theoretical description

experimental realization

conclusion

BEC in one dimension

Tilmann John

11. Juni 2013

theoretical description

experimental realization

conclusion

Outline

2 theoretical description

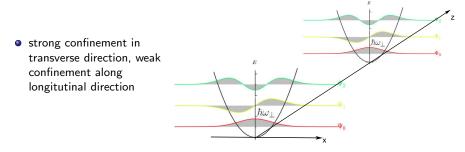
- Tonks-Girardeau gas
- Interaction
- exact solution (Lieb and Liniger)

theoretical description

experimental realization

conclusion

how to realize 1D: cylindrically symmetric traps



condition for $1\mathsf{D}$

 $k_BT \ll \hbar \omega_{\perp}$

excitations in transverse directions are frozen out

BEC in 1D

- $\bullet\,$ reduced dimensionality $\Rightarrow\,$ absence of long range order and true BEC
- finite size *L* of the system
 - $L > \xi$: thermal gas (high T)
 - L < ξ: system is smaller than the correlation function decays
 ⇒ thermal- and quantum fluctuations in the size of the system quasi-condensate

description as Luttinger Liquid

- effective theory for low energy excitations for bosons
- density-phase representation of Ψ_B^{\dagger} : $\Psi_B^{\dagger} = \sqrt{\rho(x)}e^{-i\varphi(x)}$
- local fluctuation field $\Pi(x)$: $\rho(x) \propto \rho_0 + \Pi(x)$
- $\Pi(x), \varphi(x)$ are conjugate conanical fields, satisfying $[\varphi(x), \Pi(x')] = i\delta(x x')$

$$H \approx \frac{\hbar^2}{2m} \int dx \left[v_J \left(\nabla \varphi(x) \right)^2 + v_N \Pi(x)^2 \right]$$

theoretical description

experimental realization

conclusion

correlation functions

$$\left\langle \Psi^{\dagger}(x)\Psi(0)
ight
angle \propto x^{-rac{1}{\eta}}$$

correlation exponent $\eta = 2\sqrt{\frac{v_J}{v_N}}$

- in a LL the correlation function decays algebraically
- same proportionality for bosons and fermions

theoretical description

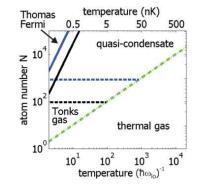
experimental realization

conclusion

different regimes

$$\left\langle \Psi^{\dagger}(x)\Psi(0)
ight
angle \propto x^{-rac{1}{\eta}}$$

- high T: exponential decay of the correlation function: e^{-x/ξT} ⇒ thermal fluctuations
- low T: algebraically decay: x^{-¹/_η} ⇒ quantum fluctuations



theoretical description

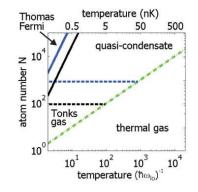
experimental realization

conclusion

different regimes

three regimes below the degeneracy temperature $T_d \approx N \hbar \omega$ (green)

- BEC
- quasi-condensate
- Tonks-Girardeau gas of impenetrable bosons



theoretical description

experimental realization

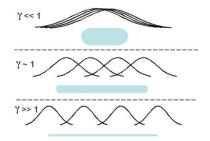
conclusion

different regimes

weakly and strong interacting regime

- weakly interacting regime: $\xi \gg \frac{1}{n}$ \Rightarrow small parameter $\gamma = \sqrt{\frac{1}{\xi n}} \ll 1$
- strong interacting regime $\Rightarrow \gamma \gg 1$

characteristic coherence length ξ mean particle separation $\frac{1}{n}$



theoretical description

experimental realization

conclusion

one important parameter γ

• interaction energy:
$$E_{int} = n_{1D}g_{1D}$$

• kinetic energy:
$$E_{kin} = \frac{\hbar^2 n_{1D}^2}{m}$$

$$\gamma = \frac{E_{int}}{E_{kin}} = \frac{mg_{1D}}{\hbar^2 n_{1D}}$$

 γ characterizes the behavior of trapped 1D-gases

conclusion

one important parameter γ

Thomas Fermi regime ($\gamma \ll 1$)

- high density
- weakly interaction
- mean field regime well described by the GPE
- BEC is possible
- the system retains its 3D feature

γ<<1

Tonks-Girardeau regime ($\gamma \gg 1$)

- low density
- strong interaction
- fermionic properties

theoretical description

experimental realization

conclusion

regimes

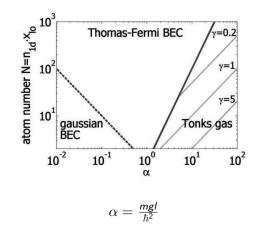
weakly interacting regime

• $\gamma \ll 1$

reducing N
 ⇒ macroscopic occupation
 of the ground state

strongly interacting regime

- $\gamma \gg 1$
- reducing N
 ⇒ strongly interacting
 - Tonks-Girardeau gas



- Tonks gas and Bose-Fermi mapping: $\Psi_B(x_1,...,x_n) = |\Psi_F(x_1,...,x_n)|$
- interaction: repulsive zero-range force
- Lieb and Liniger (1963): exact solution as a mathematical problem

theoretical description

experimental realization

conclusion

Tonks-Girardeau gas, $\gamma \to \infty$

- interaction: impenetrable core: $\Psi(x_1, ..., x_N) = 0$ if $x_i = x_j$
- $\Psi_B = A \Psi_F$
- the relationship permits comparison of approximation methods designed for Fermi systems

Tonks-Girardeau gas, $\gamma \to \infty$

- interaction: impenetrable core: $\Psi(x_1, ..., x_N) = 0$ if $x_i = x_j$
- $\Psi_B = A \Psi_F$
- the relationship permits comparison of approximation methods designed for Fermi systems
- groundstate: $\Psi_0^B = \left| \Psi_0^F \right| \propto \left| det[\varphi_i(x_j)] \right| \propto \prod_{j>I} \left| \sin \left[\frac{\pi}{L} (x_j - x_I) \right] \right|$

Tonks-Girardeau gas, $\gamma \to \infty$

- interaction: impenetrable core: $\Psi(x_1, ..., x_N) = 0$ if $x_i = x_j$
- $\Psi_B = A \Psi_F$
- the relationship permits comparison of approximation methods designed for Fermi systems
- groundstate:

 $\Psi_0^B = \left| \Psi_0^F \right| \propto \left| det[\varphi_i(x_j)] \right| \propto \Pi_{j>l} \left| \sin\left[\frac{\pi}{L} (x_j - x_l) \right] \right|$

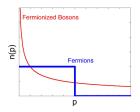
theoretical description

experimental realization

conclusion

Tonks-Girardeau gas, $\gamma \to \infty$

- ground state energy: $E = \sum_n \frac{\hbar^2 k_n^2}{2m} = \frac{\hbar^2 (\pi \rho_0)^2}{6\pi m}$
- density distribution $\left|\Psi_{0}^{B}(x)\right|^{2}=\left|\Psi_{0}^{F}(x)\right|^{2}$
- pair correlation function $\langle \Psi^{\dagger}(x)\Psi^{\dagger}(0)\Psi(0)\Psi(x)\rangle \stackrel{x\ll L}{\approx} 1 - \left(\frac{\sin(\pi\rho x)}{\pi\rho x}\right)^{2}$
- correlation function $g(x) = \langle \Psi_B^{\dagger}(0)\Psi_B(x) \rangle \neq \langle \Psi_F^{\dagger}(0)\Psi_F(x) \rangle$ (absolute value of det matters)
- momentum distribution $n(p) \approx \int e^{-ipx} g(x) dx$ different to the one of free fermions



theoretical description

experimental realization

conclusion

Interaction

we want to solve now the one-dimensional problem in general how is the interaction?

- scattering is a 3D-process
- spherical scattering waves

we want to solve now the one-dimensional problem in general how is the interaction?

- scattering is a 3D-process
- spherical scattering waves
- find an effective one-dimensional potential with a 1D scattering amplitude

we want to solve now the one-dimensional problem in general how is the interaction?

- scattering is a 3D-process
- spherical scattering waves
- find an effective one-dimensional potential with a 1D scattering amplitude

model to describe the binary collisions between cold atoms:

- a) axially 2D harmonic potential of a frequency ω_{\perp}
- b) Atomic motion along the Z axis is free
- c) pseudopotential $U(r) = g\delta(r)\left(\frac{\partial}{\partial r}r\right)$
- d) atomic motion is cooled down below the transverse vibrational energy $\hbar\omega_{\perp}$

Schrödinger equation:

$$\left[\frac{p_z}{2\mu} + g\delta(r)\left(\frac{\partial}{\partial r}r\right) + H_{\perp}(p_x, p_y, x, y)\right]\Psi = E\Psi$$

model to describe the binary collisions between cold atoms:

- a) axially 2D harmonic potential of a frequency ω_{\perp}
- b) Atomic motion along the Z axis is free
- c) pseudopotential $U(r) = g\delta(r)\left(\frac{\partial}{\partial r}r\right)$
- d) atomic motion is cooled down below the transverse vibrational energy $\hbar\omega_{\perp}$

Schrödinger equation:

$$\left[\frac{p_z}{2\mu} + g\delta(r)\left(\frac{\partial}{\partial r}r\right) + H_{\perp}(p_x, p_y, x, y)\right]\Psi = E\Psi$$

conclusion

Interaction

Schrödinger equation:

$$\left[\frac{p_z}{2\mu} + g\delta(r)\left(\frac{\partial}{\partial r}r\right) + H_{\perp}(p_x, p_y, x, y)\right]\Psi = E\Psi$$
$$g = \frac{2\pi\hbar^2 a}{\mu}, \ H_{\perp} = \frac{p_x^2 + p_y^2}{2\mu} + \frac{\mu\omega_{\perp}^2(x^2 + y^2)}{2}$$

• incident wave: particle in the groundstate of H_{\perp} : $e^{ik_z z} \Phi_{n=0,m_z=0}(\rho)$

• longitutinal kinetic energy: $\frac{\hbar^2 k_z^2}{2\mu} < E_{n=2,m_z=0} - E_{n=0,m_z=0} = 2\hbar\omega_{\perp}$ $E_{n,m_z} = \hbar\omega_{\perp}(n+1): \text{ energy of the 2D harmonic oscillator}$ $\Psi(z,\rho) \rightarrow [e^{ik_z z} + f_{even}e^{ik_z|z|} + f_{odd}e^{ik_z|z|}]\Phi_{0,0}(\rho)$

• one-dimensional scattering amplitudes can be calculated analytically for the potential $U(r) = g\delta(r) \left(\frac{\partial}{\partial r}r\right)$

•
$$f(k_z) = -\frac{1}{1+ik_z a_{1D} - \mathcal{O}((k_z a_\perp)^3)} \approx -\frac{1}{1+ik_z a_{1D}}$$

• scattering length:
$$a_{1D} = -\frac{a_{\perp}^2}{2a} \left(1 - C\frac{a}{a_{\perp}}\right)$$

• calculate a scattering amplitude for a 1D δ -potential $U_{1D}(z) = g_{1D}\delta(z)$

 \Rightarrow spherical scattering process reduces to 1D description with the same phase shift

• one-dimensional scattering amplitudes can be calculated analytically for the potential $U(r) = g\delta(r) \left(\frac{\partial}{\partial r}r\right)$

•
$$f(k_z) = -\frac{1}{1+ik_z a_{1D} - \mathcal{O}((k_z a_\perp)^3)} \approx -\frac{1}{1+ik_z a_{1D}}$$

• scattering length:
$$a_{1D} = -\frac{a_{\perp}^2}{2a} \left(1 - C\frac{a}{a_{\perp}}\right)$$

• calculate a scattering amplitude for a 1D δ -potential $U_{1D}(z) = g_{1D}\delta(z)$

 \Rightarrow spherical scattering process reduces to 1D description with the same phase shift

Bethe ansatz:

$$\Psi(x_1,...,x_N) = \sum_{P} a(P) e^{i \sum_n k_{P(n)} x_n}$$

for $x_1 < x_2 < ... < x_N$

the P's are the N! possible permutations of the set 1, ..., N. physical interpretation:

 when the particle coordinates are all distinct ⇒ potential energy term vanishes

 \Rightarrow eigenstates: linear combination of single particle plane waves

- if 2 particles *n* and *m* have the same coordinate: collision
- considering all possible sequences of two-body collisions leads to the wavefunction.

when permuatations P and P' only differ by the transposition of 1 and 2

$$a(P) = rac{k_1 - k_2 + ic}{k_1 - k_2 - ic} a(P')$$

 \Rightarrow the coefficients are fully determined by two-body collisions.

the momenta k_n are determined by requiring that the wf obeys periodic boundary conditions:

$$e^{ik_nL} = \prod_{m=1,m\neq n}^N \frac{k_n - k_m + ic}{k_n - k_m - ic}$$

for each $1 \le n \le N$. taking the logarithm \Rightarrow the eigenstates are labeled by a set of integers I_n

$$k_n = \frac{2\pi I_n}{L} + \frac{1}{L} \sum_m \log\left(\frac{k_n - k_m + ic}{k_n - k_m - ic}\right)$$

ground state: filling the pseudo Fermi-sea of the I_n variables.

$$k_n = \frac{2\pi I_n}{L} + \frac{1}{L} \sum_m \log\left(\frac{k_n - k_m + ic}{k_n - k_m - ic}\right)$$

in the contimuum limit the sum becomes an integral for the density

$$\rho(k_n) = \frac{1}{L(k_{n+1} - k_n)}$$
$$2\pi\rho(k) = 1 + 2\int_{-q_0}^{q_0} \frac{c\rho(k')}{c^2 + (k - k')^2} dx$$

with $\rho(k) = 0$ for $|k| > q_0$ and the normalization

$$\rho_o = \int_{-q_0}^{q_0} dk \rho(k)$$

theoretical description

experimental realization

conclusion

exact solution

by changing to dimensionless variables $(g(u) = \rho(q_0 x))$, this leads to the three equations:

$$1 + 2\lambda \int_{-1}^{1} \frac{g(u')}{\lambda^2 + (u - u')^2} du' = 2\pi g(u)$$
(1)

$$e(\gamma) = \frac{\gamma^3}{\lambda^3} \int_{-1}^{1} g(u) u^2 du$$
(2)

$$\gamma \int_{-1}^{1} g(u) du = \lambda \tag{3}$$

with $\gamma = \frac{c}{\rho_0}$, $\lambda = \frac{c}{q_0}$, $g(u) = \rho(q_0 x)$ $E_0 = N\rho^2 e(\gamma)$

conclusion

exact solution

in the limit $c
ightarrow \infty$

$$1 + 2\lambda \int_{-1}^{1} \frac{g(u')}{\lambda^2 + (u - u')^2} du' = 2\pi g(u) \Rightarrow g(u) \to \frac{1}{2\pi}$$
(4)

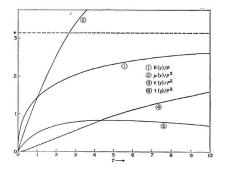
$$e(\gamma) = \frac{\gamma^3}{\lambda^3} \int g(u) u^2 du \Rightarrow \int u^2 du$$
 (5)

In the limit of strong interaction the ground state energy becomes that of the TG gas $% \left(T_{\mathrm{TG}}^{\mathrm{TG}}\right) =0$

discussion

- $\textbf{0} \quad \text{cutoff momentum } K \stackrel{\gamma = \infty}{\to} \pi \rho$
- 3 chemical potential: $\mu = \frac{\partial E_0}{\partial N} = \rho^2 \left(3e \gamma \frac{de}{d\gamma} \right) \rightarrow \pi^2 \rho^2$
- **3** potential energy: $v = \frac{c}{N} \frac{\partial}{\partial c} E_0 = \rho^2 \gamma \frac{de}{d\gamma} \to 0$

• kinetic energy:
$$t = \frac{1}{N}E_0 - v = \rho^2\left(e - \gamma \frac{de}{d\gamma}\right) \rightarrow \frac{\pi^2 \rho^2}{3}$$



discussion

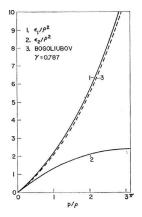
- physical properties of the Lieb-Liniger gas depend only on the dimensionless ratio $\gamma=\frac{c}{\rho_0}$
- $\gamma \to \infty$: fermionic properties (TG gas)
- low density corresponds to strong interaction, which is the reverse in 3D

conclusion

excitation spectrum

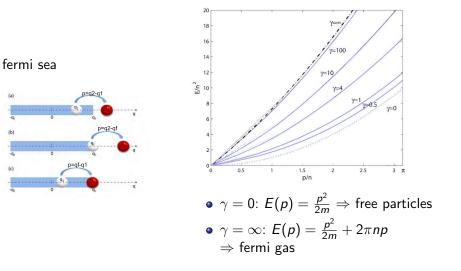
- double spectrum
- Bogoliubov's perturbation theory:
 - quiet accurately for a weak potential
 - second spectrum entirely unaccounted
- for small excitations: linear spectrum $\epsilon(p) = v_s p$ velocity of sound:

$$v_{s} = 2\left(\mu(\gamma) - \frac{1}{2}\gamma \frac{\partial\mu(\gamma)}{\partial\gamma}\right)^{\frac{1}{2}}$$



conclusion

excitation spectrum

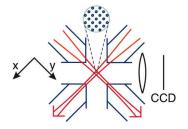


conclusion

experimental setup

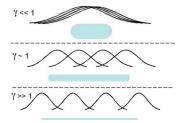
Weiss, Kinoshita: enter the TG regime with cold $^{87}\rm{Rb}$ atoms by trapping them with two light traps

- blue-detuned beams form 2D optical lattice
- atoms are confined in 1D tubes
- red-detuned waves trap the atoms axially.



the two light traps are independent

- transverse confinement can be made tighter \Rightarrow increases γ
- $\bullet\,$ strengthening the axial confinement decreases $\gamma\,$
- \Rightarrow scan γ an make the atoms either BEC-like or TG like



conclusion

measurements

measurement of $\boldsymbol{\epsilon}$

- suddenly turn off crossed dipole trap
- atoms expand ballistically
- take images after 7 ms and 17 ms

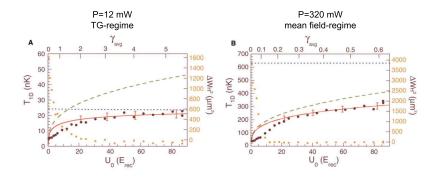
•
$$\epsilon = \frac{k_B T_{1D}}{2}$$
 as a function of U_0

theoretical description

experimental realization

conclusion

measurements



- $U_0 > 20E_{rec}$: only vertical expansion
- ΔW : transverse width (squares)
- green: exact mean-filed theory, $\gamma \ll 1$
- blue: exact TG-theory, $\gamma \gg 1$

conclusion

- reduced dimensions strongly enhances quantum fluctuations
- completely new features in 1D
- two regimes: weakly interacing ($\gamma \ll$ 1), strong interacting ($\gamma \gg$ 1)
- the interaction can be described by a δ -function potential with a one-dimensional coupling strength g_{1D} , which is linked to 3D parameters
- in the strong interacting regime ($\gamma \gg 1)$ the bosons get Fermi-like features
- experimental realization with optical lattices