Superfluidity in 2 Dimensions: Kosterlitz & Thouless Phase Transition

Martina Dombrowski Hauptseminar: Physik der kalten Gase 04.06.2012

Introduction

- 1966 Mermin & Wagner–Theorem
 - No spontaneous long-range order in isotropic 2D lattice at finite temperature
 - No phase transition expected (anti-/ferromagnetism)
- 1973 Kosterlitz & Thouless (KT)
 - phase transition in systems in weak external fields
 - Vortex pairs binding $\leftarrow \rightarrow$ unbinding

Outline

- Introduction
- 2D XY-Model
 - Hamiltonian 0
 - Thermodynamics 0
 - Vortices 0
- Symmetry and Phase Transition
 - Mermin & Wagner Theorem 0
 - Correlation function 0
 - Low Temperature •
 - **High Temperature**
 - Superfluid density 0
- Kosterlitz Thouless Phase Transi
 - Superfluid density 0
 - Experiment 0
- **Conclusion & Outlook**

6

4

(g cm⁻²)

ρ_S(T_C)×10⁹ N ω t

т_с (к)

2D XY–Model

- Planar rotors
- Unit length
- > 2D square lattice
- Study systems as:
 - films of superfluid helium
 - superconducting materials
 - fluctuating surfaces

2D XY-Model: Hamiltonian

Hamiltonian:

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

• Hamiltonian at low temperature: With $\cos(\theta_i - \theta_j) \approx 1 - \frac{1}{2}(\theta_i - \theta_j)^2$ and $\theta_i - \theta_j = \partial_x \theta$ $H = E_0 + \frac{J}{2} \int d\mathbf{r} (\nabla \theta)^2$

With $E_0 = 2JN$

2D XY-Model: Thermodynamics

Partition function at low temperature

$$Z = e^{-\beta E_0} \int D[\theta] \exp\{-\beta \frac{J}{2} \int d\mathbf{r} (\nabla \theta)^2\}$$

$$Z = e^{-\beta E_0} \sum_{\theta_{vor}} \int D[\theta_{sw}] \exp\{-\beta (H[\theta_{vor}] + \frac{1}{2} \int d\mathbf{r}_1 \int d\mathbf{r}_2 \theta_{sw}(\mathbf{r}_1) \frac{\delta^2 H}{\delta \theta(\mathbf{r}_1) \delta \theta(\mathbf{r}_2)} \theta_{sw}(\mathbf{r}_2))\}$$

Sum: local minima \rightarrow vortices (left term) + fluctuations \rightarrow spin waves (right term)

2D XY-Model: Thermodynamics

Extremal condition:

$$\frac{\delta H}{\delta \theta(\mathbf{r})} = 0 \implies \nabla^2 \theta(\mathbf{r}) = 0$$

- Solutions:
 - **1.** Ground State: $\theta(\mathbf{r}) = constant$.
 - 2. Vortices:
 - Centre of vortex encircled:

$$\oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 2\pi n.$$

• No vortex centre encircled:

 $\oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 0.$

Vortices: Energy

Calculate energy of a single vortex:

• With:
$$2\pi n = \oint \nabla \theta(\mathbf{r}) \cdot d\mathbf{l} = 2\pi r |\nabla \theta|$$

• Substitute this into the Hamiltonian:

$$E_{vor} - E_0 = \frac{J}{2} \int d\mathbf{r} [\nabla \theta(\mathbf{r})]^2$$
$$= \frac{Jn^2}{2} \int_0^{2\pi} \int_a^L r dr \frac{1}{r^2}$$
$$= \pi n^2 J \ln(\frac{L}{a}).$$

Vortices: Pair Energy

> The energy of a vortex pair is given by:

 $E_{2vor}(R) = 2E_c + E_1 \ln(R/a)$

Vortices: Free energy F=E-TS

The free energy of a single vortex:

$$F = E_0 + (\pi J - 2k_B T)\ln(L/a)$$

- T < πJ/2k_B : Free energy diverges
 T > πJ/2k_B : Free energy minimized
 → Existence of free vortices lower free energy
- Identify the critical temperature:

 $T_{KT} = \pi J / 2k_B$

Symmetry and Phase Transition

Why is KT phase transition special?

Phase Transition usually linked with symmetry breaking. Long-range order required.

We will observe no long range order. But find a phase transition.

Mermin & Wagner Theorem

- In 2D fluctuations at finite temperature
 - No long-range order
 - No usual phase transition
 - No symmetry break possible
- \rightarrow Mean magnetisation goes to zero at finite temperature
- \rightarrow Fluctuations destroys long-range order

Correlation function

- Correlation function:
 - Low temperature
 - High temperature
- Find two solutions
 → hint for phase transition

Correlation function: Low temperature

Look at correlation function :

$$\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0) \rangle = \langle \cos(\theta(\mathbf{r}) - \theta(0)) \rangle$$

= $Re[\langle \exp\{i(\theta(\mathbf{r}) - \theta(0))\} \rangle]$
= $\exp[g(r)]$

 \rightarrow Black Board Calculation

Black Board Calculation

15/29

Correlation function: Low temperature

Behaviour of correlation function:

$$\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0) \rangle \simeq \begin{cases} e^{-\text{const.}T} & \text{for } d > 2\\ \left(\frac{r}{L}\right)^{-\eta} & \text{for } d = 2\\ \exp(-\frac{T}{2Ja}r) & \text{for } d = 1. \end{cases}$$

• for $r
ightarrow \infty$

1: d > 2: correlation survives \rightarrow ordered phase.

2. d=2 : decays with exponent $\eta=T/2\pi J$

 \rightarrow quasi-long-range order

1. d = 1: decays to zero exponentially

Correlation function: High temperature

• Start again with: $\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0) \rangle = \langle \cos(\theta(\mathbf{r}) - \theta(0)) \rangle$ $= Re[\langle \exp\{i(\theta(\mathbf{r}) - \theta(0))\} \rangle]$

Behaviour of correlation function:

$$\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0)\rangle = e^{-\frac{r}{\xi}}$$

For $r \to \infty$. → correlation decays exponentially

• With: $\xi = L/\ln(2T/J)$

Correlation function: Summary

Two solutions:

1. Low temperature

$$\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0)\rangle \simeq \left(\frac{r}{L}\right)^{-T/2\pi J}$$

- power-law decay \rightarrow Quasi-long-range order
- 2. High temperature

$$\langle \mathbf{S}(\mathbf{r})\mathbf{S}(0)\rangle = e^{-\frac{r}{\xi}}$$

- Exponential decay \rightarrow No long-range order
- CONCLUSION: Implies there must be a phase transition

Superfluid density ho_s

- Correlation function implies phase transition
- Activated vortex&antivortex-pairs responsible
- Superfluid density measures the energy change caused by a twist
- Order parameter
- \rightarrow Take a look

Superfluid density ho_s

• Start with applying a twist: $heta(\mathbf{r})= heta_0(\mathbf{r})+\mathbf{v}_{ex}\cdot\mathbf{r}$

• Increase:
$$F(\mathbf{v}_{ex}) - F(0) = \frac{1}{2} V \rho_s^R v_{ex}^2$$

• With some algebra
and the vortex density $n(\mathbf{r}) = \sum_{\alpha} n_{\alpha} \delta(\mathbf{r} - \mathbf{r}_{\alpha})$:
 $\rho_s^R = \rho_s + \frac{\rho_s^2}{T} \int d^2 r \langle \mathbf{n}(\mathbf{r}) \cdot \mathbf{n}(0) \rangle$

Note: integral is negative for vortex & anti-vortex pairs
 → reduce superfluid density

Superfluid density ρ_s

One Finds:

$$\rho_s^R = \begin{cases} \rho_s^R (T_{KT}^-) [1 + const. (T_{KT} - T)^{1/2}] & \text{for } T < T_{KT} \\ 0 & \text{for } T > T_{KT} \end{cases}$$

Universal for 2D systems:

$$\rho_s^R(T_{KT}^-)/T_{KT} = 2/\pi$$

Note: Critical temperature differ for one sample to another

Kosterlitz & Thouless Phase Transition

Phenomenological summary:

- Increasing the temperature ($0 < T < T_{KT}$) activates vortex pairs
- Superfluid density decreases
- Phase field becomes distorted as temperature increases
- At high temperature vortex pairs unbind

Kosterlitz & Thouless Phase Transition

Superfluid density:

Experiment

Superfluid ⁴He films:

Source: [7]

Conclusion & Outlook

- Phase transition in 2D XY-model
- Note: No typical transition in terms of Ginzburg Landau argument (Ferromagnetism->Paramagnetism)
- Transition linked to unbinding and binding vortices
- Two behaviours for correlation function
- Superfluid density order parameter

Questions?

Gibt es Fragen?

References

- 1. P.M. Chaikin and T.C. Lubensky, *Principles of condensed matter physics*, Cambridge University Press, 1995.
- 2. H. J. Jensen, The Kosterlitz-Thouless Transition, Department of Mathematics, Imperial College (2003).
- 3. Matthew J. W. Dodgson ,Vortex-Unbinding Transition in the 2D XYmodel, Lecture 6 (2003).
- 4. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
- 5. J.M. Kosterlitz, J. Phys. C 7, 1046 (1974).

- 6. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 22 (1966) 1133.
- 7. D.J. Bishop and J.D. Reppy, Phys. Rev. Lett 40, 1727 (1978).

Kosterlitz & Thouless Phase Transition

Correlation length:

$$\xi(T) \sim \exp\left(\frac{const.}{(T - T_{KT})^{1/2}}\right)$$
 for $T > T_{KT}$.

- Approache critical temperature from above
 → Correlation length diverges exponential:
 - Field distorted by unbound vortices
 - Not screened by nearby antivortices
 - At critical temperature antivortex and vortex pairs screen each other → Correlation length diverges to infinity