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how to realize 1D: cylindrically symmetric traps

strong confinement in
transverse direction, weak
confinement along
longitutinal direction

z

x

condition for 1D

kBT � ~ω⊥

excitations in transverse directions are frozen out
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BEC in 1D

reduced dimensionality ⇒ absence of long range order and
true BEC

finite size L of the system

L > ξ: thermal gas (high T )
L < ξ: system is smaller than the correlation function decays
⇒ thermal- and quantum fluctuations in the size of the system
quasi-condensate
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description as Luttinger Liquid

effective theory for low energy excitations for bosons

density-phase representation of Ψ†B : Ψ†B =
√
ρ(x)e−iϕ(x)

local fluctuation field Π(x): ρ(x) ∝ ρ0 + Π(x)

Π(x), ϕ(x) are conjugate conanical fields, satisfying
[ϕ(x),Π(x ′)] = iδ(x − x ′)

H ≈ ~2

2m

∫
dx
[
vJ (∇ϕ(x))2 + vNΠ(x)2

]
vJ = π~ρ0

m
,vN = k

π~ρ20
⇒ 1D: always fluctuations
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correlation functions

〈
Ψ†(x)Ψ(0)

〉
∝ x−

1
η

correlation exponent η = 2
√

vJ
vN

in a LL the correlation function decays algebraically

same proportionality for bosons and fermions
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different regimes

〈
Ψ†(x)Ψ(0)

〉
∝ x−

1
η

high T: exponential decay of the
correlation function: e−

x
ξT

⇒ thermal fluctuations

low T: algebraically decay: x−
1
η

⇒ quantum fluctuations
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different regimes

three regimes below the degeneracy
temperature Td ≈ N~ω (green)

BEC

quasi-condensate

Tonks-Girardeau gas of impenetrable
bosons
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different regimes

weakly and strong interacting regime

weakly interacting regime: ξ � 1
n

⇒ small parameter γ =
√

1
ξn � 1

strong interacting regime
⇒ γ � 1

characteristic coherence length ξ
mean particle separation 1

n
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one important parameter γ

interaction energy: Eint = n1Dg1D

kinetic energy: Ekin =
~2n21D
m

γ =
Eint

Ekin
=

mg1D
~2n1D

γ characterizes the behavior of trapped 1D-gases
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one important parameter γ

Thomas Fermi regime (γ � 1)

high density

weakly interaction

mean field regime well
described by the GPE

BEC is possible

the system retains its 3D
feature

Tonks-Girardeau regime (γ � 1)

low density

strong interaction

fermionic properties
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regimes

weakly interacting regime

γ � 1

reducing N
⇒ macroscopic occupation
of the ground state

strongly interacting regime

γ � 1

reducing N
⇒ strongly interacting
Tonks-Girardeau gas α = mgl

~2
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Tonks gas and Bose-Fermi mapping:
ΨB(x1, ..., xn) = |ΨF (x1, ..., xn)|
interaction: repulsive zero-range force

Lieb and Liniger (1963): exact solution as a mathematical
problem
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Tonks-Girardeau gas, γ →∞

interaction: impenetrable core: Ψ(x1, ..., xN) = 0 if xi = xj

ΨB = AΨF

the relationship permits comparison of approximation methods
designed for Fermi systems

groundstate:
ΨB

0 =
∣∣ΨF

0

∣∣ ∝ |det[ϕi (xj)]| ∝ Πj>l

∣∣sin
[
π
L (xj − xl)

]∣∣
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Tonks-Girardeau gas, γ →∞

ground state energy: E =
∑

n
~2k2n
2m

= ~2(πρ0)2
6πm

density distribution
∣∣ΨB

0 (x)
∣∣2 =

∣∣ΨF
0 (x)

∣∣2
pair correlation function〈
Ψ†(x)Ψ†(0)Ψ(0)Ψ(x)

〉 x�L
≈ 1−

(
sin(πρx)
πρx

)2
correlation function
g(x) =

〈
Ψ†B(0)ΨB(x)

〉
6=
〈

Ψ†F (0)ΨF (x)
〉

(absolute value of det matters)

momentum distribution n(p) ≈
∫
e−ipxg(x)dx

different to the one of free fermions
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Interaction

we want to solve now the one-dimensional problem in general
how is the interaction?

scattering is a 3D-process

spherical scattering waves

find an effective one-dimensional potential with a 1D
scattering amplitude
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Interaction

model to describe the binary collisions between cold atoms:

a) axially 2D harmonic potential of a frequency ω⊥

b) Atomic motion along the Z axis is free

c) pseudopotential U(r) = gδ(r)
(
∂
∂r r
)

d) atomic motion is cooled down below the transverse vibrational
energy ~ω⊥

Schrödinger equation:[
pz
2µ

+ gδ(r)

(
∂

∂r
r

)
+ H⊥(px , py , x , y)

]
Ψ = EΨ
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Interaction

Schrödinger equation:[
pz
2µ

+ gδ(r)

(
∂

∂r
r

)
+ H⊥(px , py , x , y)

]
Ψ = EΨ

g = 2π~2a
µ , H⊥ =

p2
x+p2

y

2µ +
µω2

⊥(x2+y2)
2

incident wave: particle in the groundstate of H⊥: e ikzzΦn=0,mz=0(ρ)

longitutinal kinetic energy:
~2k2

z

2µ < En=2,mz=0 − En=0,mz=0 = 2~ω⊥
En,mz = ~ω⊥(n + 1): energy of the 2D harmonic oscillator

Ψ(z , ρ)→ [e ikzz + fevene
ikz |z| + fodde

ikz |z|]Φ0,0(ρ)
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Interaction

one-dimensional scattering amplitudes can be calculated
analytically for the potential U(r) = gδ(r)

(
∂
∂r r
)

f (kz) = − 1
1+ikza1D−O((kza⊥)3)

≈ − 1
1+ikza1D

scattering length: a1D = −a2⊥
2a

(
1− C a

a⊥

)
calculate a scattering amplitude for a 1D δ-potential
U1D(z) = g1Dδ(z)
⇒ spherical scattering process reduces to 1D description with
the same phase shift
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exact solution

Bethe ansatz:

Ψ(x1, ...., xN) =
∑
P

a(P)e i
∑

n kP(n)xn

for x1 < x2 < ... < xN
the P’s are the N! possible permutations of the set 1, ....,N.
physical interpretation:

when the particle coordinates are all distinct ⇒ potential
energy term vanishes
⇒ eigenstates: linear combination of single particle plane
waves

if 2 particles n and m have the same coordinate: collision

considering all possible sequences of two-body collisions leads
to the wavefunction.
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exact solution

when permuatations P and P ′ only differ by the transposition of 1
and 2

a(P) =
k1 − k2 + ic

k1 − k2 − ic
a(P ′)

⇒ the coefficients are fully determined by two-body collisions.
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exact solution

the momenta kn are determined by requiring that the wf obeys
periodic boundary conditions:

e iknL =
N∏

m=1,m 6=n

kn − km + ic

kn − km − ic

for each 1 ≤ n ≤ N.
taking the logarithm ⇒ the eigenstates are labeled by a set of
integers In

kn =
2πIn
L

+
1

L

∑
m

log

(
kn − km + ic

kn − km − ic

)
ground state: filling the pseudo Fermi-sea of the In variables.
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exact solution

kn =
2πIn
L

+
1

L

∑
m

log

(
kn − km + ic

kn − km − ic

)
in the contimuum limit the sum becomes an integral for the density

ρ(kn) =
1

L(kn+1 − kn)

2πρ(k) = 1 + 2

∫ q0

−q0

cρ(k ′)

c2 + (k − k ′)2
dx

with ρ(k) = 0 for |k | > q0
and the normalization

ρo =

∫ q0

−q0
dkρ(k)
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exact solution

by changing to dimensionless variables (g(u) = ρ(q0x)), this leads
to the three equations:

1 + 2λ

∫ 1

−1

g(u′)

λ2 + (u − u′)2
du′ = 2πg(u) (1)

e(γ) =
γ3

λ3

∫ 1

−1
g(u)u2du (2)

γ

∫ 1

−1
g(u)du = λ (3)

with γ = c
ρ0

, λ = c
q0

, g(u) = ρ(q0x)

E0 = Nρ2e(γ)
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exact solution

in the limit c →∞

1 + 2λ

∫ 1

−1

g(u′)

λ2 + (u − u′)2
du′ = 2πg(u)⇒ g(u)→ 1

2π
(4)

e(γ) =
γ3

λ3

∫
g(u)u2du ⇒

∫
u2du (5)

In the limit of strong interaction the ground state energy becomes
that of the TG gas
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discussion

1 cutoff momentum K
γ=∞→ πρ

2 chemical potential: µ = ∂E0
∂N

= ρ2
(

3e − γ de
dγ

)
→ π2ρ2

3 potential energy: v = c
N
∂
∂c
E0 = ρ2γ de

dγ
→ 0

4 kinetic energy: t = 1
N
E0 − v = ρ2

(
e − γ de

dγ

)
→ π2ρ2

3
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discussion

physical properties of the Lieb-Liniger gas depend only on the
dimensionless ratio γ = c

ρ0

γ →∞: fermionic properties (TG gas)

low density corresponds to strong interaction, which is the
reverse in 3D
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excitation spectrum

double spectrum

Bogoliubov’s perturbation theory:

quiet accurately for a weak potential
second spectrum entirely
unaccounted

for small excitations: linear spectrum
ε(p) = vsp
velocity of sound:

vs = 2
(
µ(γ)− 1

2γ
∂µ(γ)
∂γ

) 1
2
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excitation spectrum

fermi sea

p=q2-q1

p=q2-qf

p=qf-q1

γ = 0: E (p) = p2

2m ⇒ free particles

γ =∞: E (p) = p2

2m + 2πnp
⇒ fermi gas
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experimental setup

Weiss, Kinoshita:
enter the TG regime with cold 87Rb atoms
by trapping them with two light traps

blue-detuned beams form 2D optical
lattice

atoms are confined in 1D tubes

red-detuned waves trap the atoms
axially.
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the two light traps are independent

transverse confinement can be made
tighter ⇒ increases γ

strengthening the axial confinement
decreases γ

⇒ scan γ an make the atoms either
BEC-like or TG like
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measurements

measurement of ε

suddenly turn off crossed dipole trap

atoms expand ballistically

take images after 7 ms and 17 ms

ε = kBT1D
2 as a function of U0
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measurements

P=12 mW
TG-regime

P=320 mW
mean field-regime

U0 > 20Erec : only vertical expansion

∆W : transverse width (squares)

green: exact mean-filed theory, γ � 1

blue: exact TG-theory, γ � 1
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conclusion

reduced dimensions strongly enhances quantum fluctuations

completely new features in 1D

two regimes: weakly interacing (γ � 1), strong interacting
(γ � 1)

the interaction can be described by a δ-function potential with
a one-dimensional coupling strength g1D , which is linked to
3D parameters

in the strong interacting regime (γ � 1) the bosons get
Fermi-like features

experimental realization with optical lattices
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