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how to realize 1D: cylindrically symmetric traps

@ strong confinement in
transverse direction, weak
confinement along
longitutinal direction

condition for 1D

kg T < hw

excitations in transverse directions are frozen out
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BEC in 1D

@ reduced dimensionality = absence of long range order and
true BEC
@ finite size L of the system
o L > ¢&: thermal gas (high T)
e L < &: system is smaller than the correlation function decays
= thermal- and quantum fluctuations in the size of the system

quasi-condensate
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description as Luttinger Liquid

effective theory for low energy excitations for bosons
density-phase representation of \UL: \III3 = /p(x)e=#X)
local fluctuation field M(x): p(x) o po + M(x)

M(x), ¢(x) are conjugate conanical fields, satisfying
[p(x), 0] = i6(x = X)

H ~ Zh—m / dx [VJ (V(x))? + vaN(x)?

__ mhpg _
Vi="m N = ﬁhpg

= 1D: always fluctuations

conclusion
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correlation functions

<uﬂ(x)\u(o)> o X7

correlation exponent n = 2 “/’—,{I
@ in a LL the correlation function decays algebraically

@ same proportionality for bosons and fermions
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different regimes

<w*(x)w(0)> o X7

@ high T: exponential decay of the
correlation function: e €7
= thermal fluctuations

_1
o low T: algebraically decay: x
= quantum fluctuations

experimental realization conclusion

Thomas temperature (nK)
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conclusion

different regimes

Thomas temperature (nK)
Fermi\ 0.5 5 50 500

three regimes below the degeneracy
temperature Ty =~ Nhw (green)

quasi-condensate ,
= .
e BEC < e
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Tonks
gas

@ quasi-condensate

@ Tonks-Girardeau gas of impenetrable
bosons

thermal gas
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different regimes

weakly and strong interacting regime

o weakly interacting regime: £ > % gggggggggggggggggggggggggggggggg

= small parameter v = ,/,Sln <1 Y”ﬂm

@ strong interacting regime

»7>1 NN

characteristic coherence length &
mean particle separation
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one important parameter 7y

@ interaction energy: Ej,: = mpgip

. . h2n2
o kinetic energy: Eyjp = — 12

y Eine _ mgip
Ewin  h2nip

conclusion

~ characterizes the behavior of trapped 1D-gases
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one important parameter vy

Thomas Fermi regime (y < 1)  Tonks-Girardeau regime (7 > 1)

@ high density

@ weakly interaction @ low density

@ mean field regime well @ strong interaction
described by the GPE o fermionic properties
@ BEC is possible

@ the system retains its 3D
feature

<l 22 S NN NN



one-dimensional BEC

regimes

weakly interacting regime

o 7K1

@ reducing N
=> macroscopic occupation
of the ground state

strongly interacting regime
o v>1

@ reducing N
= strongly interacting
Tonks-Girardeau gas

theoretical description
0000000000000

N4%0

atom number N

experimental realization

conclusion

10’ : ‘
Thomas-Fermi BEC 1=0.2
10%, y=1;
] . y=5]
01; ".\ |
{ gaussian *., Tonks gas |
'BEC |
L . *a . i
10> 100 10° 100 10’
ol
_ mgl

CT R



one-dimensional BEC theoretical description experimental realization conclusion
0000000000000 000

@ Tonks gas and Bose-Fermi mapping:
WB(Xla ceey X,,) = ’\UF(Xl, ...,Xn)‘
@ interaction: repulsive zero-range force

@ Lieb and Liniger (1963): exact solution as a mathematical
problem



e interaction: impenetrable core: W(xy, ..., xy) = 0 if x; = x;

o Vg = AV,

@ the relationship permits comparison of approximation methods
designed for Fermi systems
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Tonks-Girardeau gas, v — 0o

@ interaction: impenetrable core: W(xy,...,xy) = 0 if x; = X;

] WB = A\UF

@ the relationship permits comparison of approximation methods
designed for Fermi systems
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Tonks-Girardeau gas, v — 0o

@ interaction: impenetrable core: W(xy,...,xy) = 0 if x; = X;

] WB = A\UF

@ the relationship permits comparison of approximation methods
designed for Fermi systems

° groundstate
’\UF‘ o |det[pi(x})]| o< Mjsy ’sm [% —x,)”
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Tonks-Girardeau gas, v — 0o

@ ground state energy: E = Zn 2m = hzé’;ﬁf)z
® density distribution |WE(x)|* = |5 (x)|°

@ pair correlation function
(W)W )W (O)W(x)) R 1 ()

@ correlation function "
g(x) = (WL(OWa(x)) # (VHOWF(x))

(absolute value of det matters)

@ momentum distribution n(p) ~ [ e P g(x)dx

different to the one of free fermions

.

experimental realization conclusion

Fermionized Bosons

ne)

Fermions




we want to solve now the one-dimensional problem in general
how is the interaction?

@ scattering is a 3D-process

@ spherical scattering waves
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we want to solve now the one-dimensional problem in general
how is the interaction?

@ scattering is a 3D-process

@ spherical scattering waves
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Interaction

we want to solve now the one-dimensional problem in general
how is the interaction?
@ scattering is a 3D-process
@ spherical scattering waves
@ find an effective one-dimensional potential with a 1D
scattering amplitude

conclusion
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Interaction

model to describe the binary collisions between cold atoms:

axially 2D harmonic potential of a frequency w

Atomic motion along the Z axis is free

pseudopotential U(r) = gd(r) (%r)

atomic motion is cooled down below the transverse vibrational
energy hw |
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Interaction

model to describe the binary collisions between cold atoms:
a) axially 2D harmonic potential of a frequency w;
) Atomic motion along the Z axis is free
c) pseudopotential U(r) = gd(r) (%r)
) atomic motion is cooled down below the transverse vibrational
energy hw,
Schrédinger equation:

Pz 0 B
Lu + gd(r) (arr> + Hi(px Py X, y) | W = EV
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Interaction

Schrédinger equation:

Pz 9 _
25800 (27 + Halpropro)| v = BV

2, 2
__ 2rmh’a H, = Pxt+Py + pw’ (C+y?)
8= wo! - 2 2

@ incident wave: particle in the groundstate of H,: e*?®,_¢ ,» _o(p)

2,2
o longitutinal kinetic energy: "2 < En—d m,—0 — En—o,m—0 = 2hw).

Enm, = hw, (n+ 1): energy of the 2D harmonic oscillator
W(Z, P) — [eikzz + 7‘:eveneikz‘zl + foddeikz‘z‘]q)0,0(p)

conclusion
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conclusion

Interaction

@ one-dimensional scattering amplitudes can be calculated
analytically for the potential U(r) = gd(r) (£r)

o f(ky) = _1+"IilzalD

1 ~
_1+ik131D—(’)((kzal)3) ~
2
e scattering length: ajp = — - (1 - C2 )

2a a;



one-dimensional BEC theoretical description experimental realization conclusion
00000®0000000000

Interaction

@ one-dimensional scattering amplitudes can be calculated
analytically for the potential U(r) = gd(r) (£r)

_ 1 ~ _ 1
o fks) = Ttikaip—0((kal)?) ~ ~ 1tikap

2
@ scattering length: a;p = —% (1 — Ci>

e
@ calculate a scattering amplitude for a 1D §-potential
Uip(z) = g1p4(2)
= spherical scattering process reduces to 1D description with
the same phase shift
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exact solution

Bethe ansatz:

for xg < xo < ... < xp
the P’s are the N! possible permutations of the set 1,...., .
physical interpretation:

@ when the particle coordinates are all distinct = potential
energy term vanishes
= eigenstates: linear combination of single particle plane
waves

@ if 2 particles n and m have the same coordinate: collision

@ considering all possible sequences of two-body collisions leads
to the wavefunction.
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exact solution

when permuatations P and P’ only differ by the transposition of 1

and 2 P
_Ki—kTIC '
a(P)_ kl—kz—ica(P)

= the coefficients are fully determined by two-body collisions.



one-dimensional BEC theoretical description experimental realization conclusion
0O0000000e0000000

exact solution

the momenta k, are determined by requiring that the wf obeys
periodic boundary conditions:

N .
eiknL: H kn—km+/C
kn — km — ic
m=1,m#n

foreach1 < n<N.

taking the logarithm = the eigenstates are labeled by a set of
integers I,

n m — IC

2nl, 1 kn — km + ic
o= 1 St (e )

ground state: filling the pseudo Fermi-sea of the /, variables.
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exact solution

27r/ km + ic
kn = LZ/ (k — km >

in the contimuum limit the sum becomes an integral for the density

1
p(k,,) = L(kn+1 o kn)

©  cp(K)
27Tp(k):1+2/q mdx
—4qo0

with p(k) = 0 for |k| > qo

and the normalization
do
Po = / dkp(k)
—qo
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exact solution

by changing to dimensionless variables (g(u) = p(qgox)), this leads
to the three equations:

1 u
1422 /_1 Az+’~“'((u_)u,)2du' — g (u) (1)
3 1
)= [ elwiid )

1
7/_1 g(u)du =\ (3)
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exact solution

in the limit ¢ — oo

1+2/\/ pEa )du—27rg() glu)=o— (4

27

e(y) = zz/g(u)uzdué/fdu (5)

In the limit of strong interaction the ground state energy becomes
that of the TG gas
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discussion

@ cutoff momentum K =" 1p
@ chemical potential: u = an =’ (3e - 'yg—fy) B

© potential energy: v = ﬁa@E =’ 'ydv — 0

@ Kiylre
@ pirre?
@ Viyp?
@ (e
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discussion

@ physical properties of the Lieb-Liniger gas depend only on the

dimensionless ratio v = ,Tco

@ 7 — oo: fermionic properties (TG gas)
@ low density corresponds to strong interaction, which is the
reverse in 3D
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excitation spectrum

10—
!
/
@ double spectrum sf L e
. , . | 2. /P 4 |
@ Bogoliubov's perturbation theory: il ot ;

e quiet accurately for a weak potential
e second spectrum entirely
unaccounted

o for small excitations: linear spectrum
e(p) = vsp
velocity of sound:

1
.
v =2 ()~ %)




excitation spectrum

fermi sea
(@ =021
qr 0 as ¥
® ;ﬂz%
@) f .
a 0 a 1 i Z .
=gt b -
{e) (pgq\ 0 0.5 1 1.5 Z 25 3N
3 L R p/n
kb o k.

e y=o0 E(p) = %+27rnp
= fermi gas
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experimental setup

Weiss, Kinoshita:
enter the TG regime with cold 8’Rb atoms
by trapping them with two light traps

@ blue-detuned beams form 2D optical
lattice
@ atoms are confined in 1D tubes

@ red-detuned waves trap the atoms
axially.

experimental realization

conclusion
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the two light traps are independent

@ transverse confinement can be made
tighter = increases y

@ strengthening the axial confinement
decreases

@ = scan « an make the atoms either
BEC-like or TG like

experimental realization conclusion
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measurements

measurement of ¢

@ suddenly turn off crossed dipole trap
@ atoms expand ballistically
@ take images after 7ms and 17 ms

0= @ as a function of Uy
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measurements
P=12 mW P=320 mW
TG-regime mean field-regime
A o 4w sym 4 5 B 501 o2 osyavg
Al . ’
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@ Uy > 20E,ec: only vertical expansion
e AW: transverse width (squares)

@ green: exact mean-filed theory, v < 1
@ blue: exact TG-theory, v > 1
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conclusion

@ reduced dimensions strongly enhances quantum fluctuations
@ completely new features in 1D

@ two regimes: weakly interacing (7 < 1), strong interacting
(v>1)

@ the interaction can be described by a §-function potential with
a one-dimensional coupling strength gip, which is linked to
3D parameters

@ in the strong interacting regime (y > 1) the bosons get
Fermi-like features

@ experimental realization with optical lattices
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