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}  1966 – Mermin & Wagner-Theorem 
◦  No spontaneous long-range order in isotropic 2D 

lattice at finite temperature 
◦  No phase transition expected (anti-/ferromagnetism) 
 

}  1973 – Kosterlitz & Thouless (KT) 
◦  phase transition in systems in weak external fields 
◦  Vortex pairs binding ßà unbinding   
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}  Introduction 
 
}  2D XY-Model 
◦  Hamiltonian 
◦  Thermodynamics 
◦  Vortices 

}  Symmetry and Phase Transition 
◦  Mermin & Wagner Theorem 
◦  Correlation function 

�  Low Temperature 
�  High Temperature 

◦  Superfluid density 

}  Kosterlitz Thouless Phase Transition 
◦  Superfluid density 
◦  Experiment 

}  Conclusion & Outlook 
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eters of the static theory, three new param-
eters appear in this fit of the dynamical theory:
a dimensionless parameter In(2D/&ua') related to

the vortex diffusion constant D, the vortex-core
radius a, and the frequency ~ of the oscillator;
the coefficient of the free vortex dissipation; and

a background term, referred to above, which

plays almost no role in the transition region it-
self. In the ratio A/M, A is the area of the Mylar
substrate and M is the effective mass of the pen-

dulum bob when the pendulum is treated as a
linear oscillator. This ratio is obtained from a
knowledge of the area of the substrate and a mea-
surement of the sensitivity of the oscillator peri-
od to changes in the mass per unit area of the

adsorbed helium.

In the analysis of our data taken for different
coverages of adsorbed helium, we allow the value

of the Kosterlitz-Thouless jump in p, to be a free
parameter to be determined by an optimization of

the fit through a nonlinear least-squares routine. "
As an example the value for p, (T, ) obtained for
the fit shown in Fig. 2 is 0.96 times the exact
theoretical value, 8~k B(m/k)'T„given by Koster-
litz and Thouless.

For the calibration measurement, we hold the

temperature of the system constant and observe

the period of the oscillator as the mass per unit
area of adsorbed helium is increased. When the

coverage of helium is less than a critical amount,
which depends on the temperature at which the

observations are made, the adsorbed helium is
entirely locked to the substrate and contributes

its entire moment of inertia to the pendulum bob.

This serves to calibrate the torsion oscillator.
The surface area is taken to be the geometric

area of the Mylar film.

Since 1968 there has been evidence that the

super fluid density in two-dimensional helium

films might be nonzero at the superfluid onset.
This was shown most clearly in the third-sound

experiments of Rudnick et al. "and also by per-
sistent-current measurements on helium films, "
which indicated that the superfluid critical veloc-

ity was becoming zero while the superfluid den-

sity was still finite. However, neither third-

sound nor persistent-current measurements can

be used to pursue the question of the superfluid

density behavior in the transition region, since

the third-sound signals become heavily damped

and do not propagate, and persistent currents de-

cay away.
The first experiments to show that the dynamic

super fluid density goes continuously to zero were

the quartz-microbalance experiments of Chester
and Yang. " These experiments, which are very
similar in concept to the present work, were per-
formed in the MHz frequency range and showed,

as would now be expected on the basis of the dy-

namic theory, ' considerable broadening of the
transition region.

These older experiments can now be analyzed

in terms of our present understanding to obtain

estimates of the Kosterlitz-Thouless jump in the

superfluid mass per unit area at the two-dimen-
sional phase transition, Although it is not possi-
ble to follow a third-sound signal through the

transition region, it can be followed to the point
where the dissipation begins to rise rapidly. If
the third-sound signal disappears at this point,
then as can be seen in Fig. 2 the value of the

superfluid mass is still up on the shoulder of the

curve and a reasonably good estimate for the
static value of the Kosterlitz-Thouless jump can

be obtained. Recently, Rudnick" has rear-:xlyzed

his third-sound data us1ng his latest estimate of

the van der Waals constant, and has obtained
values for p, (T, ) which are in good agreement
with the value predicted by the Kosterlitz-Thou-
less theory. '+'
In Fig. 3 we have plotted as a function of the

transition temperature, the values for the static
jump in the superfluid density obtained from the

analysis of our data using the dynamic theory.
We have also included in Fig. 3 the estimates ob-

tained by Rudnick" and additional values provided

by Mochel and Hallock from their third-sound
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FIG. 3. Results of all of our data, in addition to
previous third-sound results for the discontinuous
superfluid density jump p, {T, ) as a function of temper-
ature. The solid line is the Kosterlitz-Thouless (beefs.
3 and 4) static theory.
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}  Planar rotors 
}  Unit length 
}  2D square lattice 
}  Study systems as:  

�  films of superfluid helium  
�  superconducting materials  
�  fluctuating surfaces 
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}  Hamiltonian: 
 
  
 
}  Hamiltonian at low temperature: 
With                            and  
 

 
 
With 
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2 The Two Dimensional XY-Model

We will use the 2d XY-model as our reference model. The model consists of planar rotors of
unit length arranged on a two dimensional square lattice. The Hamilatonian of the system
is given by

H = �J
⇥

⇥i,j⇤
Si · Sj = �J

⇥

⇥i,j⇤
cos(⇤i � ⇤j). (1)

Here ⇤i, j⌅ denotes summation over all nearest neighbour sites in the lattice, and ⇤i denotes
the angle of the rotor on site i with respect to some (arbitrary) polar direction in the two
dimensional vector space containing the rotors.

If we assume that the direction of the rotors varies smoothly from site to site, we can
approximate cos(⇤i � ⇤j) by the first two terms 1 � 1

2(⇤i � ⇤j)2 in the Taylor expansion of
cos. The sum over the nearest neighbours corresponds to the discrete Laplace operator,
which we can express in terms of partial derivatives through ⇤i � ⇤j = ⇧x⇤ for two site i
and j which di�ers by one lattice spacing in the x-direction. This leads to the continuum
Hamiltonian

H = E0 +
J

2

⇤
dr(⇧⇤)2. (2)

Here E0 = 2JN is the energy of the completely aligned ground state of N rotors.

The thermodynamics of the system is obtained from the partition function

Z = e��E0

⇤
D[⇤] exp{��

J

2

⇤
dr(⇧⇤)2}, (3)

a functional integral over all possible configurations of the director field ⇤(r). The integral
over ⇤(r) can be divided into a sum over the local minima ⇤vor of H[⇤] plus fluctuations ⇤sw

around the minima

Z = e��E0
⇥

⇥vor

⇤
D[⇤sw] exp{��(H[⇤vor] +

1

2

⇤
dr1

⇤
dr2⇤sw(r1)

⇥2H

⇥⇤(r1)⇥⇤(r2)
⇤sw(r2))}. (4)

The field configurations corresponding to local minima of H are solutions to the extremal
condition

⇥H

⇥⇤(r)
= 0 ⇥ ⇧2⇤(r) = 0. (5)

There are two types of solutions to this equation. The first consists of the ground state
⇤(r) = constant. The second type of solutions consist of vortices in the director field (see
Fig. 1) and are obtained by imposing the following set of boundary conditions on the cir-
culation integral of ⇤(r):

1) For all closed curves encircling the position r0 of the centre of the vortex
�
⇧⇤(r) · dl = 2⌅n. (6)

2) For all paths that don’t encircle the vortex position r0
�
⇧⇤(r) · dl = 0. (7)
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}  Partition function at low temperature  

                                      í        î 
 
 
Sum: local minima à vortices (left term) 
     + fluctuations à spin waves (right term) 
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}  Extremal condition: 

 
}  Solutions: 

1.  Ground State:        
2.  Vortices: 
�  Centre of vortex encircled: 
  
�  No vortex centre encircled:   
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}  Calculate energy of a single vortex: 
◦  With: 

◦  Substitute this into the Hamiltonian: 
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Condition 1) imposes a singularity in the director field. Note the circulation integral
must be equal to an integer times 2⇥ since we circle a closed path and therefore �(r) has to
point in the same direction after traversing the path as it did when we started.

We can estimate the energy of a vortex in the following way. The problem is spherical
symmetric, hence the vortex field �vor must be of the form �(r) = �(r). The dependence on
r can be found from Eq. 6. We calculate the circulation integral along a circle of radius r
centred at the position r0 of the vortex

2⇥n =
⌅
⇥�(r) · dl = 2⇥r|⇥�|. (8)

We solve and obtain |⇥�(r)| = n/r. Substitute this result into the Hamiltonian Eq. 2

Evor � E0 =
J

2

⇧
dr[⇥�(r)]2 (9)

=
Jn2

2

⇧ 2�

0

⇧ L

a
rdr

1

r2
(10)

= ⇥n2J ln(
L

a
). (11)

The circulation condition Eq. 6 creates a distortion in the phase field �(r) that persists
infinitely far from the centre of the vortex. |⇥�| decays only as 1/r leading to a logarithmic
divergence of the energy. Hence we need to take into account that the integral over r in
Eq. 10 is cut-o� for large r-values by the finite system size L and for small r-values by the
lattice spacing a. We recall that our continuum Hamiltonian is an approximation to the
lattice Hamiltonian in Eq. 1. A vortex with the factor n in Eq. 6 larger than one is called
multiple charged. We notice that the energy of the vortex is quadratic in the charge. In an
macroscopically large system even the energy of a single charge vortex will be large.

Consider now a pair of single charged vortex and an anti-vortex. When we encircle
the vortex we pick up

⇤
dl · ⇥� = 2⇥ and when we encircle the anti-vortex we pick up⇤

dl ·⇥� = �2⇥. Hence, if we choose a path large enough to enclose both vortices we pick
up a circulation of the phase equal to 2⇥ + (�2⇥) = 0. I.e. the distortion of the phase field
�(r) from the vortex–anti-vortex pair is able to cancel out at distances from the centre of
the two vortices large compared to the separation R between the vortex and the anti-vortex,
see Fig. 2. This explains why the energy of the vortex pair is of the form

E2vor(R) = 2Ec + E1 ln(R/a). (12)

Where Ec is the energy of the vortex cores and E1 is proportional to J . In detail, the phase
field �2vor(r) of a vortex located at r = (�a, 0) and an anti-vortex located at r = (a, 0) is
given by

�2vor(r) = arctg
�

2ay

a2 � r2

⇥
. (13)

3 Lack of Ordering in Two Dimensions

In order to highlight the peculiarity of two dimensions we consider the d-dimensional XY-
model. We imagine a d-dimensional cubic lattice. Each lattice site contains a planar rotor
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}  The energy of a vortex pair is given by: 

9 
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Where Ec is the energy of the vortex cores and E1 is proportional to J . In detail, the phase
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given by
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}  The free energy of a single vortex: 

 
1.                : Free energy diverges 
2.                 : Free energy minimized 

 à Existence of free vortices lower free energy 

}  Identify the critical temperature: 

10 

The Helmholtz free energy is given by the di�erence between the energy and the entropy
multiplied by the temperature F = E � TS. The energy is given by Eq. 11. We estimate
the entropy from the number of places where we can position the vortex centre, namely on
each of the L2 plaquette of the square lattice, i.e., S = kB ln(L2/a2). Accordingly the free
energy is given by

F = E0 + (⇥J � 2kBT ) ln(L/a). (30)

For T < ⇥J/2kB the free energy will diverge to plus infinity as L ⇤ ⌅. At temperatures
T > ⇥J/2kB the system can lower its free energy by producing vortices: F ⇤ �⌅ as
L ⇤⌅. This simple heuristic argument points to the fact that the logarithmic dependence
on system size of the energy of the vortex combines with the logarithmic dependence of the
entropy to produce the subtleties of the vortex unbinding transition. Assume a di�erent
dependence of the energy on systems size and one will either have thermal activation of
vortices at all temperatures (in case Evor ⇤ const. < ⌅) or vortices will not be activated at
any temperature (in case Evor ⇥ (L/a)b with b > 0). It is the logarithmic size dependence
of the 2d vortex energy that allows the outcome of the competition between the entropy
and the energy to change qualitatively at a certain finite temperature TKT .

In reality it is not single vortices of the same sign that proliferates at a certain temper-
ature. What happens is that the larger vortex pairs which are bound together for temper-
atures below TKT unbind at TKT . This is a collective e�ect. The vortex pairs induced as
one approaches TKT disturbs the phase field so much that the e�ective value of the vortex
binding term E1 in the vortex pair free energy 1 is driven to zero for large vortex separations.
In the next section we shall see in detail how this happens, but preliminary insight can be
obtained from the following

Exercise: Use the expression in Eq. 12 for the energy of a vortex pair to calculate, as
function of temperature, the average separation ⇧R⌃ of a vortex pair.

4.1 The Spin Wave Sti�ness

The e�ect of the thermally activated vortex pairs is describe by the temperature dependent
spin wave sti�ness ⇤R

s . This is an example of what Philip W Anderson calls a generalised
rigidity[2]. The spin wave sti�ness describes how much free energy it costs to apply a twist,
or gradient, to the rotors (also called spins):

�(r) = �0(r) + vex · r, (31)

here �0(r) is allowed to vary according to the canonical ensemble. The increase in the free
energy is given by

F (vex)� F (0) =
1

2
V ⇤R

s v2
ex. (32)

An number of comments concerning the notation are illuminating. The notation vex for the
gradient applied to the phase field �(r) has its origin in the fact that the same physics, as
we describes here, applies to superfluid films and superconducting films. In these cases the

1That is Eq. 12 generalised to non-zero temperature
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Hallo

|S| < const.

T 1/2

1

|ln|h||1/2
(1)

T > 0 (2)

TKT = �J/2kB (3)

1
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Why is KT phase transition special? 

Phase Transition usually linked with 
symmetry breaking. 

Long-range order required. 

 We will observe no long range order. 
But find a phase transition.  

11 
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}  In 2D fluctuations at finite temperature  
◦  No long-range order  
◦  No usual phase transition 
◦  No symmetry break possible 

 
à Mean magnetisation goes to zero at finite temperature 
à Fluctuations destroys long-range order 
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}   Correlation function: 
◦  Low temperature 
◦  High temperature 

}  Find two solutions 
   à hint for phase transition 
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}  Look at correlation function : 
 
 
 

 
 à Black Board Calculation 
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Hallo

|S| < const.

T 1/2

1

|ln|h||1/2
(1)

T > 0 (2)

(3)

cos(�i � �j) ⇥ 1� 1

2
(�i � �j)

2 (4)

(5)

TKT = ⇤J/2kB (6)

(7)

⌅S(r)S(0)⇧ ⇤
�
r

L

⇥�T/2�J

(8)

(9)

⌅S(r)S(0)⇧ = e�
r
� (10)

(11)

⇥ = L/ ln(2T/J) (12)

(13)

⌅Rs = ⌅s +
⌅2s
T

⌅
d2r⌅n(r) · n(0)⇧ (14)

(15)

⌅S(r)S(0)⇧ =
⇤

⇥r,0⇤

�
J

2T

⇥
=

�
J

2T

⇥ r
L

= e�
r
� (16)

(17)

⌅S(r)S(0)⇧ = ⌅cos(�(r)� �(0))⇧ (18)

= Re[⌅exp{i(�(r)� �(0))}⇧] (19)

= exp[g(r)] (20)

1



/29 15 



/29 

}  Behaviour of correlation function: 

}  for 
1.          : correlation survives à ordered phase. 
2.          : decays with exponent 
   à quasi-long-range order 
1.          : decays to zero exponentially 

16 
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We notice that for d > 2 the correlations survive, ⇧S(r)S(0)⌃ decays to a non-zero constant
as r ⇥⌅. This indicates long range order, a certain degree of alignment of the rotors, i.e.
the model posses an ordered phase at low temperature. In d = 1 the correlation function
decays to zero exponentially over a correlation length ⇤ = 2Ta/T that diverges in the limit
of T ⇥ 0.

The situation is very di�erent in two dimensions. Here the correlation function depends
algebraically on r with an exponent � = T/2⌅J that continuously changes with temperature.
Algebraic decay of the correlation function is what we expect when the temperature is tuned
to the critical temperature of a continuous phase transition. In the 2d XY-model we find
critical algebraic correlations for all temperatures for which our calculation is valid. In the
calculation we have neglected vortices, so we expect our results to break down when the
temperature becomes high enough to excite vortex pairs.

We conclude, that although in two dimensions there is no long range order with a non-
zero value of ⇧Sx⌃ for any temperature above zero, the correlations of the two dimensional
model are algebraic. This is the usual case, say in Ising systems, precisely at the critical
temperature where the correlations are algebraic and the order parameter is still zero, though
it will become non-zero if the temperature is lowered and infinitesimal amount.

4 Vortex Unbinding

We mentioned at the end of the previous section that we expect vortices to become important
as the temperature is increased. To see this we estimate the free energy of a single vortex.
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We notice that for d > 2 the correlations survive, ⇧S(r)S(0)⌃ decays to a non-zero constant
as r ⇥⌅. This indicates long range order, a certain degree of alignment of the rotors, i.e.
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critical algebraic correlations for all temperatures for which our calculation is valid. In the
calculation we have neglected vortices, so we expect our results to break down when the
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We conclude, that although in two dimensions there is no long range order with a non-
zero value of ⇧Sx⌃ for any temperature above zero, the correlations of the two dimensional
model are algebraic. This is the usual case, say in Ising systems, precisely at the critical
temperature where the correlations are algebraic and the order parameter is still zero, though
it will become non-zero if the temperature is lowered and infinitesimal amount.

4 Vortex Unbinding

We mentioned at the end of the previous section that we expect vortices to become important
as the temperature is increased. To see this we estimate the free energy of a single vortex.
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We notice that for d > 2 the correlations survive, ⇧S(r)S(0)⌃ decays to a non-zero constant
as r ⇥⌅. This indicates long range order, a certain degree of alignment of the rotors, i.e.
the model posses an ordered phase at low temperature. In d = 1 the correlation function
decays to zero exponentially over a correlation length ⇤ = 2Ta/T that diverges in the limit
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The situation is very di�erent in two dimensions. Here the correlation function depends
algebraically on r with an exponent � = T/2⌅J that continuously changes with temperature.
Algebraic decay of the correlation function is what we expect when the temperature is tuned
to the critical temperature of a continuous phase transition. In the 2d XY-model we find
critical algebraic correlations for all temperatures for which our calculation is valid. In the
calculation we have neglected vortices, so we expect our results to break down when the
temperature becomes high enough to excite vortex pairs.

We conclude, that although in two dimensions there is no long range order with a non-
zero value of ⇧Sx⌃ for any temperature above zero, the correlations of the two dimensional
model are algebraic. This is the usual case, say in Ising systems, precisely at the critical
temperature where the correlations are algebraic and the order parameter is still zero, though
it will become non-zero if the temperature is lowered and infinitesimal amount.

4 Vortex Unbinding

We mentioned at the end of the previous section that we expect vortices to become important
as the temperature is increased. To see this we estimate the free energy of a single vortex.
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field ⇥(r) is the phase of the complex order parameter, the wave function of the super-fluid.
Being the phase of a quantum mechanical wave function the gradient of ⇥(r) is related to
a probability current and thereby to the velocity field of the super-fluid. The notation ⇤R

s

is meant to remind one that this phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The superscript R in ⇤R

s indicates that
thermal excitations renormalise the quantity. It follows immediately from the Hamiltonian
in Eq. 2 that at zero temperature ⇤R

s = J = ⇤s. The spin wave sti�ness is similar to the
shear constant of a material. The shear constant determines how the (free) energy increase
of a shear deformation. As temperature is increased the shear constant decreases and drops
abruptly to zero when the solid melts into a liquid.

To obtain ⇤R
s one calculates the left hand side of Eq. 32. Details can be found in the

wonderful book by Chaikin and Lubensky[3]. The phase field is split into two parts

⇥0(r) = ⇥s(r) + ⇥v(r), (33)

where the first term describes smooth spin waves and the second term contains the singular
vortex contribution. The free energy is obtained from F = kbT ln Z and the partition
function in Eq. 3 by introducing Fourier transforms of the phase field. After quite a bit of
algebra one arrives at the following simple expression

⇤R
s = ⇤s �

1

2

⇤2
s

T
lim
k⇥0

⇥n̂(k)n̂(�k)⇤)
k2

. (34)

which expresses the renormalized sti�ness in terms of the correlation function of the Fourier
transform of the vortex density function

n(r) =
⇥

�

n��(r� r�), (35)

for a collection of vortices of charge n� (see Eq. 6) with centres located at positions r�. The
thermodynamic average is performed over the canonical ensemble with no twist imposed,
hence the subscript 0. Eq. 34 can be used to determine how the spin wave sti�ness behave
at large distances as a function of temperature. We will discuss how in the next section.

Exercise: A very enlightening and stimulating activity for a quiet afternoon is to go thor-
ough the details leading to Eq. 34. The simplest way to do this is to study Chaikin and
Lubensky’s book [3], but it is also strongly recommendable to dig out the original papers
by Kosterlitz and Thouless [1, 7].

4.2 The KT transition

Let us first summarise the phenomenology of the Kosterlitz-Thouless transition. As the
temperature is increased more and more vortex pairs are thermally activated. This makes
⇤R

s decrease, see Eq. 34. This corresponds to a decrease in the increment of the free energy
induced by a certain twist vex. We can understand this from the fact that the phase field
⇥(r) becomes more and more distorted as the temperature is increased, hence the extra
perturbation caused by vex becomes relatively less important. Quantitatively one finds

⇤R
s =

�
⇤R

s (T�KT )[1 + const.(TKT � T )1/2] for T < TKT

0 for T > TKT .
(36)
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field ⇥(r) is the phase of the complex order parameter, the wave function of the super-fluid.
Being the phase of a quantum mechanical wave function the gradient of ⇥(r) is related to
a probability current and thereby to the velocity field of the super-fluid. The notation ⇤R

s

is meant to remind one that this phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The superscript R in ⇤R

s indicates that
thermal excitations renormalise the quantity. It follows immediately from the Hamiltonian
in Eq. 2 that at zero temperature ⇤R

s = J = ⇤s. The spin wave sti�ness is similar to the
shear constant of a material. The shear constant determines how the (free) energy increase
of a shear deformation. As temperature is increased the shear constant decreases and drops
abruptly to zero when the solid melts into a liquid.

To obtain ⇤R
s one calculates the left hand side of Eq. 32. Details can be found in the

wonderful book by Chaikin and Lubensky[3]. The phase field is split into two parts

⇥0(r) = ⇥s(r) + ⇥v(r), (33)

where the first term describes smooth spin waves and the second term contains the singular
vortex contribution. The free energy is obtained from F = kbT ln Z and the partition
function in Eq. 3 by introducing Fourier transforms of the phase field. After quite a bit of
algebra one arrives at the following simple expression
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1

2
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T
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k2

. (34)

which expresses the renormalized sti�ness in terms of the correlation function of the Fourier
transform of the vortex density function
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thermodynamic average is performed over the canonical ensemble with no twist imposed,
hence the subscript 0. Eq. 34 can be used to determine how the spin wave sti�ness behave
at large distances as a function of temperature. We will discuss how in the next section.
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The Helmholtz free energy is given by the di�erence between the energy and the entropy
multiplied by the temperature F = E � TS. The energy is given by Eq. 11. We estimate
the entropy from the number of places where we can position the vortex centre, namely on
each of the L2 plaquette of the square lattice, i.e., S = kB ln(L2/a2). Accordingly the free
energy is given by

F = E0 + (⇥J � 2kBT ) ln(L/a). (30)

For T < ⇥J/2kB the free energy will diverge to plus infinity as L ⇤ ⌅. At temperatures
T > ⇥J/2kB the system can lower its free energy by producing vortices: F ⇤ �⌅ as
L ⇤⌅. This simple heuristic argument points to the fact that the logarithmic dependence
on system size of the energy of the vortex combines with the logarithmic dependence of the
entropy to produce the subtleties of the vortex unbinding transition. Assume a di�erent
dependence of the energy on systems size and one will either have thermal activation of
vortices at all temperatures (in case Evor ⇤ const. < ⌅) or vortices will not be activated at
any temperature (in case Evor ⇥ (L/a)b with b > 0). It is the logarithmic size dependence
of the 2d vortex energy that allows the outcome of the competition between the entropy
and the energy to change qualitatively at a certain finite temperature TKT .

In reality it is not single vortices of the same sign that proliferates at a certain temper-
ature. What happens is that the larger vortex pairs which are bound together for temper-
atures below TKT unbind at TKT . This is a collective e�ect. The vortex pairs induced as
one approaches TKT disturbs the phase field so much that the e�ective value of the vortex
binding term E1 in the vortex pair free energy 1 is driven to zero for large vortex separations.
In the next section we shall see in detail how this happens, but preliminary insight can be
obtained from the following

Exercise: Use the expression in Eq. 12 for the energy of a vortex pair to calculate, as
function of temperature, the average separation ⇧R⌃ of a vortex pair.

4.1 The Spin Wave Sti�ness

The e�ect of the thermally activated vortex pairs is describe by the temperature dependent
spin wave sti�ness ⇤R

s . This is an example of what Philip W Anderson calls a generalised
rigidity[2]. The spin wave sti�ness describes how much free energy it costs to apply a twist,
or gradient, to the rotors (also called spins):

�(r) = �0(r) + vex · r, (31)

here �0(r) is allowed to vary according to the canonical ensemble. The increase in the free
energy is given by

F (vex)� F (0) =
1

2
V ⇤R

s v2
ex. (32)

An number of comments concerning the notation are illuminating. The notation vex for the
gradient applied to the phase field �(r) has its origin in the fact that the same physics, as
we describes here, applies to superfluid films and superconducting films. In these cases the

1That is Eq. 12 generalised to non-zero temperature
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field ⇥(r) is the phase of the complex order parameter, the wave function of the super-fluid.
Being the phase of a quantum mechanical wave function the gradient of ⇥(r) is related to
a probability current and thereby to the velocity field of the super-fluid. The notation ⇤R
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is meant to remind one that this phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The superscript R in ⇤R
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thermal excitations renormalise the quantity. It follows immediately from the Hamiltonian
in Eq. 2 that at zero temperature ⇤R

s = J = ⇤s. The spin wave sti�ness is similar to the
shear constant of a material. The shear constant determines how the (free) energy increase
of a shear deformation. As temperature is increased the shear constant decreases and drops
abruptly to zero when the solid melts into a liquid.

To obtain ⇤R
s one calculates the left hand side of Eq. 32. Details can be found in the

wonderful book by Chaikin and Lubensky[3]. The phase field is split into two parts

⇥0(r) = ⇥s(r) + ⇥v(r), (33)

where the first term describes smooth spin waves and the second term contains the singular
vortex contribution. The free energy is obtained from F = kbT ln Z and the partition
function in Eq. 3 by introducing Fourier transforms of the phase field. After quite a bit of
algebra one arrives at the following simple expression

⇤R
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⇤2
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T
lim
k⇥0

⇥n̂(k)n̂(�k)⇤)
k2

. (34)

which expresses the renormalized sti�ness in terms of the correlation function of the Fourier
transform of the vortex density function

n(r) =
⇥

�

n��(r� r�), (35)

for a collection of vortices of charge n� (see Eq. 6) with centres located at positions r�. The
thermodynamic average is performed over the canonical ensemble with no twist imposed,
hence the subscript 0. Eq. 34 can be used to determine how the spin wave sti�ness behave
at large distances as a function of temperature. We will discuss how in the next section.

Exercise: A very enlightening and stimulating activity for a quiet afternoon is to go thor-
ough the details leading to Eq. 34. The simplest way to do this is to study Chaikin and
Lubensky’s book [3], but it is also strongly recommendable to dig out the original papers
by Kosterlitz and Thouless [1, 7].

4.2 The KT transition

Let us first summarise the phenomenology of the Kosterlitz-Thouless transition. As the
temperature is increased more and more vortex pairs are thermally activated. This makes
⇤R

s decrease, see Eq. 34. This corresponds to a decrease in the increment of the free energy
induced by a certain twist vex. We can understand this from the fact that the phase field
⇥(r) becomes more and more distorted as the temperature is increased, hence the extra
perturbation caused by vex becomes relatively less important. Quantitatively one finds

⇤R
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�
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s (T�KT )[1 + const.(TKT � T )1/2] for T < TKT

0 for T > TKT .
(36)
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multiplied by the temperature F = E � TS. The energy is given by Eq. 11. We estimate
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energy is given by
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L ⇤⌅. This simple heuristic argument points to the fact that the logarithmic dependence
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any temperature (in case Evor ⇥ (L/a)b with b > 0). It is the logarithmic size dependence
of the 2d vortex energy that allows the outcome of the competition between the entropy
and the energy to change qualitatively at a certain finite temperature TKT .

In reality it is not single vortices of the same sign that proliferates at a certain temper-
ature. What happens is that the larger vortex pairs which are bound together for temper-
atures below TKT unbind at TKT . This is a collective e�ect. The vortex pairs induced as
one approaches TKT disturbs the phase field so much that the e�ective value of the vortex
binding term E1 in the vortex pair free energy 1 is driven to zero for large vortex separations.
In the next section we shall see in detail how this happens, but preliminary insight can be
obtained from the following

Exercise: Use the expression in Eq. 12 for the energy of a vortex pair to calculate, as
function of temperature, the average separation ⇧R⌃ of a vortex pair.

4.1 The Spin Wave Sti�ness

The e�ect of the thermally activated vortex pairs is describe by the temperature dependent
spin wave sti�ness ⇤R

s . This is an example of what Philip W Anderson calls a generalised
rigidity[2]. The spin wave sti�ness describes how much free energy it costs to apply a twist,
or gradient, to the rotors (also called spins):

�(r) = �0(r) + vex · r, (31)

here �0(r) is allowed to vary according to the canonical ensemble. The increase in the free
energy is given by

F (vex)� F (0) =
1

2
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An number of comments concerning the notation are illuminating. The notation vex for the
gradient applied to the phase field �(r) has its origin in the fact that the same physics, as
we describes here, applies to superfluid films and superconducting films. In these cases the

1That is Eq. 12 generalised to non-zero temperature
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field ⇥(r) is the phase of the complex order parameter, the wave function of the super-fluid.
Being the phase of a quantum mechanical wave function the gradient of ⇥(r) is related to
a probability current and thereby to the velocity field of the super-fluid. The notation ⇤R

s

is meant to remind one that this phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The superscript R in ⇤R

s indicates that
thermal excitations renormalise the quantity. It follows immediately from the Hamiltonian
in Eq. 2 that at zero temperature ⇤R

s = J = ⇤s. The spin wave sti�ness is similar to the
shear constant of a material. The shear constant determines how the (free) energy increase
of a shear deformation. As temperature is increased the shear constant decreases and drops
abruptly to zero when the solid melts into a liquid.

To obtain ⇤R
s one calculates the left hand side of Eq. 32. Details can be found in the

wonderful book by Chaikin and Lubensky[3]. The phase field is split into two parts

⇥0(r) = ⇥s(r) + ⇥v(r), (33)

where the first term describes smooth spin waves and the second term contains the singular
vortex contribution. The free energy is obtained from F = kbT ln Z and the partition
function in Eq. 3 by introducing Fourier transforms of the phase field. After quite a bit of
algebra one arrives at the following simple expression

⇤R
s = ⇤s �

1

2

⇤2
s

T
lim
k⇥0

⇥n̂(k)n̂(�k)⇤)
k2

. (34)

which expresses the renormalized sti�ness in terms of the correlation function of the Fourier
transform of the vortex density function

n(r) =
⇥

�

n��(r� r�), (35)

for a collection of vortices of charge n� (see Eq. 6) with centres located at positions r�. The
thermodynamic average is performed over the canonical ensemble with no twist imposed,
hence the subscript 0. Eq. 34 can be used to determine how the spin wave sti�ness behave
at large distances as a function of temperature. We will discuss how in the next section.

Exercise: A very enlightening and stimulating activity for a quiet afternoon is to go thor-
ough the details leading to Eq. 34. The simplest way to do this is to study Chaikin and
Lubensky’s book [3], but it is also strongly recommendable to dig out the original papers
by Kosterlitz and Thouless [1, 7].

4.2 The KT transition

Let us first summarise the phenomenology of the Kosterlitz-Thouless transition. As the
temperature is increased more and more vortex pairs are thermally activated. This makes
⇤R

s decrease, see Eq. 34. This corresponds to a decrease in the increment of the free energy
induced by a certain twist vex. We can understand this from the fact that the phase field
⇥(r) becomes more and more distorted as the temperature is increased, hence the extra
perturbation caused by vex becomes relatively less important. Quantitatively one finds

⇤R
s =

�
⇤R

s (T�KT )[1 + const.(TKT � T )1/2] for T < TKT

0 for T > TKT .
(36)
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Here, TKT is the Kosterlitz-Thouless temperature at which vortex pairs unbind. The value
of TKT di�er from one system to another. In the 2d XY-model TKT /J ⇤ 0.893± 0.002 [4].
The remarkable thing is, as we shall see below, that the ratio

⌅R
s (T�KT )/TKT = 2/⇤ (37)

is universal for all systems that undergoes a KT-transition. Since ⌅R
s (T+

KT ) = 0 Eq. 37 is
referred to as the universal jump. The correlation length ⇥(T ) behaves in a very unusual way
as one approaches TKT from above. We are used to a relatively slow algebraic divergence of
the correlation length as the critical temperature is approached. For the KT-transition the
divergence is, however, much faster

⇥(T ) ⇥ exp

�
const.

(T � TKT )1/2

⇥

for T > TKT . (38)

Can we in a simple way understand this exponential divergence. Yes, we can. The phase
field is significantly distorted by unbound vortices, since these vortices are not screened
by a nearby anti-vortex. I.e. the phases �(r) can remain correlated over distances shorter
than the typical distance ⌅D⇧ = 1/

⌃
nub between unbound vortices of density nub [5]. Or in

other words, we expect the correlation length ⇥ ⇥ D. The vortices are thermally induced
and therefor their density is expected to depend on the temperature through a Boltzmann
factor exp(�Evor/T ).2 This argument can indicate the cause of the exponential dependence
of ⇥. But it is no more than an indication since the exponential dependence in Eq. 38 is
significantly di�erent from a simple Boltmann factor. This di�erence is due to corrective
renormalization e�ects.

Continuous phase transitions are accompanied by divergences in thermodynamic quan-
tities caused by the divergence of the correlation length as the critical temperature Tc is
approached. The singular part of the free energy density f can be estimated as the amount
of thermal energy Tc within a correlated volume ⇥d of f ⇥ Tc/⇥d. The specific heat cV is
given by the second derivative of the free energy cV = �T⇧2f/⇧T 2 ⇥ ⇧2⇥�d⇧T 2. For the
KT-transition the exponential divergence of ⇥(T ) in Eq. 38 is so rapid and occur over such
a narrow temperature range that the divergence in cV cannot be resolved in simulations or
in experiment. The measured cV is sketched in the Fig. 3 and is smooth through TKT with
a broad peak above TKT induced by the entropy released by the unbounding of the vortices
(see [3]).

4.3 The Green’s function for the vortex-vortex interaction

The behaviour describe in the previous subsection is obtained by a real space renormaliza-
tion procedure first devised by Kosterlitz [7]. A detailed and readable presentation of this
calculation can be found in Chaikin and Lubensky’s book [3]. Here we only briefly mention
the main ingredients of this calculation and leave it as an

2The situation described here is exactly what happens in the one dimensional so-called �4 model. This
model supports thermally activated solitons. The correlation length is set by the inverse of the soliton
density and diverges exponentially as the temperature goes to zero [6].

8
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◦  Increasing the temperature (                  ) activates 

vortex pairs 
◦  Superfluid density decreases 
◦  Phase field becomes distorted as temperature 

increases 
◦  At high temperature vortex pairs unbind 
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}  Superfluid density: 
 
 
 
 

23 

field ⇥(r) is the phase of the complex order parameter, the wave function of the super-fluid.
Being the phase of a quantum mechanical wave function the gradient of ⇥(r) is related to
a probability current and thereby to the velocity field of the super-fluid. The notation ⇤R

s

is meant to remind one that this phase rigidity, is determined by the density of superfluid
in the case of a superfluid or a superconductor. The superscript R in ⇤R

s indicates that
thermal excitations renormalise the quantity. It follows immediately from the Hamiltonian
in Eq. 2 that at zero temperature ⇤R

s = J = ⇤s. The spin wave sti�ness is similar to the
shear constant of a material. The shear constant determines how the (free) energy increase
of a shear deformation. As temperature is increased the shear constant decreases and drops
abruptly to zero when the solid melts into a liquid.

To obtain ⇤R
s one calculates the left hand side of Eq. 32. Details can be found in the

wonderful book by Chaikin and Lubensky[3]. The phase field is split into two parts

⇥0(r) = ⇥s(r) + ⇥v(r), (33)

where the first term describes smooth spin waves and the second term contains the singular
vortex contribution. The free energy is obtained from F = kbT ln Z and the partition
function in Eq. 3 by introducing Fourier transforms of the phase field. After quite a bit of
algebra one arrives at the following simple expression

⇤R
s = ⇤s �

1

2

⇤2
s

T
lim
k⇥0

⇥n̂(k)n̂(�k)⇤)
k2

. (34)

which expresses the renormalized sti�ness in terms of the correlation function of the Fourier
transform of the vortex density function

n(r) =
⇥

�

n��(r� r�), (35)

for a collection of vortices of charge n� (see Eq. 6) with centres located at positions r�. The
thermodynamic average is performed over the canonical ensemble with no twist imposed,
hence the subscript 0. Eq. 34 can be used to determine how the spin wave sti�ness behave
at large distances as a function of temperature. We will discuss how in the next section.

Exercise: A very enlightening and stimulating activity for a quiet afternoon is to go thor-
ough the details leading to Eq. 34. The simplest way to do this is to study Chaikin and
Lubensky’s book [3], but it is also strongly recommendable to dig out the original papers
by Kosterlitz and Thouless [1, 7].

4.2 The KT transition

Let us first summarise the phenomenology of the Kosterlitz-Thouless transition. As the
temperature is increased more and more vortex pairs are thermally activated. This makes
⇤R

s decrease, see Eq. 34. This corresponds to a decrease in the increment of the free energy
induced by a certain twist vex. We can understand this from the fact that the phase field
⇥(r) becomes more and more distorted as the temperature is increased, hence the extra
perturbation caused by vex becomes relatively less important. Quantitatively one finds

⇤R
s =

�
⇤R

s (T�KT )[1 + const.(TKT � T )1/2] for T < TKT

0 for T > TKT .
(36)
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}  Superfluid 4He films: 

Source: [7] 
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eters of the static theory, three new param-
eters appear in this fit of the dynamical theory:
a dimensionless parameter In(2D/&ua') related to

the vortex diffusion constant D, the vortex-core
radius a, and the frequency ~ of the oscillator;
the coefficient of the free vortex dissipation; and

a background term, referred to above, which

plays almost no role in the transition region it-
self. In the ratio A/M, A is the area of the Mylar
substrate and M is the effective mass of the pen-

dulum bob when the pendulum is treated as a
linear oscillator. This ratio is obtained from a
knowledge of the area of the substrate and a mea-
surement of the sensitivity of the oscillator peri-
od to changes in the mass per unit area of the

adsorbed helium.

In the analysis of our data taken for different
coverages of adsorbed helium, we allow the value

of the Kosterlitz-Thouless jump in p, to be a free
parameter to be determined by an optimization of

the fit through a nonlinear least-squares routine. "
As an example the value for p, (T, ) obtained for
the fit shown in Fig. 2 is 0.96 times the exact
theoretical value, 8~k B(m/k)'T„given by Koster-
litz and Thouless.

For the calibration measurement, we hold the

temperature of the system constant and observe

the period of the oscillator as the mass per unit
area of adsorbed helium is increased. When the

coverage of helium is less than a critical amount,
which depends on the temperature at which the

observations are made, the adsorbed helium is
entirely locked to the substrate and contributes

its entire moment of inertia to the pendulum bob.

This serves to calibrate the torsion oscillator.
The surface area is taken to be the geometric

area of the Mylar film.

Since 1968 there has been evidence that the

super fluid density in two-dimensional helium

films might be nonzero at the superfluid onset.
This was shown most clearly in the third-sound

experiments of Rudnick et al. "and also by per-
sistent-current measurements on helium films, "
which indicated that the superfluid critical veloc-

ity was becoming zero while the superfluid den-

sity was still finite. However, neither third-

sound nor persistent-current measurements can

be used to pursue the question of the superfluid

density behavior in the transition region, since

the third-sound signals become heavily damped

and do not propagate, and persistent currents de-

cay away.
The first experiments to show that the dynamic

super fluid density goes continuously to zero were

the quartz-microbalance experiments of Chester
and Yang. " These experiments, which are very
similar in concept to the present work, were per-
formed in the MHz frequency range and showed,

as would now be expected on the basis of the dy-

namic theory, ' considerable broadening of the
transition region.

These older experiments can now be analyzed

in terms of our present understanding to obtain

estimates of the Kosterlitz-Thouless jump in the

superfluid mass per unit area at the two-dimen-
sional phase transition, Although it is not possi-
ble to follow a third-sound signal through the

transition region, it can be followed to the point
where the dissipation begins to rise rapidly. If
the third-sound signal disappears at this point,
then as can be seen in Fig. 2 the value of the

superfluid mass is still up on the shoulder of the

curve and a reasonably good estimate for the
static value of the Kosterlitz-Thouless jump can

be obtained. Recently, Rudnick" has rear-:xlyzed

his third-sound data us1ng his latest estimate of

the van der Waals constant, and has obtained
values for p, (T, ) which are in good agreement
with the value predicted by the Kosterlitz-Thou-
less theory. '+'
In Fig. 3 we have plotted as a function of the

transition temperature, the values for the static
jump in the superfluid density obtained from the

analysis of our data using the dynamic theory.
We have also included in Fig. 3 the estimates ob-

tained by Rudnick" and additional values provided

by Mochel and Hallock from their third-sound

E 5
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Q
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FIG. 3. Results of all of our data, in addition to
previous third-sound results for the discontinuous
superfluid density jump p, {T, ) as a function of temper-
ature. The solid line is the Kosterlitz-Thouless (beefs.
3 and 4) static theory.
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}  Phase transition in 2D XY-model 

}  Note: No typical transition in terms of Ginzburg 
Landau argument 
 (FerromagnetismàParamagnetism) 

 
}  Transition linked to unbinding and binding vortices 

}  Two behaviours for correlation function 

}  Superfluid density order parameter 
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Questions? 
 

Gibt es Fragen? 

26 



/29 

1.  P.M. Chaikin and T.C. Lubensky, Principles of condensed matter 
physics, Cambridge University Press, 1995. 

2.  H. J. Jensen, The Kosterlitz-Thouless Transition, Department of 
Mathematics, Imperial College (2003). 

3.  Matthew J. W. Dodgson ,Vortex-Unbinding Transition in the 2D XY-
model, Lecture 6 (2003). 

 
4.  J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973). 

5.  J.M. Kosterlitz, J. Phys. C 7, 1046 (1974). 

6.  N.D. Mermin and H. Wagner, Phys. Rev. Lett. 22 (1966) 1133. 

7.  D.J. Bishop and J.D. Reppy, Phys. Rev. Lett 40, 1727 (1978). 
 

27 



/29 

}  Correlation length: 

}  Approache critical temperature from above 
 à Correlation length diverges exponential: 

◦  Field distorted by unbound vortices 
◦  Not screened by nearby antivortices  
◦  At critical temperature antivortex and vortex pairs 

screen each other à Correlation length diverges to 
infinity  
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Here, TKT is the Kosterlitz-Thouless temperature at which vortex pairs unbind. The value
of TKT di�er from one system to another. In the 2d XY-model TKT /J ⇤ 0.893± 0.002 [4].
The remarkable thing is, as we shall see below, that the ratio

⌅R
s (T�KT )/TKT = 2/⇤ (37)

is universal for all systems that undergoes a KT-transition. Since ⌅R
s (T+

KT ) = 0 Eq. 37 is
referred to as the universal jump. The correlation length ⇥(T ) behaves in a very unusual way
as one approaches TKT from above. We are used to a relatively slow algebraic divergence of
the correlation length as the critical temperature is approached. For the KT-transition the
divergence is, however, much faster

⇥(T ) ⇥ exp

�
const.

(T � TKT )1/2

⇥

for T > TKT . (38)

Can we in a simple way understand this exponential divergence. Yes, we can. The phase
field is significantly distorted by unbound vortices, since these vortices are not screened
by a nearby anti-vortex. I.e. the phases �(r) can remain correlated over distances shorter
than the typical distance ⌅D⇧ = 1/

⌃
nub between unbound vortices of density nub [5]. Or in

other words, we expect the correlation length ⇥ ⇥ D. The vortices are thermally induced
and therefor their density is expected to depend on the temperature through a Boltzmann
factor exp(�Evor/T ).2 This argument can indicate the cause of the exponential dependence
of ⇥. But it is no more than an indication since the exponential dependence in Eq. 38 is
significantly di�erent from a simple Boltmann factor. This di�erence is due to corrective
renormalization e�ects.

Continuous phase transitions are accompanied by divergences in thermodynamic quan-
tities caused by the divergence of the correlation length as the critical temperature Tc is
approached. The singular part of the free energy density f can be estimated as the amount
of thermal energy Tc within a correlated volume ⇥d of f ⇥ Tc/⇥d. The specific heat cV is
given by the second derivative of the free energy cV = �T⇧2f/⇧T 2 ⇥ ⇧2⇥�d⇧T 2. For the
KT-transition the exponential divergence of ⇥(T ) in Eq. 38 is so rapid and occur over such
a narrow temperature range that the divergence in cV cannot be resolved in simulations or
in experiment. The measured cV is sketched in the Fig. 3 and is smooth through TKT with
a broad peak above TKT induced by the entropy released by the unbounding of the vortices
(see [3]).

4.3 The Green’s function for the vortex-vortex interaction

The behaviour describe in the previous subsection is obtained by a real space renormaliza-
tion procedure first devised by Kosterlitz [7]. A detailed and readable presentation of this
calculation can be found in Chaikin and Lubensky’s book [3]. Here we only briefly mention
the main ingredients of this calculation and leave it as an

2The situation described here is exactly what happens in the one dimensional so-called �4 model. This
model supports thermally activated solitons. The correlation length is set by the inverse of the soliton
density and diverges exponentially as the temperature goes to zero [6].
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