j \\ &- E \sum_j \mathbf{e} \cdot \mathbf{r}_j \hat{b}_j^{\dagger} \hat{b}_j \end{aligned}$$

Jaksch, D. et al. (1998) Physical Review Letters pp. 5-8

The Tilted Bose Hubbard Model (BHM) Mott insulator

Tilted BHM

- Bruno Villa
- Motivation
- Fundamentals
- Tilted BHM Ising model mapping
- Experimental realization
- Setup Results
- Conclusions

- $\blacksquare \text{ Minimize } \mathcal{H} \text{ in limit } U \gg t$
- Average site occupation n_0

The Tilted Bose Hubbard Model (BHM) Mott insulator

Tilted BHM Bruno Villa Motivation Fundamentals Ising model mapping Tunneling generates new Experimental realization

Setup Results

Conclusions

state

• Energy difference U - E

The Tilted Bose Hubbard Model (BHM) Mott insulator

Tilted BHM

Bruno Villa

Motivation

Fundamentals

Tilted BHM Ising model

mapping

Experimental realization

Setup Results

Conclusions

Define dipole operator

$$\hat{d}_{j}^{\dagger} = \frac{\hat{b}_{j}\hat{b}_{j+1}^{\dagger}}{\sqrt{n_{0}(n_{0}+1)}}$$

with the conditions

$$\hat{d}_j^\dagger \hat{d}_j \le 1$$

$$\hat{d}_{j}^{\dagger}\hat{d}_{j}\hat{d}_{j+1}^{\dagger}\hat{d}_{j+1} = 0$$

Tilted BHM

Bruno Villa

Motivation

Fundamentals

Tilted BHM

lsing model mapping

Experimental realization

Setup Results

Conclusions

$$\begin{aligned} \mathcal{H} &= -t\sum_{\langle i,j\rangle} (\hat{b}_i^{\dagger} \hat{b}_j + \hat{b}_j^{\dagger} \hat{b}_i) + \frac{U}{2} \sum_j \hat{b}_j^{\dagger} \hat{b}_j^{\dagger} \hat{b}_j \hat{b}_j \\ &- E \sum_j \mathbf{e} \cdot \mathbf{r}_j \hat{b}_j^{\dagger} \hat{b}_j \end{aligned}$$

with dipole operators

Rewrite Hamiltonian

$$\begin{aligned} \mathcal{H}_d &= -t\sqrt{n_0(n_0+1)}\sum_j (\hat{d}_j + \hat{d}_j^{\dagger}) \\ &+ (U-E)\sum_j \hat{d}_j^{\dagger} \hat{d}_j \end{aligned}$$

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Mott Insulator (MI)

Broken symmetry phase (BSP)

Tilt increase

Tilted BHM

Bruno Villa

Motivation

Fundamentals

Tilted BHM

lsing model mapping

Experimental realization

Setup Results

Conclusions

Scaling $\Delta_E \propto N^{-z} = N^{-1}$ at λ_c

Ising model mapping

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization Setup Results

Conclusions

No tunneling event spin ↑ Tunneling event spin ↓

 $S_z^j = \frac{1}{2} - \hat{d}_j^{\dagger} \hat{d}_j$ $S_x^j = \frac{1}{2} \left(\hat{d}_j^{\dagger} + \hat{d}_j \right)$ $S_y^j = \frac{i}{2} \left(\hat{d}_j^{\dagger} - \hat{d}_j \right)$

Ising model mapping

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization Setup Results

Conclusions

Mott Insulator (MI)

Broken symmetry phase (BSP)

Ising model mapping Constrains

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

• $\hat{d}_j^{\dagger} \hat{d}_j \leq 1$ Fulfilled by definition

• $\hat{d}_{j}^{\dagger}\hat{d}_{j}\hat{d}_{j+1}^{\dagger}\hat{d}_{j+1} = 0$ Add term to \mathcal{H}_{d}

$$J\hat{d}_{j+1}^{\dagger}\hat{d}_{j+1}\hat{d}_{j}^{\dagger}\hat{d}_{j} = J\left(S_{z}^{j+1} - \frac{1}{2}\right)\left(S_{z}^{j} - \frac{1}{2}\right)$$

Ising model mapping

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Results

Conclusions

 1D Ising chain with longitudinal and transverse field equivalent to 2D Ising model

$$\mathcal{H}_s = J \sum_j (S_z^j S_z^{j+1} - h_x S_x^j - h_z S_z^j)$$

No analytical solution

Ovchinnikov, A. A. (2003) Physical Review B 68.

Ising model mapping Phase transition

Simon, J. et al. (2011) Nature 472(7343), 307-12

Experimental realization

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Experimental realization

Experimental realization Setup

Bakr, Waseem S. et al. (2009) Nature 462(8482)

Experimental realization Setup

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Bakr, Waseem S. et al. (2009) Nature 462(8482)

Experimental realization Setup

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Results

Conclusions

а $\Delta < 0$: paramagnet * * * * * Spin chain Atom position in tilted lattice

Single site readout (odd/even)

b ⊿≈0 c $\Delta > 0$: antiferromagnet

e e e d Spin mapping

Simon, J. et al. (2011) Nature 472(7343), 307-12

Simon, J. et al. (2011) Nature 472(7343), 307-12

Simon, J. et al. (2011) Nature 472(7343), 307-12

Simon, J. et al. (2011) Nature 472(7343), 307-12

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization Setup Results

Conclusions

Simon, J. et al. (2011) Nature 472(7343), 307-12

Conclusions

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Conclusions

Conclusions Summary

Tilted BHM

- Bruno Villa
- Motivation
- Fundamentals Tilted BHM Ising model mapping
- Experimental realization
- Setup Results
- Conclusions

- MI phase
- Tilted BHM
- Set of resonant states in 1D
- MI ground state BSP
- Mapping to Ising model
- Experimental results

Simon, J. et al. (2011) Nature 472(7343), 307-12

Conclusions Conclusions and outlook

- Tilted BHM
- Bruno Villa
- Motivation
- Fundamentals Tilted BHM Ising model mapping
- Experimental realization
- Setup Results
- Conclusions

- Experimental results in agreement with theory
- Optical lattices as a promising quantum simulator

- Higher dimensions
- Different lattice geometries

Conclusions

Tilted BHM

Bruno Villa

Motivation

Fundamentals Tilted BHM Ising model mapping

Experimental realization

Setup Results

Conclusions

Thank you for your attention